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Abstract

The persistent current in a mesoscopic ring has a Gaussian distribution with small non-Gaussian corrections.
Here we report a semiclassical calculation of the leading non-Gaussian correction, which is described by the
three-point correlation function. The semiclassical approach is applicable to systems in which the electron
dynamics is ballistic and chaotic, and includes the dependence on the Ehrenfest time. At small but finite
Ehrenfest times, the non-Gaussian fluctuations are enhanced with respect to the limit of zero Ehrenfest
time.

1. Introduction

The fact that application of a magnetic field in-
duces an equilibrium charge current is at the ba-
sis of the Landau diamagnetic magnetic response
of metals [1]. For conducting rings threaded by a
magnetic flux, this orbital magnetic response takes
the form of a current around the ring, whereas the
sign of the response may be diamagnetic as well
as paramagnetic [2]. The recognition by Büttiker,
Imry, and Landauer that this so-called “persistent
current” continues to exist in the presence of elas-
tic impurity scattering [3] and, hence, should be
observable in realistic metal samples, initiated a
surge in theoretical and experimental work on this
paradigmatic mesoscopic phenomenon in the mid
1980s and 1990s [4]. Two recent experiments have
revived the interest in persistent currents [5, 6, 7].
The magnitude of the measured mean square cur-
rent is in excellent agreement with the original the-
oretical predictions for disordered metal rings [8, 9].
Earlier experiments had confirmed the existence of
the persistent currents [10, 11], but a quantitative
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verification of the theoretical estimates was not pos-
sible.
Whereas disorder is unavoidable in metal rings,

persistent currents were also investigated in semi-
conductor heterostructures, for which the electron
motion is ballistic [12]. The most pronounced differ-
ence between ballistic and disordered-diffusive rings
is the possible existence of short periodic electron
trajectories in the former, for which the persistent
current essentially follows the behavior of ideal one-
dimensional rings without potential scattering [13].
Such short trajectories may dominate the magnetic
response, even if the classical dynamics in the bal-
listic conductor is chaotic [14, 15, 16, 17].
An interesting case arises if the ballistic conduc-

tor has a chaotic classical dynamics, but without
short periodic trajectories encircling the magnetic
flux [18]. Examples of such a situation are, e.g.,
a ballistic ring with disc-like scatterers, referred to
as a “Lorentz gas”, or a collection of chaotic cavi-
ties arranged in a ring. Without short periodic tra-
jectories, differences between the ballistic chaotic
conductor and its disordered counterpart are much
more subtle, related to the “Ehrenfest time” τE [19],

τE =
1

λ
ln kL, (1)
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where λ is the Lyapunov exponent of the classical
dynamics, k is the wavenumber, and L a charac-
teristic classical length scale. Being the time re-
quired for two classical trajectories a quantum sep-
aration 1/k apart to acquire a classical separation L
under the influence of the chaotic classical dynam-
ics, τE characterizes the threshold between classical-
deterministic and quantum-stochastic dynamics in
ballistic structures. Ehrenfest-time-related effects
have been considered for equilibrium properties of
chaotic quantum dots [20, 21, 22, 23], and for quan-
tum transport in open systems [19, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33, 34], but not for persistent
currents in a ring geometry.

In the present article we report a study of the
Ehrenfest-time dependence of the mesoscopic fluc-
tuations of the persistent current in ballistic rings
in which the classical electron motion is chaotic
and, after appropriate coarse graining, diffusive.
We consider a grand canonical ensemble, and as-
sume that time-reversal symmetry in the ring is
broken by an applied magnetic field. In a ballis-
tic ring, mesoscopic fluctuations of the persistent
current are induced by variations of the chemical
potential µ; no disorder average is taken. Differ-
ences between ballistic-chaotic conductors and their
disordered counterparts appear through a depen-
dence on the Ehrenfest time τE for the ballistic-
chaotic case, whereas τE plays no role in the case of
a disordered conductor. As we show below, no τE-
dependence is found on the level of the two-point
correlation function 〈I(φ1)I(φ2)〉 of the current dis-
tribution; Only the connected three-point correla-
tion function K(φ1, φ2, φ3) = 〈I(φ1)I(φ2)I(φ3)〉c,
which describes deviations from the Gaussian dis-
tribution, shows a dependence on the Ehrenfest
time in the case of a ballistic conductor. (Here φ
is the flux threading the ring, in units of the flux
quantum hc/e; The subscript ‘c’ refers to the ‘con-
nected average’, 〈abc〉c = 〈abc〉−〈ab〉〈c〉−〈bc〉〈a〉−
〈ca〉〈b〉+ 2〈a〉〈b〉〈c〉.)

