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Abstract

Background: ChIP-nexus, an extension of the ChIP-exo protocol, can be used to map the borders of protein-bound
DNA sequences at nucleotide resolution, requires less input DNA and enables selective PCR duplicate removal using
random barcodes. However, the use of random barcodes requires additional preprocessing of the mapping data,
which complicates the computational analysis. To date, only a very limited number of software packages are available
for the analysis of ChIP-exo data, which have not yet been systematically tested and compared on ChIP-nexus data.

Results: Here, we present a comprehensive software package for ChIP-nexus data that exploits the random barcodes
for selective removal of PCR duplicates and for quality control. Furthermore, we developed bespoke methods to
estimate the width of the protected region resulting from protein-DNA binding and to infer binding positions from
ChIP-nexus data. Finally, we applied our peak calling method as well as the two other methods MACE and MACS2 to
the available ChIP-nexus data.

Conclusions: The Q-nexus software is efficient and easy to use. Novel statistics about duplication rates in consideration
of random barcodes are calculated. Our method for the estimation of the width of the protected region yields unbiased
signatures that are highly reproducible for biological replicates and at the same time very specific for the respective
factors analyzed. As judged by the irreproducible discovery rate (IDR), our peak calling algorithm shows a substantially
better reproducibility. An implementation of Q-nexus is available at http://charite.github.io/Q/.
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Background
ChIP-seq, which couples chromatin immunoprecipi-
tation with high-throughput sequencing, has enabled
researchers to investigate protein-DNA binding on a
genome-wide scale [1–3]. ChIP-seq works by cross-
linking DNA-protein complexes with formaldehyde fol-
lowed by fragmentation of the complexes into short
stretches of 300–500 base pairs (bp). The fragments are
then immunoprecipitated with an antibody specific for
the protein of interest, such as a transcription factor
(TF) or a modified histone, in order to enrich for DNA
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fragments bound by the protein prior to next-generation
sequencing (NGS). Since the fragment is much longer
than the specific protein-DNA binding site (which tend to
be on the order of 6–20 bp in length), ChIP-seq “peaks”,
representing areas of enrichment for the bound protein,
do not directly allow the exact position of protein-DNA
binding to be identified.
For this reason, ChIP-exo, an extension of the basic

ChIP-seq method, aims to remove DNA segments that
surround the binding site of the protein of interest before
NGS adapters are attached in order to characterize the
exact binding site of proteins more exactly [4]. The proto-
col for ChIP-exo is similar to the ChIP-seq protocol with
the key difference that a 5’-3’ (λ) exonuclease is employed
to trim the DNA sequences on each strand to within a
few bp of the location at which the protein of interest has
been cross-linked to the DNA. DNA sequences located 3’
to the cross-linking point remain intact and thus can be
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used to identify the genomic location of the binding event
if they are sufficiently long and located in non-repetitive
areas of the genome; on the other hand, non-cross-linked
nonspecific DNA is largely eliminated by the exonucle-
ase treatment, which may contribute towards reducing
background noise [5, 6].
The ChIP-exo methodology allows protein-DNA bind-

ing interactions to be characterized to a level of detail
that was not possible with ChIP-seq. The cross-linked
DNA-protein complex protects the 5’ ends of bound
DNA fragments from exonuclease digestion, with the
cleavage occurring about 5–6 bp upstream of the cross-
linking point [5], allowing TF binding sites be mapped
at high resolution [7–9]. Additionally, the morphology
of the ChIP-exo mapped read profiles allows one to
discriminate between direct and indirect protein-DNA
binding interactions. Profile-based analysis of ChIP-exo
signals can uncover structural and functional clues about
the interaction and cooperative nature of genomic TF
binding [10].
Despite these advantages, the ChIP-exo methodology

