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We study the Josephson effect in a quantum spin Hall system coupled to a localized magnetic impurity.
As a consequence of the fermion parity anomaly, the spin of the combined system of impurity and spin-Hall
edge alternates between half-integer and integer values when the superconducting phase difference across
the junction advances by 2π. This leads to characteristic differences in the splittings of the spin multiplets
by exchange coupling and single-ion anisotropy at phase differences, for which time-reversal symmetry is
preserved. We discuss the resulting 8π-periodic (or Z4) fractional Josephson effect in the context of recent
experiments.
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Introduction.—The fractional Josephson effect [1–3]
constitutes one of the most striking effects heralding
topological superconductivity [4,5]. In Josephson junctions
of conventional superconductors, the Josephson current is
carried by Cooper pairs and is 2π periodic in the phase
difference applied to the junction. When the junction
connects topological superconductors [6–9], the coupling
of Majorana bound states across the junction allows a
Josephson current to flow by coherent transfer of single
electrons, resulting in 4π periodicity in the phase differ-
ence. Robust 4π periodicity requires that time-reversal
symmetry be broken through proximity coupling to a
magnetic insulator or an applied magnetic field [6]. A
fractional Josephson effect can occur in time-reversal-
symmetric junctions as a consequence of electron-electron
interactions [10,11]. In the limit of strong interactions, this
8π-periodic effect can be understood in terms of domain
walls carrying Z4 parafermions, enabling tunneling of e=2
quasiparticles between the superconductors.
Recent experiments on superconductor—quantum spin

Hall—superconductor junctions show intriguing evidence
for 4π-periodic Josephson currents. One experiment probes
Shapiro steps and shows that the first Shapiro step is absent
[12]. A second experiment reports that the Josephson
radiation emitted by a biased junction is also consistent
with 4π periodicity [13]. These results are surprising as
both experiments were performed without explicitly break-
ing time-reversal symmetry so that basic theory would
predict a dissipative 2π-periodic behavior when neglecting
electron-electron interactions, or an 8π-periodic behavior
when taking interactions into account.
These expectations are based on considering pristine

quantum spin Hall Josephson junctions with a fully gapped
bulk and a single helical channel propagating along its
edges. Density modulations in actual quantum spin Hall
samples are widely believed to induce puddles of electrons
in addition to the helical edge channels [14]. When these

puddles host an odd number of electrons, charging effects
turn them into magnetic impurities that are exchange
coupled to the helical edge channels. In this Letter, we
discuss the fractional Josephson effect in realistic quantum
spin Hall Josephson junctions that include such magnetic
impurities.
The effects of magnetic impurities on quantum spin Hall

edge channels have been intensively studied in the absence
of superconductivity [15–18]. In the high-temperature
limit, a magnetic impurity induces backscattering between
the Kramers pair of helical edge channels and thus
deviations from a quantized conductance in a two-terminal
measurement. As the temperature is lowered, the impurity
spin is increasingly Kondo screened by the helical edge
channel and perfect conductance quantization is recovered
when the temperature is low compared to the Kondo
temperature TK . In the presence of superconductivity,
the Kondo effect is quenched by the superconducting
gap Δ so that one may expect that magnetic impurities
field more prominent consequences [19]. Here, we assume
that TK ≪ Δ so that we can safely neglect the effects of
Kondo screening.
We find that magnetic impurities alter the behavior of

quantum spin Hall Josephson junctions qualitatively. The
Josephson current becomes 8π periodic, replacing the
dissipative 2π-periodic effect in pristine junctions. This
can be viewed as a variant of the Z4 Josephson effect.
Indeed, unlike its classical counterpart, coupling to a
quantum spin preserves time-reversal symmetry and inter-
actions are effectively included through the local-moment
formation. This is quite reminiscent of the ingredients of
the Z4 fractional Josephson effect. Thus, our results show
that this remarkable effect is considerably more generic
than one might have previously thought.
Moreover, the present setting emphasizes a remarkable