Below, in Sec. 2 we describe the starting point
of our theoretical approach, Gutzwiller’s trace for-
mula, and the semiclassical approximation. A cal-
culation of the two-point correlation function is pre-
sented in Sec. 3, and the three-point correlator is
discussed in Secs. 4 and 5. We conclude in Sec. 6.

2. Persistent current from Gutzwiller’s trace

formula

Starting point of our calculation of the persistent
current I is the thermodynamic relation

I = − e

h

∂Ω

∂φ
, (2)

where the thermodynamic potential at temperature
T and chemical potential µ,

Ω = −T

∫

dε ln(1 + e−(ε−µ)/T )ν(ε), (3)

is expressed as an integral of the density of states
ν(ε). Following previous works on persistent cur-
rents in ballistic chaotic conductors [14, 15, 16, 17],
we use the Gutzwiller trace formula [35] to express
the fluctuating contribution to the density of states
as a sum over periodic orbits α on the energy shell
[36],

ν(ε) =
1

π~
Re

∑

α

Aαt
0
αe

iSα(ε)/~. (4)

In this expression, the label α represents a periodic
orbit with primitive period t0α and period tα = mt0α,
where m is the repetition number. Further Sα(ε)
is the classical action of the orbit α and Aα the
stability amplitude of the orbit,

Aα = [det((M0
α)

m − 1)]−1/2 (5)

where M0
α is the stability matrix of the primitive

orbit α [36].
We now specialize to a two-dimensional system

threaded by a flux Φ = φhc/e. Considering energies
ε near the chemical potential µ, the action Sα(ε, φ)
can be written

Sα(ε, φ) = Sα(µ, 0) + 2πφ~nα + (ε− µ)tα, (6)

where nα is the winding number of the trajectory α.
Below we will write Sα as short-hand notation for
Sα(µ, 0). Substituting the Gutzwiller trace formula
for the density of states ν, taking the derivative to
φ, and performing the integration over ε, one finds
[18]

I = − ie

2π~

∑

α

nαπT t
0
α

tα sinh(πtαT/~)
(7)

×
(

Aαe
i
~
Sα+2πinαφ −A∗

αe
− i

~
Sα−2πinαφ

)

.
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Upon separating the current into Fourier compo-
nents,

I =
∑

n

Ine
2πinφ, (8)

with In = I∗−n, one then arrives at the result

In = − ien

2π~

∑

α

πT t0α
tα sinh(πtαT/~)

(9)

×
(

Aαe
iSα/~δnα,n +A∗

αe
−iSα/~δnα,−n

)

.

3. Mean square current

We now calculate the mean square 〈InI−n〉 for
the case that time-reversal symmetry in the ring is
broken by an applied magnetic field. The leading
contribution to 〈InI−n〉 comes from diagonal con-
tributions,

〈InI−n〉 =
2e2n2

(2π~)2
(10)

×
∑

α

(πT )2(t0α/tα)
2

sinh2(πtαT/~)
|Aα|2δnα,n.

The factor two in the numerator comes from the two
terms in Eq. (9), which give equal contributions to
〈InI−n〉.
In order to perform the trajectory sum in Eq.