has a number of shortcomings, including the need for
high amounts of input DNA in order to avoid overam-
plification artifacts resulting from low amounts of start-
ing DNA [11]. Recently, an adaptation of the ChIP-exo
procedure was introduced with the goal of addressing
these short-comings. ChIP-nexus (chromatin immuno-
precipitation experiments with Nucleotide resolution
through EXonuclease, Unique barcode and Single lig-
ation) involves chromatin immunoprecipitation as with
standard ChIP-seq, but then proceeds to ligate adapters
that contain Illumina-specific sequences, a BamHI site,
and a random barcode arranged in such a way that self-
circularization can occur following λ-exonuclease diges-
tion, which places the random barcode directly adjacent
to the “stop” nucleotide resulting from the cross-linked
protein-DNA complex. In comparison to the ChIP-exo
protocol, ChIP-nexus is more efficient, because for a given
fragment only one ligation (instead of two) is needed.
Following ligase-mediated circularization, an oligonu-
cleotide with sequence complementary to segment with
the BamHI site is added, which enables relinearization
of the circles by means of BamHI digestion. Finally, PCR
amplification is performed with primers that match the
Illumina sequences of the adapter, followed by single-end
Illumina sequencing. The random barcode allows multi-
ple reads that correspond to independent molecules but
map to the same position to be distinguished from PCR
duplicates.
There is currently no software designed specifically

for ChIP-nexus, and the computational analysis in the
original publication [11] was performed using a num-
ber of scripts for preprocessing and MACS2 [12] for
peak calling, which was designed for ChIP-seq data and

does not take into account the specifics of ChIP-exo and
ChIP-nexus data. Although there are software packages
specifically developed for ChIP-exo data [13, 14], they
do not provide solutions for the extensive preprocessing
of the data before peak calling, which comprises qual-
ity trimming, adapter clipping and mapping. For ChIP-
nexus an additional processing of the mapping has to
be performed in order to benefit from the random bar-
codes. For ChIP-seq the average fragment length is an
important parameter for peak calling and downstream
analysis and a number of algorithms for estimation have
been developed, e.g. the well known cross-correlation
method [2, 12]. For ChIP-exo and ChIP-nexus the rel-
evant quantity is the average width of the regions that
are occupied by the protein of interest, which is differ-
ent from the average fragment length. We will refer to
such regions as protected regions, because they are pro-
tected from 5’-3’ (λ) exonuclease digestion. A number
of methods have been developed to estimate the size of
the protected region and to call peaks in ChIP-exo data
[10, 11, 13, 14].
In this work, we present a software package, Q-nexus,

for the analysis of ChIP-nexus and ChIP-exo data. Our
software implements an all-in-one approach for the pre-
processing of ChIP-nexus reads, a novel method for the
estimation of the protected-region width and peak call-
ing that can be applied to ChIP-nexus as well as ChIP-exo
data. We tested our software on the available ChIP-nexus
data and show that our method for the estimation of
protected region width provides unbiased signatures that
are homogeneous for biological replicates and specific for
individual transcription factors. Using the IDR framework
[15], we show that our method for ChIP-nexus peak call-
ing outperforms competing methods with respect to the
reproducibility of the results. The Q-nexus software as
well as an associated tutorial is freely available at https://
github.com/charite/Q.

Results
Preprocessing andmapping of ChIP-nexus reads
In standard ChIP-seq, multiple reads that map to the
same genomic position are usually considered to be dupli-
cates resulting from PCR overamplification during library
preparation, and are therefore removed before further
analysis. In contrast, in the ChIP-exo and ChIP-nexus pro-
tocols, exonuclease digests multiple distinct DNA frag-
ments up to the identical protein-DNA binding site, and
therefore reads mapping to the same position are not
necessarily PCR duplicated. While ChIP-exo analysis pro-
tocols simply do not remove any reads mapping to the
same position, ChIP-nexus employs a randomized bar-
code in the adapter in order to allow PCR duplicated
reads (with the same random barcode) to be distinguished

https://github.com/charite/Q
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from reads originating from distinct molecules (with dif-
ferent random barcodes). We will refer to reads map-
ping to the same position as identically mapped (IM)
reads. Furthermore, we will refer to IM reads with iden-
tical barcodes as IMIB reads and to those with unique
barcode as IMUB reads. ChIP-nexus assumes that iden-
tically mapped reads with identical barcode (IMIB) rep-
resent PCR duplicates and only IMUB are utilized for
analysis.
Existing tools are not able to process these barcodes in