mechanism for producing an 8π-periodic fractional
Josephson effect. As a result of the fermion parity anomaly
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[3], the spin of the helical edge effectively changes by ℏ=2
when the superconducting phase difference is advanced by
2π. This adiabatically transmutes the combined spin of
helical edge and magnetic impurity between half-integer
and integer values, with their characteristically different
behavior in the presence of time-reversal symmetry as
described by the Kramers theorem.
Quantum spin Hall Josephson junctions.—We first

review the Andreev spectrum of pristine quantum spin
Hall Josephson junctions [3]. Consider a quantum spin Hall
edge with edge modes counterpropagating at velocity v,
placed in between two superconductors at a distance L
whose phases differ by ϕ. This junction is described by the
Bogoliubov–de Gennes Hamiltonian

H ¼ vpσzτz þ ΔðxÞτþ þ Δ�ðxÞτ−; ð1Þ

where σj and τj are Pauli matrices in spin and Nambu
(particle-hole) space, respectively. The subgap spectrum as
a function of ϕ is shown in Fig. 1.
For short junctions (L → 0), the subgap spectrum con-

tains a particle-hole symmetric pair of Andreev states [see
Fig. 1(a)]. Both Andreev levels emanate from and merge
into the quasiparticle continuum. An applied bias voltage V
advances the phase difference at a rate _ϕ ¼ 2eV=ℏ and
leads to the generation of continuum quasiparticles above
the superconducting gap. These can diffuse away from
the junction, which causes dissipation. Thus, the junction
exhibits an ac Josephson effect with conventional frequency
and energy dissipation rate ð2ΔÞð _ϕ=2πÞ.
The dissipative nature of the Josephson effect is closely

related to the absence of backscattering. When introducing
backscattering into the junction by breaking time-reversal
symmetry through an applied magnetic field or proximity
coupling to amagnetic insulator, theAndreev levels no longer
merge with the quasiparticle continuum [see Fig. 1(b)]. Now,
the quasiparticles generated by the advancing phase differ-
ence remain at subgap energies and localized at the junction,
which quenches dissipation in the small-voltage limit [6].

Moreover, the ac Josephson effect occurs at half the conven-
tional frequency, i.e., at eV=ℏ, as fermion number parity is
conserved. Indeed, the level crossing atϕ ¼ π is protected by
fermion number parity so that the individual Andreev levels
are 4π periodic in the phase difference ϕ. This can be viewed
as a consequence of the fermion parity anomaly (seeRef. [20]
for more details): as a result of the quantum spin Hall effect,
the parity of the fermion number of the edge changes when
the superconducting phase difference is advanced by 2π,
requiring a phase change of 4π for a full period.
Additional subgap levels appear for longer junctions, see

Figs. 1(c) and 1(d). The level crossings in these spectra are
not only controlled by fermion number parity, but also by
time-reversal symmetry. While time reversal is broken by
the phase difference across the junction (causing a nonzero
Josephson current to flow), it remains unbroken when ϕ is
an integer multiple of π.
Coupling to magnetic impurity.—We now consider the

coupling of the edge channel to a magnetic impurity with
spin S. Generically, disorder in conjunction with the strong
spin-orbit coupling will remove any symmetry other than
time reversal, which we assume to be broken only by the
applied superconducting phase difference. Thus, we focus
on the general Hamiltonian

HS ¼
X
α;β

JαβŜ
ασ̂βð0Þ þ

X
α

DαðŜαÞ2 ð2Þ

for the impurity spin Ŝ. The first term describes the
exchange coupling between the impurity spin and the
helical edge, with σ̂αð0Þ ¼ P

i;jψ
†
i ð0ÞðσαÞijψ jð0Þ denoting

the local spin density of the edge at the position x ¼ 0 of
the impurity. The operator ψ iðxÞ annihilates an electron
with spin projection i at position x. The second term
describes a single-ion anisotropy of the impurity spin with
strengths Dα. Time reversal implies that the exchange
couplings are real, but otherwise arbitrary.
Josephson effect.—Analyzing the Josephson effect of the