(11), we use a method proposed by Argaman, Imry,
and Smilansky [37]. The summation over classical
trajectories is expressed as an integral over the en-
ergy shell Q. Introducing a phase space coordinate
µ, and denoting with µ(t) the phase space coordi-
nate obtained by following the classical time evolu-
tion for a time t, starting at µ, one has

∑

α

t0α|Aα|2δnα,nδ(t− tα) (11)

=

∫

Q

dµδ(µ(t)− µ)δn(µ,t),n,

where n(µ, t) is the number of times the trajectory
starting at the phase space point µ winds around
the flux in the time t. The factor t0α arises, be-
cause each trajectory is weighted by a factor t0α
upon performing the phase space integration [36].
Upon identifying

δ(µ(t)− µ)δn(µ,t),n = p(µ,µ, t|n), (12)

as the classical probability density that a particle
starting at phase space point µ is found at the same

phase space point at time t, while having passed n
times around the flux, we conclude that

〈InI−n〉 =
e2n2

2π2~2

∫

dt
(πT )2

t sinh2(πtT/~)

×
∫

dµp(µ,µ, t|n). (13)

Here we neglected the contribution from orbit rep-
etitions, which is a standard approximation in this
field, since the non-primitive orbits at a given pe-
riod are exponentially outnumbered by primitive
orbits with the same period.
For a two-dimensional ring of circumference L

with diffusive electron dynamics, one has

p(µ,µ, t|n) = L

Q

e−(nL)2/4Dt

√
4πDt

, (14)

where Q = 2π~τH is the volume of the energy shell,
τH being the Heisenberg time, and D the classical
diffusion constant. One then arrives at the result

〈InI−n〉 =
e2n2

2π2~2

∫

dt
(πT )2

t sinh2(πtT/~)

×
√

τL
4πt

e−τLn2/4t, (15)

where

τL =
L2

D
(16)

is the time required to diffuse around the ring. This
is the same result as what one obtains for a disor-
dered metal ring [8, 9]. In the limit of zero temper-
ature, Eq. (15) simplifies to

〈InI−n〉 =
6e2

π2n3τ2L
. (17)

For high temperatures, T ≫ ~/τL, the integration
can be performed using the saddle-point method
and gives

〈InI−n〉 =
2e2

~2
|n|T 2e−|n|

√
2πTτL/~, (18)

up to corrections that are small in the limit T ≫
~/τL.
The main result of this section is that the two-

point correlation function is the same for a ballistic
chaotic ring and for a disordered metal ring, pro-
vided the coarse-grained classical dynamics in the
ring is diffusive. The Ehrenfest time τE of Eq. (1)
has not entered into our considerations.
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Figure 1: Trajectories α (dashed), α′ (solid), and α′′ (solid)
contributing to the expectation value 〈InImI−n−m〉. The
trajectory α has a “figure eight” structure and is piecewise
equal to α′ or α′′, up to quantum uncertainties. The differ-
ences between α on the one hand and α′ and α′′ on the other
hand are maximal in the τE-long “encounter” (dark shaded
part) in which α “switches partners”. The points µ and µ′

denote the points in phase space where the self-encounter
starts and ends respectively. (a) The duration of the self-
encounter, τE, can be shorter than both tα′ and tα′′ . (b)
The self-encounter can wrap w times around the shorter of
the orbits α′ and α′′. Here α′′ is assumed to be the shorter
one, and we illustrated the case of w = 1.

4. Third cumulant: Off-diagonal contribu-

tion

The second moment of the current distribution
could be calculated by considering diagonal terms
in the trajectory sum only. For the calculation
of the connected expectation value 〈InImI−n−m〉c,
the Fourier transform of which gives the connected
three-point function K(φ1, φ2, φ3), one needs to go
beyond the diagonal approximation. It is at this
point, that the Ehrenfest time τE enters into the
calculation [19].
The semiclassical calculation of a connected

three-point function of the density of states (which
contains all essential information for the three-
point function of the persistent current) was per-
formed by Heusler and coworkers for the case of
a chaotic quantum dot [38, 39], building on previ-
ous developments of the trajectory-based semiclas-

sical formalism by Sieber and Richter [40]. Fol-
lowing Refs. [38, 39], the dominant contribution to
〈InImI−n−m〉c is given by a summation over “tra-
jectory triplets”. These trajectory triplets consist
of a trajectory α which contains a small-angle self-
encounter, so that it effectively has a “figure-eight”
structure, see the dashed path in Fig. 1a. The other
two trajectories α′ and α′′ (solid paths) are differ-
ent and piecewise equal to one of the loops of α, up
to a quantum uncertainty. Once the trajectory α
is specified, the other two trajectories are uniquely
determined, so that α′ and α′′ need not be summed
over separately. The periods of the three trajecto-
ries in Fig. 1 are related as

tα = tα′ + tα′′ (19)

and for the stability amplitudes one finds

Aα = Aα′Aα′′ . (20)