the way that is required by the ChIP-nexus protocol. In
the original publication, a set of scripts was used to pro-
cess barcodes and prepare the data for peak calling [11].
We have therefore implemented a preprocessing routine
(Fig. 1) that processes raw FASTQ files by extracting the
random barcodes from ChIP-nexus reads and writes them
into the sequence ID line for downstream analysis. Due to
exonuclease digestion a certain proportion of the inserts
tend to be very short in size, i.e. shorter than the read
length. Therefore, adapter clipping is performed. Follow-
ing this, alignment of the preprocessed ChIP-nexus reads
is carried out with an aligner such as bowtie [16]. The
ChIP-nexus protocol assumes that reads that are mapped

to the same genomic position and have an identical bar-
code result from PCR duplication artifacts. For such reads
only one read is retained. The Q-nexus software pre-
processes a typical ChIP-nexus dataset in less than 17
minutes, where the runtime primarily depends on the
number of raw reads to be processed. We compared the
results of our preprocessing to those obtained in the orig-
inal publication [11] and found comparable numbers of
IMUB reads (Table 1).

Sequence duplication levels and random barcodes
The complexity of sequencing libraries and PCR overam-
plification are critical points in virtually all NGS applica-
tions [17]. In many NGS applications, a diverse library in
which any given sequence appears only once in the final
data set is considered ideal, and high levels of duplication
generally indicate PCR overamplification or other forms
of bias. For this reason, software tools such as FastQC
[18] have been developed that generate plots showing the
proportion of the overall library with a given degree of
duplication, where the sequence duplication level refers
to the proportion of reads in the given duplication level
bin. ChIP-exo presents a unique challenge to this kind

Fig. 1 Overview of the Q-nexus preprocessing workflow. During barcode preprocessing, barcode tags are removed. Subsequently, adapter
sequences are clipped and reads that consist completely of adapter (orange-tagged) are removed. The clipped reads are mapped to the reference
genome. The random barcode tags allow PCR duplicated reads and IMUB reads to be distinguished from one another. Only one of the two PCR
duplicated reads mapping to the same genomic position (blue-tagged) is kept, while reads with different random barcodes are allowed to map to
the same position
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Table 1 Preprocessing: IMUB reads and runtime

Factor Dataset Reads IMUB originally IMUB Q-nexus Runtime (m)

Dorsal SRR1175698 18,983,666 6,404,431 6,234,888 6

SRR1175699 21,926,113 6,219,935 6,054,824 6

Max SRR1175700 30,781,699 11,100,441 11,381,661 10

SRR1509031 33,125,449 7,557,857 7,517,583 9

Myc SRR1175701 27,404,713 3,714,258 4,724,027 6

SRR1509032 31,044,447 7,366,642 7,480,050 8

Twist SRR1509029 34,042,864 14,146,225 14,455,901 12

SRR1509030 92,712,131 30,370,792 30,565,366 31

TBP SRR1175702 52,656,846 12,924,627 13,349,578 19

SRR1175703 206,910,978 8,978,714 9,164,510 57

We compared the numbers of IMUB reads of the original analysis [11] and Q-nexus preprocessing. By and large, comparable numbers of reads are mapped. The calculations
were performed using four threads on a desktop computer with an Intel Core i7-3770 (3.4GHz). On average, the Q-nexus preprocessing can be performed in less than 17
minutes

of analysis, because the exonuclease digestion step tends
to reduce the overall diversity of starting positions in a
library, since distinct starting molecules may be digested
down to the same stop position. For this reason, the pile-
ups of reads at stop nucleotides cannot be distinguished
from PCR duplicated reads. ChIP-nexus was designed to
allow PCR duplicates to be identified based on the random
barcode [11].
We developed a bespoke plot that determines the