quantum spin Hall edge channel coupled to the magnetic
impurity is greatly simplified by the discrete nature of the
subgap spectrum. For definiteness, consider an intermediate-
length junction whose subgap spectrum has exactly two
positive-energy subgap states ϵnðϕÞ (n ¼ 1, 2) at all values of
the phase difference as inFig. 1(d). (This convenient choice is
used in our numerical illustrations but is not essential for our
results.) Then, we can analyze the low-energy (many-body)
spectrum of the junction in the finite-dimensional space of
low-energy states spanned by the product of occupation
states of the two subgap Bogoliubov quasiparticles (yielding
four basis states) and the 2Sþ 1 spin states of the spin-S
impurity. The low-energy many-body spectrum effectively
decouples from the quasiparticle continuumwhen theKondo
temperature is small compared to the superconducting gap
[21]. The corresponding Hamiltonian is readily derived by
retaining only the contributions of the two positive-energy
subgap Bogoliubov operators γn to the edge-state electron

(a) (b) (c) (d) (e)

FIG. 1. Andreev spectrum of quantum spin Hall Josephson
junctions of different lengths. (a) L ¼ 0. (b) L ¼ 0 in the
presence of backscattering due to a Zeeman field.
(c) L ¼ 0.8ℏv=Δ. (d) L ¼ ðπ=2Þℏv=Δ. (e) L ¼ 2ℏv=Δ. The
green curves correspond to Andreev states consisting of a
superposition of an up-spin electron and an Andreev-reflected
hole. The orange curves are for the particle-hole conjugated
states.
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operators (see Ref. [20] for details). In this limit, the total
Hamiltonian can be approximated as H ¼ He þHS with

He ¼
X
n

ϵnðϕÞ
�
γ†nγn −

1

2

�
ð3Þ

the Hamiltonian of the bare edge.
Consider coupling the quantum spin Hall edge states to a

spin-1=2 impurity. Figure 2(a) shows the many-body
spectrum of He in Eq. (3), i.e., of the bare edge (left panel),
and of H ¼ He þHS for a generic choice of exchange
couplings Jαβ (right panel). The spectrum of the coupled
edge is best understood by analyzing the nature of the
degeneracies at phase differences equal to integer multiples
of π. The degeneracies at and near ϕ ¼ π are protected by
fermion number parity. Here, level crossings occur between
states with even and odd occupations of the Bogoliubov
quasiparticles of the edge. In contrast, the level crossings at
ϕ ¼ 0 andϕ ¼ 2π occur between states of the same fermion
number parity and areKramers degeneracies reflecting time-
reversal symmetry.
In the present system, a Kramers degeneracy appears

when the Bogoliubov quasiparticles γn of the edge are
either both empty or both occupied, leading to a half-
integer spin of the combined system of edge and impurity.
Specifically, the lower (higher) energy crossing in Fig. 2(a)
corresponds to states in which the quasiparticle states are
both empty (occupied). Away from ϕ ¼ 0 and 2π, time

reversal is broken and the Kramers degeneracies are lifted.
This interpretation is corroborated by further restricting the
Hamiltonian H for small ϕ to the low-energy subspace of
empty quasiparticle states. In this limit, the spin density
σ̂αð0Þ of the edge only has a nonzero z component σ̂zð0Þ ¼
−ϵϕ=½2ℏvð1þ κLÞ2� and the Hamiltonian simplifies to

H ≃ −
X
α

BαSα þ const ð4Þ

with the effective Zeeman field B ¼ ½ϵϕ=2ℏvð1þ κLÞ2�P
αJαzêα. Here, we use the subgap energy ϵ ¼

Δ cos½ϵL=ðℏvÞ� and κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 − ϵ2

p
=ðℏvÞ.