Accounting for the various ways in which the trajec-
tories can be combined, one obtains the expression

〈InImI−n−m〉c

= −2ie3nm(n+m)

(2π)3~3

∑

α

πT |Aα|2
sinh(πtαT/~)

× (πT )2 Re ei(Sα−Sα′−Sα′′)/~

sinh(πtα′T/~) sinh(πtα′′T/~)

× (δnα′ ,nδnα′′ ,m + δnα′ ,nδnα′′ ,−m−n

+ δnα′ ,mδnα′′ ,−m−n). (21)

The summation over trajectories is now per-
formed using the method of Refs. [38, 39] and their
extension to the systems with diffusive classical dy-
namics [32]. The oscillating factor in the numer-
ator of Eq. (21) suppresses contributions from all
trajectory triplets for which the action difference
∆S = Sα − Sα′ − Sα′′ between α on the one hand
and α′ and α′′ on the other hand is not at most of
order ~. Since the action difference is related to the
duration τenc of the small-angle encounter [41, 42],
|∆S/~| ∼ kLe−λτenc , one finds that only trajectory
triplets with τenc = τE contribute to the summa-
tion. Proceeding as in Ref. [32] one then finds that

∑

α

|Aα|2 cos(∆S/~)δnα′ ,nδnα′′ ,mδ(tα′ − t1) (22)

× δ(tα′′ − t2) =
∑

w≥0

1

τH

∂

∂τE
F (t1, t2; τE;w),

where the function F (t1, t2; τE;w) is the properly
normalized probability for the trajectory configu-
ration to occur. It depends on the number of times

4



w the encounter winds around the shorter of the
orbits α′ and α′′,

F (t1, t2; τE;w) (23)

= Q

∫

dµdµ′p(µ,µ′, t1 − τE|n− wm)

× p(µ′,µ, τE − wt2)

× p(µ,µ′, t2 − τE + wt2|m)

if t1 > τE and τE/(w + 1) < t2 < τE/w, i.e., if t2 is
the duration of the shorter orbit and the encounter
wraps w times around it,

F (t1, t2; τE;w) (24)

= Q

∫

dµdµ′p(µ,µ′, t2 − τE|m− wn)

× p(µ′,µ, τE − wt1)

× p(µ,µ′, t1 − τE + wt1|n)
if t2 > τE and τE/(w + 1) < t1 < τE/w, i.e., if t1 is
the duration of the shorter orbit and the encounter
wraps w times around it, and

F (t1, t2; τE;w) = 0 (25)

if both t1 and t2 are smaller than τE, in which case
the figure-eight configuration of Fig. 1 is not possi-
ble because the trajectories α′ and α′′ are identical
and α is a non-primitive orbit. Figure 1a shows an
example of an orbit configuration with w = 0; An
example with w = 1 is shown schematically in Fig.
1b.
Denoting the distance around the ring’s circum-

ference between the phase points µ and µ
′ point by

x, we have

p(µ,µ′, t|n) =
L

Q

e−(nL−x)2/4Dt

√
4πDt

,

p(µ′,µ, t) =
L

Q

e−x2/4Dt

√
4πDt

, (26)

where we do not impose a bound on x to account
for the possibility that the encounter itself winds
around the ring. Substituting these explicit expres-
sions for the probability densities, one finds

F (t1, t2; τE;w) =
τL

4π
√

σ(t2, t1; τE;w)
(27)

× e
− τL(n2t2−2mnτE+m2(t1−w(w+1)t2+2wτE))

4σ(t2 ,t1;τE;w)

if t1 > τE and τE/(w + 1) < t2 < τE/w,

F (t1, t2; τE;w) =
τL

4π
√

σ(t1, t2; τE;w)
(28)

× e
− τL(m2t1−2mnτE+n2(t2−w(w+1)t1+2wτE))

4σ(t1 ,t2;τE;w)

if t2 > τE and τE/(w + 1) < t1 < τE/w, and

F (t1, t2; τE;w) = 0 (29)

if t1 < τE and t2 < τE. Here

σ(t1, t2; τE;w) = t1t2 − τ2E − w(wt1 + t1 − 2τE)t1.