levels of duplication with respect to random barcodes
(Fig. 2a). Instead of considering only the levels of identical
sequences or identically mapped reads, we also deter-
mine the distribution of the levels for IMIB and IMUB
reads. We applied this procedure to all analyzed datasets
(Fig. 2b, c, Additional file 1: Figure S2). Furthermore, we
use the various level counts to calculate overall dupli-
cation levels for a given sample, defined as the ratio of
mapped reads with 5’-end depth > 1 to all mapped reads.
For ChIP-nexus, we expect pile-ups of IMUB reads at stop
nucleotides, whereas at background positions we expect
IMUB reads to occur as singletons. Therefore, the mean
per-position depth of IMUB reads can be used to assess
the quality of enrichment. We calculated these values for
all analyzed datasets (Table 2).

Binding characteristics: qfrag length distribution with
pseudo-control
For ChIP-nexus and ChIP-exo the equivalent of the aver-
age fragment length is the width of the regions that
are occupied by the protein of interest, which we call
“protected-region width”. Such regions are about 6–20 bp,
which is much shorter than typically observed average
fragment lengths (Fig. 3a). Here, we present a newmethod

for the estimation of the protected-region width in ChIP-
nexus data that uses the distribution of qfrag [19] lengths.
A qfrag is defined to be the genomic interval between
any pair of 5’ read mapping positions on the forward
and reverse strand. We derive the empirical distribution
of qfrag-lengths from data by counting the number of
qfrags for given lengths. The qfrag-length with the high-
est number of observed qfrags can be interpreted as the
protected-region width (see “Methods”).
It is a well known problem that fragment length estima-

tion by the cross-correlation method [2] can demonstrate
an artefactual, “phantom” peak that shows the maximum
correlation at a length of one read length [20, 21], that
is thought to mainly arise from pile-ups of mapped reads
that are arranged in a way that 5’ ends on the forward
and reverse strand have a distance of one read length
(Additional file 1: Figure S3). Such mapping artifacts are
most likely caused by repetitive sequences and for the
Drosophila experiments analyzed here (dm3) they occur
predominantly on the chromosomes U and Uextra. Sim-
ilar to the cross-correlation plot, we found that the qfrag
length distribution can also be affected by phantom peaks;
we therefore developed a method that attempts to remove
the phantom peak from the qfrag length distribution in
order to enablemore accurate estimation of the protected-
region width. Our method generates a “pseudo-control”
for each ChIP-nexus dataset in which the the strands of
each mapped read are swapped and subsequently the 5’
end of each read is shifted by one read length towards 5’
end (see Methods). This transformation has no effect on
artifacts responsible for the ’phantom peak’, but it abol-
ishes signals from clusters of qfrags smaller than one read
length (Fig. 3b). Therefore, our procedure subtracts the
qfrag counts of the pseudo-control from the counts of
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Fig. 2 Duplication levels using random barcodes. a Toy example of mapped ChIP-nexus reads and the corresponding counts for identically mapped
reads (IM, red), identically mapped reads with identical random barcodes (IMIB, blue), and identically mapped reads with unique random barcodes
(IMUB, black). The number of horizontal bars for a given level corresponds to the number of reads that have the same level of duplication. Additional
file 1: Figure S1 provides a detailed example of how IM, IMIB, and IMUB reads are defined and calculated. b, c Duplication level plots for a Dorsal
dataset with an overall duplication level of 54 % and for a Max dataset with an overall duplication level of 95 %

Table 2 Duplication levels

Factor Dataset IM IMIB IMUB

Dorsal SRR1175698 54 % 50 % 8 %

SRR1175699 67 % 64 % 8 %

Max SRR1175700 73 % 65 % 23 %

SRR1509031 95 % 92 % 33 %

Myc SRR1175701 85 % 80 % 25 %

SRR1509032 96 % 92 % 46 %

Twist SRR1509029 62 % 42 % 35 %

SRR1509030 82 % 69 % 45 %

TBP SRR1175702 90 % 87 % 20 %

SRR1175703 100 % 99 % 30 %

The overall duplication levels for IM, IMIB and IMUB reads were calculated as the
proportion of reads with 5’-end depth > 1 as a share of all reads (See Assessment of
Q-nexus duplication levels in Methods)

the original data and uses the resulting difference as an
unbiased signature to estimate the mean protected-region
width (Fig. 3c and d).