The four nondegenerate states at intermediate energies for
ϕ ¼ 0 [see Fig. 2(a)] have overall single occupation of the
quasiparticle states, leading to a combined edge-impurity
systemwith integer spin. Unlike in the odd-integer spin case,
time reversal does not enforce a degeneracy of the many-
body spectrum in this case. Writing the Hamiltonian for
small ϕ in this subspace using the basis j↑i ¼ γ†1jgsi and
j↓i ¼ γ†2jgsi (with the junction ground state jgsi such that
γ1jgsi ¼ γ2jgsi ¼ 0) for the states of the edge (with corre-
sponding Pauli matrices ρα), we find the effective
Hamiltonian

H ≃ κ

2ð1þ κLÞ
�X

α

Jα þ Sαρþ þ H:c:

�
: ð5Þ

Generically, this Hamiltonian has no degeneracies.
With this understanding, the many-body spectrum in

Fig. 2(a) reveals a remarkable fact: adiabatically advancing
the superconducting phase difference by 2π connects the
low-energy Kramers doublet at ϕ ¼ 0 to states of the totally
lifted spin quartet at ϕ ¼ 2π. Thus, adiabatic quantum
dynamics changes the total spin of the edge-impurity
system between half-integer and integer values. This spin
transmutation is a direct consequence of the fermion parity
anomaly (see also Ref. [20]): as the phase difference
changes by 2π, the fermion number parity of the edge
changes by virtue of the quantum spin Hall effect.
Consequently, also the spin of the edge changes by ℏ=2.
This change in spin has important consequences for the
periodicity of the Josephson effect. Indeed, adiabatically
following the energy levels in Fig. 2(a), we find that they
are 8π periodic, corresponding to an ac Josephson fre-
quency of eV=2ℏ. Because of the spin transmutation, the
system passes through successive Kramers degeneracies
only after advancing the superconducting phase difference
by 4π, requiring a phase change of 8π for completing a full
period. Note that starting with the ground state at ϕ ¼ 0, the
many-body state remains well below the quasiparticle
continuum for all ϕ, so that the ac Josephson effect is
nondissipative at a sufficiently small bias.
The polarization of the impurity spin varies with the

superconducting phase difference in an 8π-periodic

(a) (b)

FIG. 2. (a) Generic many-body spectrum for the quantum spin
Hall Josephson junction [L ¼ ðπ=2Þℏv=Δ] without (left) and
with coupling to the impurity spin (right) (for parameters see
Ref. [20]). The red solid and blue dashed curves indicate even and
odd fermion number parity, respectively. The discontinuity in
fermion number parity at ϕ ¼ π originates from the merging of
Andreev levels with the continuum, see Fig. 1(d). The crossings
at and near ϕ ¼ π (black circles) are between states of opposite
fermion number parity. The crossings between states with even
fermion number parity at ϕ ¼ 0 and 2π (red dashed circles) are
protected by time reversal. The arrows indicate the impurity-spin
polarization along the z axis. (b) Fourier transforms of the many-
body ground state energy (equivalently, Josephson current)
(upper panel) and of the expectation value of the impurity spin
hSzi (lower panel) as a function of the phase difference ϕ. The 8π-
periodic harmonics are indicated by the vertical dashed lines.
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manner. When adiabatically varying ϕ, the spin orientation
remains unchanged at the Kramers crossings and flips in
the vicinity of the avoided crossings where the edge-
impurity system is in an integer-spin state. This variation
of the spin with ϕ is illustrated in Fig. 2(a).
These results for S ¼ 1=2 impurities persist for higher-

spin impurities. Results for an S ¼ 1 impurity are shown in
Fig. 3. Figure 3(d) shows results for generic values of Jαβ
and Dα. Unlike in the S ¼ 1=2 case, the low-energy states
now have integer spin and are nondegenerate, while the
intermediate-energy states have half-integer spin and are
Kramers degenerate at ϕ ¼ 0 and 2π. Nevertheless, the 8π
periodicity remains intact.
Different periodicities occur for nongeneric Dα. Without

single-ion anisotropy [see Fig. 3(a)], the spectrum does not
decouple from the quasiparticle continuum and the
Josephson effect becomes dissipative and 2π periodic.
The same results occur for easy-plane anisotropy, with
one of the single-ion anisotropies being positive and the
others equal to zero, see Fig. 3(b). Finally, easy-axis
anisotropy makes the junction nondissipative and 4π
periodic as shown in Fig. 3(c).
Discussion.—We find that, generically, coupling to a