We note that F is continuous at t1,2 = τE/w with
w = 1, 2, . . ..
We first perform the remaining integration over

t1 and t2 in the limit τE ≪ τL. In this limit, it is
sufficient to consider the case w = 0 only, and we
may take the limit τE/τL → 0 after differentiation
to τE. We find

∑

α

|Aα|2 cos(∆S/~)δnα′ ,nδnα′′ ,mδ(tα′ − t1)

×δ(tα′′ − t2)

=
mnτ2L

8πτH(t1t2)3/2
e−m2τL/4t2−n2τL/4t1 . (30)

Performing the remaining integrations over t1 and
t2 in the limit of zero temperature then gives

∑

α

|Aα|2 cos(∆S)
tαtα′tα′′

δnα′ ,nδnα′′ ,m

=
12

τHτ2L
fn,m, (31)

with

fn,m = sign(mn)
|m|2 + 4|m||n|+ |n|2
m2n2(|m|+ |n|)4 .

Hence, in the limit τE ≪ τL and at zero tempera-
ture, one finds

〈InImI−n−m〉
= 〈I−nI−mIn+m〉∗

=
3e3mn(n+m)

iπ3τ2LτH
(32)

× (fn,m + fn,−m−n + fm,−m−n).

This result is the same as that was found previously
for disordered metal rings [43].
Including a finite Ehrenfest time τE into the zero-

temperature calculation leads to a modification of
the coefficients fn,m, which now acquire a depen-
dence on τE/τL. We were not able to perform the
integrations over t1 and t2 in closed form at finite
Ehrenfest time, but the integrals can be evaluated
numerically. The Ehrenfest-time dependence of f1,1
and f1,−2 is shown in Fig. 2a and the resulting cu-
mulant 〈I1I1I−2〉 is plotted in Fig. 2b in units of

5



Figure 2: (a) Ehrenfest-time dependence of the dimension-
less coefficients f1,1 (solid) and f1,−2 = f−2,1 (dashed).
(b) Left: The magnitude of the third cumulant 〈I1I1I−2〉
in units of e3/iπ3τ2

L
τE, shown for zero temperature (solid

line) and θL = 10 (dashed line). Right: The same zero-
temperature result shown for small τE/τL (solid line) and the
small-τE expansion of Eq. (33) (dotted line). (c) Tempera-
ture dependence of the third cumulant at τE/τL = 42/999 ≈
0.042, which is close to its maximum at θL = 0.

e3/iπ3τ2LτE (solid line). Two remarkable observa-
tions are in place: (i) For moderate but still small
values of τE/τL, the inclusion of a finite Ehrenfest
time leads to a rather significant enhancement of
the non-Gaussian fluctuations. (ii) For larger val-
ues of τE/τL the cumulant changes sign.
In the physically relevant limit of small τE/τL,

contributions with t1 < τE or t2 < τE are expo-
nentially small in the large parameter τL/τE, so
that it is sufficient to consider the integral for times
t1,2 > τE, for which one can take Eq. (27)–(29) with
w = 0. The result of a series expansion in the small
parameter τE/τL then yields

fn,m =
∞
∑

k=0

Fk(n,m)(τE/τL)
k

(mn)k+1|mn|(|m|+ |n|)2k+4
, (33)

where the first three coefficients Fk(n,m) are

F0(n,m) = m2 + 4|mn|+ n2,

F1(n,m) = 16(m4 + 6|m3n|
+ 15m2n2 + 6|mn3|+ n4),

F2(n,m) = 240(m6 + 8|m5n|
+ 28m4n2 + 56|m3n3|
+ 28m2n4 + 8|mn5|+ n6).