Evaluation: binding characteristics
We applied the method of plotting the 5’ coverage around
motif-centered binding sites [10, 11], the cross-correlation
method [2], the internal routines of MACS2 [12] and
MACE [13] and our Q-nexus method to the ten avail-
able ChIP-nexus datasets and compared the estimated
distances (Methods and Table 3). The 5’ coverage around
binding sites shows maxima on the forward and reverse
strand that have distances between 10 and 18 bp (Fig. 4a,
b and Additional file 1: Figure S4) that appear to be
reasonable from a biological point of view and are in
line with former analysis of the same data [11]. How-
ever, we found that the results were unstable and heavily
depend on the motif used for selection and centering, as
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Fig. 3 Binding characteristics: qfrag length distribution with pseudo-control. a The 5’-3’ (λ) exonuclease is employed to trim the DNA sequences of a
fragment of length � to within a few bp at which the protein of interest has been bound to the DNA. This yields shorter fragments of length �′ and
�′′ . The width of the protected region (�′′′) is given by the distance between two 5’ ends on the forward and reverse strand. b Schematic
representation of the pseudo-control and the corresponding transformation. For mapping artifacts predominantly to be found on chrU and
chrUextra (left-hand) and for genuine ChIP-nexus peaks (right-hand). The pseudo-control is derived from the original mapping data by swapping the
strand of each read and subsequently shifting the 5’ end by one read length towards 5’ direction. For artifacts, this has no effect on the qfrag-length
distribution in the pseudo-control. c qfrag-length distribution for original data (black) and pseudo-control (gray). Both distributions are are
dominated by the phantom peak at one read length. dWe use the difference between the qfrag-length distributions as signature and the
maximum at a length of 19 as estimate for �′′′

well as the allowed distance between motif and predicted
binding site. Using standardized parameter settings the
method fails to derive a distinctive distribution in four
out of ten cases (Fig. 4c, d and Additional file 1: Figure
S4). The cross-correlation method is obviously strongly
biased by the phantom peak and (falsely) estimates

in all ten cases the read length of 42 bp (Additional
file 1: Figure S5). Also the optimal border pair size esti-
mates between of MACE highly correlate with the read
length, indicating a biased estimation. The predicted frag-
ment lengths of MACS2 are indeed smaller than the
read length but disagree with the distances that result
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Table 3 Evaluation of binding characteristics

Factor Dataset 5’ end coverage Cross-correlation MACS2 MACE Q-nexus

Dorsal SRR1175698 18 42 28 47 18

SRR1175699 18 42 28 62 18

Max SRR1175700 10 42 19 41 10

SRR1509031 10 42 32 46 12

Myc SRR1175701 NA 42 29 42 9

SRR1509032 NA 42 32 38 12

Twist SRR1509029 11 42 24 39 12

SRR1509030 11 42 21 38 12

TBP SRR1175702 NA 42 37 41 12

SRR1175703 NA 42 39 42 12

Protected-region width estimates from 5’ coverage around motif centered binding sites, cross-correlation plot, MACS2, MACE (optimal border pair size), and the width of the
protected region estimated by Q-nexus. The estimates derived by Q-nexus are consistent with those derived by themethod of 5’ coverage aroundmotif centered binding sites

from the 5’ coverage around binding sites. Our Q-nexus
method derives estimates for the protected-region width
that are largely consistent with distances derived from
the 5’ coverage plots (Fig. 4a, b and Additional
file 1: Figure S4). Finally, the derived signatures (dif-
ferences between original and pseudo-control) are very
similar for biological replicates, but specific for individual
factors (Fig. 4e–h and Additional file 1: Figure S6).