magnetic impurity makes the Josephson effect in quantum
spin Hall systems 8π periodic, corresponding to a fre-
quency eV=2ℏ of the ac Josephson effect. The 8π perio-
dicity relies only on time-reversal symmetry, the parity

anomaly, and the absence of fine tuning such as the
absence of interactions or the presence of spin conserva-
tion. It can be thought of as resulting from the coupling of
Z4 parafermions across the junction.
This general conclusion requires two comments. First,

the 8π-periodic Josephson current may not be the dominant
Fourier component in experiment. Indeed, as is evident
from Fig. 2, the 8π-periodic cycle consists of two rather
similar 4π sections. The splitting between the two sections
is controlled by the exchange coupling. When the exchange
splitting is small compared to the superconducting gap, the
dominant Fourier component of the Josephson current is 4π
periodic. This is shown in Fig. 2(b), together with the
Fourier components of the impurity spin polarization that
has a dominant 8π-periodic harmonic. It is interesting to
note that this result for the Josephson current is different
from the realization of theZ4 Josephson effect discussed by
Zhang and Kane [10], which has a dominant 8π-periodic
Fourier component.
Second, our results so far consider only the electronic

system. Coupling to other degrees of freedom such as
phonons or the electromagnetic environment introduces
inelastic relaxation processes that may crucially affect the
experimentally observed periodicity. While relaxation
between states of opposite fermion number parity may
be slow, parity-conserving relaxation processes should be
considerably more efficient. Observation of the 8π perio-
dicity requires that the latter relaxation processes be slow
compared to the time in which the 8π cycle is traversed.
Indeed, the two 4π sections of the 8π cycle involve states of
the same fermion number parity. Thus, the system always
remains in the lower-energy state if the cycle is traversed
slowly on the time scale of parity-conserving relaxation
processes. This makes the observed Josephson effect 4π
rather than 8π periodic.
It is interesting to compare these results to the recent

experiments on quantum spin Hall junctions, which
observe Shapiro steps and Josephson radiation consistent
with 4π periodicity [12,13]. Our results provide an in-
triguing scenario that is consistent with these observations.
However, this is not the only explanation of a 4π-periodic
Josephson effect in this system. An alternative scenario
considers relaxation processes in a pristine quantum spin
Hall junction. Consider an intermediate-length junction
with at least two positive-energy Andreev states for any
phase difference. When both of these Andreev states are
occupied, the two quasiparticles can relax inelastically by
recombining into a Cooper pair. Two positive-energy
quasiparticles are created every time the phase difference
advances by 4π. Thus, if recombination into a Cooper pair
is an efficient process, one would also observe a 4π-
periodic Josephson effect. It is an interesting problem to
devise experiments that distinguish between these alter-
native scenarios. Such efforts may benefit from the con-
siderable recent progress in directly probing the subgap

(a) (b)

(c) (d)

FIG. 3. Many-body spectrum for a quantum spin Hall edge
coupled to an S ¼ 1 impurity (for explicit parameters, see
Ref. [20]). The red solid and blue dashed curves correspond
to many-body states with even and odd fermion number parity,
respectively. Spectra correspond to (a) vanishing single-ion
anisotropy, (b) easy-plane anisotropy Dz > 0, (c) easy-axis
anisotropy Dz < 0, and (d) generic single-ion anisotropy with
Dx, Dy, Dz ≠ 0. The degeneracies at ϕ ¼ 2π (blue dashed
circles) and their partners at ϕ ¼ 0 are Kramers degeneracies.
Red circles highlight degeneracies that are lifted by generic
single-ion anisotropy. The number of arrows indicates subsequent
2π periods when adiabatically advancing ϕ.
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spectrum of Josephson junctions by microwave spectros-
copy and switching current measurements [22–27].
Finally, our results suggest probing the Josephson effect

of a quantum spin Hall edge that is intentionally coupled to
a quantum dot. Such a setup would allow one to tune the
quantum dot in and out of the local moment regime and to
control the exchange coupling between dot and edge. In
addition to the Josephson periodicity, such a setup might
provide access to the 8π periodicity of the impurity spin
(see Table I) and would be a promising setup for detecting
Z4 parafermions.
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