In Fig. 2b (right plot) we show the cumulant
〈I1I1I−2〉 resulting from this second-order expan-
sion (dotted line) together with the full numerical
solution (solid line).
For temperature T ≫ ~/τL we can perform the

integrals over t1 and t2 using a saddle-point ap-
proximation. In the limit of small Ehrenfest times
τE ≪ τL one finds

〈InImI−n−m〉

=
e3T 3τLmn(n+m)

iτH~3
(34)

× (gm,n + gn,−m−n + gm,−m−n),

with θL ≡ 2πTτL/~ ≫ 1 and

gm,n = sign(mn)e−(|m|+|n|)
√
θL . (35)

We can extend this result to finite Ehrenfest time,
yielding

gm,n(τE) = sign(mn)e−(|m|+|n|)
√
θLe2 sign(mn)θE ,

(36)

with θE ≡ 2πTτE/~ ≪ θL. Again, as in the zero-
temperature case, at finite temperatures a finite

6



Figure 3: Trajectories α, α′, and α′′ contributing to the
expectation value 〈I1I1I−2〉. The trajectory α is a non-
primitive orbit, consisting of a twofold repetition of α′ = α′′.
The trajectories α′ and α′′ each wind once around the ring.

Ehrenfest time can actually lead to an increase of
the third cumulant.
For general temperature, we have to evaluate

Eq. (21) numerically. In the left panel of Fig. 2b
we show the cumulant 〈I1I1I−2〉 as a function of
τE/τL at θL = 10 (dashed line). The qualita-
tive behavior of the cumulant is the same as at
zero temperature: Initially, its magnitude increases,
until it reaches a maximum at small but finite
τE/τL. At longer τE it decreases again, eventu-
ally changing sign at τE/τL ≈ 0.2. In Fig. 2c we
show the temperature dependence of 〈I1I1I−2〉 at
τE/τL = 42/999 ≈ 0.042, which is close to the po-
sition of the zero-temperature maximum.

5. Diagonal contribution to the third cumu-

lant

In addition to the off-diagonal contributions to
the third cumulant that were discussed in Sec. 4,
there are also diagonal contributions that involve
orbit repetitions. Such contributions are usually ne-
glected in a semiclassical analysis, because they are
suppressed with a factor e−λt, where t is the period
of the (primitive) orbit and λ the Lyapunov expo-
nent. Since the period of typical orbits that encircle
the ring τL ≫ 1/λ, one argues that such contribu-
tions can safely be neglected. However, diagonal
contributions do not involve the inverse phase-space
volume, so that they lack the factor τL/τH that sets
the smallness of the off-diagonal contributions such
as Eq. (32).
The leading such diagonal contribution (for given

m and n) requires the two short orbits α′ and α′′

to be n-fold and m-fold repetitions of a primitive
orbit α0 with unit winding number, whereas the α
is the of the (m + n)-fold repetition of the same

orbit, with m, n > 0. The case n = m = 1, for
which α′ = α′′ = α0, is illustrated in Fig. 3. For
such a diagonal contribution one has a single sum
over orbits,

〈InImI−m−n〉dc (37)

= − ie3

4π3~3

∑

α0

Cn,m(tα0)δnα0 ,1
|Aα0 |2n+2m,

where we used that we may set Aα′ = An
α0
, Aα′′ =

Am
α0
, and Aα = Am+n

α0
. We abbreviated

Cn,m(t) =
(πT )2

sinh(nπtT/~) sinh(mπtT/~)

× πT

sinh[(m+ n)πtT/~]
. (38)

For uniformly hyperbolic dynamics one has
|Aα0 |2 = 1/2 sinh(λtα0 ) ≈ e−λtα0 for λtα0 ≫ 1 [44].
This then gives

〈InImI−m−n〉dc

= − ie3

4π3~3

∑

α0

Cn,m(tα0)

× δnα0 ,1
|Aα0 |2e−(m+n−1)λtα0 . (39)

Performing the remainder of the calculation as in
Sec. 3, one finds that the diagonal contribution to
the third cumulant of the persistent current reads

〈InImI−n−m〉dc

= − ie3

4π3~3

∫

dt

t
Cn,m(t)

√

τL
4πt

e−τL/4t

× e−(m+n−1)λt. (40)

For temperatures T ≪ ~
√

λ/τL one then finds an
essentially temperature-independent diagonal con-
tribution to the third cumulant of the persistent-
current fluctuations,

〈InImI−n−m〉dc (41)

= −2i
e3λ3/2

π3τ
3/2
L

(m+ n− 1)3/2

mn(m+ n)
e−

√
(m+n−1)λτL .

At zero temperature all diagonal contributions
from orbit repetitions are smaller than the off-
diagonal contributions if the condition

τH
τL

≪ e
√

(m+n−1)λτL

(λτL)3/2
(42)

is met. This condition can also be rephrased
in terms of the Ehrenfest time τE, using τE ∼
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λ−1 ln(τH/τL), as

τE .
(n+m− 1)τL

ln(τH/τL)
. (43)

Given the intrinsic smallness of the Ehrenfest time,
this condition is easily met. However, to see a non-
trivial Ehrenfest-time dependence of the persistent
current fluctuations, the Ehrenfest time needs to be
a finite fraction of τL, see Sec. 4, and the condition
(43) effectively limits the applicability of the results
as shown in Fig. 2 to the range τE/τL ≪ 1, where
the expansion (33) is valid.
At finite temperatures T & ~/τL the off-diagonal

contribution is strongly suppressed and the diago-
nal contribution quickly takes over. This reflects
the large difference in typical orbit durations for
the off-diagonal and diagonal contributions: For the
off-diagonal contribution, the typical orbit dura-
tion ∼ τL at zero temperature, so that temperature
starts to suppress this contribution for T & ~/τL.
The typical duration of orbits contribution to the
diagonal contribution is ∼

√

τL/λ, which explains
the relative insensitivity of this contribution to tem-
perature.

6. Discussion and conclusion

The distribution of the persistent current in
a mesoscopic ring is Gaussian, with small non-
Gaussian corrections. Here we have presented
a semiclassical calculation of the leading non-
Gaussian correction, described by the three-point
correlation function K = 〈I(φ1)I(φ2)I(φ3)〉c. In
agreement with previous work for disordered metal
rings [43, 45], we found here that at small temper-
atures K ∼ e3/τ2LτH = e3/gτ3L, where g = τH/τL is
the dimensionless conductance of the ring, τL the
diffusion time, and τH the Heisenberg time. The
semiclassical approach also contains information on
the role of the Ehrenfest time in such a ring, and
we showed that for small but finite τE/τL the mag-
nitude of the non-Gaussian corrections is enhanced
by a numerical factor, before it is suppressed in the
limit of large τE/τL.
The fact that the three-point correlation function

initially increases with increasing Ehrenfest time is
remarkable, since a finite Ehrenfest time usually
suppresses quantum interference effects. However,
it is not without precedent: The conductance fluc-
tuations in a chaotic cavity are Ehrenfest-time in-
dependent [27, 26], whereas the conductance fluc-
tuations in a quasi-one dimensional Lorentz gas are

larger in the limit of large Ehrenfest time than in
the limit of zero Ehrenfest time [32]. The same ap-
plies to the variance of the current pumped through
a chaotic cavity with a periodic modulation of its
shape [46]. Just as in the present case, the conduc-
tance fluctuations or the variance of the pumped
current contain contributions from closed loops,
and it is this type of correction that can in prin-
ciple be enhanced by Ehrenfest-time corrections.
We have also identified a second semiclassical

contribution to K, which involves a diagonal or-
bit sum with non-primitive periodic orbits. Non-
primitive orbits are usually neglected in semiclassi-
cal approaches, because their contribution is expo-
nentially suppressed in comparison to contributions
from primitive orbits. Nevertheless, for the three-
point correlation of the persistent current, such di-
agonal contributions become dominant in the limit
of large Ehrenfest times and/or temperatures. A re-
lated (but not identical) effect appears for conduc-
tance fluctuations in a chaotic quantum dot, where
“classical fluctuations” become important for large
Ehrenfest times [27].
The small magnitude of the non-Gaussian fluc-

tuations turns its measurement into a considerable
challenge, even with state-of-the-art techniques [5,
7]. For disordered metal rings, the conditions for
measuring non-Gaussian corrections to the distri-
bution are most favorable if its dimensionless con-
ductance g is not too large, since one needs to av-
erage over at least ∼ g2 statistically independent
samples to be able to distinguish the three-point
function from the Gaussian (second-order) fluctua-
tions [7]. For Ehrenfest-time-related corrections to
become relevant merely making g small is not the
solution, since a small dimensionless conductance g
also implies a small τE.
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