ChIP-nexus peak calling
We implemented an algorithm for ChIP-nexus peak call-
ing which builds on the previous preprocessing steps and
accepts mapped reads in BAM format. Since PCR artifacts
(IMIB) are already removed, IMUB reads are kept, assum-
ing that such reads stem from different molecules because
they have different random barcodes. Our algorithm (see
Methods) implements the method of qfrag-length dis-
tribution with pseudo-control in order to estimate the
protected-region width �′′′, which is then used to com-
bine pairs of 5’ ends on the forward and reverse strand
by forming qfrags [19] with a minimal allowed distance
qmin = �′′′ − 5 and a maximal allowed distance of qmax =
�′′′ + 5. The qfrag-depth at any one position is the total
number of qfrags that cover the position. The qfrag cov-
erage has a different depth distribution than the original
coverage of reads or 5’ ends. Regions with neighboring
clusters of 5’ ends on the forward and reverse strand
are selectively emphasized by the qfrag method (Fig. 5).
The qfrag coverage profile along the genome is searched
for local maxima that we refer to as summits that are
then tested for significance. For each summit position the
number of 5’ ends that map to within a radius of qmax
is determined. P-values are calculated using the Poisson
distribution and corrected for multiple testing using the
Benjamini-Hochberg procedure [22]. The final candidate

list is sorted by P-value and a cutoff can be specified by
the user. Our algorithm does not require fine-tuning of
parameters for typical runs.

Evaluation: reproducibility of peak calling
To evaluate the reproducibility of our peak calling algo-
rithm compared to that of MACS2 and MACE, we used
a test framework based on the IDR procedure [15, 23],
which has been heavily used to measure the reproducibil-
ity of ChIP-seq experiments [20] and should also be appli-
cable to ChIP-nexus data. We performed the comparisons
on pairs of biological replicates for five transcription fac-
tors (Table 1). We derived peak sets for each dataset using
the three peak calling algorithms (see Methods). The peak
sets were sorted by significance and the top 100,000 peaks
were used for further analysis. The IDR procedure is
essentially based on peak overlaps. Two predicted binding
positions from two biological replicates were classified as
overlapping, if they have a distance of at most 3 bp, which
is reasonable given the high resolution provided by the
ChIP-nexus protocol.
Figure 6a–e show the results of the IDR procedure that

were obtained for Twist. The top 100,000 peaks derived
by Q-nexus display substantial larger overlap compared to
MACS2 and MACE (Fig. 6a–c). It should also be noted
that the Pearson correlation coefficients for signal scores
of overlapping peaks ofMACE are very low in comparison
to that of Q-nexus andMACS2. The change of correspon-
dence curve [15], which is used to visualize the transition
from reproducible to irreproducible signals, shows that
Q-nexus identifies the largest number of reproducible
peaks before the transition occurs (Fig. 6d). Furthermore,
according to the IDR, Q-nexus identifies the largest num-
ber of reproducible peaks (Fig. 6e). For all pairs of bio-
logical replicates tested similar results as for Twist were
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Fig. 4 Evaluation: Binding characteristics. a, b 5’ end coverage around motif centered predicted binding sites for two biological replicates of Dorsal.
The two peaks on the forward and reverse strand have a distance of 18 bp, which is in line with a previous analysis [11] of the same data. c, d Using
standardized parameter settings for all samples, no characteristic distribution is derived for TBP. See Additional file 1: Figure S4 for further positive and
negative examples. e, f Difference of qfrag-length distribution between original datasets and pseudo-controls for Dorsal replicates (for all mapped
reads (blue) and filtered for reads that map to standard chromosomes (green)). The estimated protected-region width of �′′′ = 18 is consistent with
the distance derived by the 5’ end coverage around motif centered binding sites. The signatures are independent of whether mapped reads were
filtered or not. Furthermore, they are reproducible for biological replicates. g, h Additional examples for biological replicates of TBP. The signatures
are reproducible for biological replicates, but different from the signatures derived for Dorsal. See Additional file 1: Figure S6 for further examples
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Fig. 5 ChIP-nexus peak calling (a) Idealized example of a ChIP-nexus peak. The protein of interest (green) is bound via one cross-link to the DNA. The
5’ ends are trimmed by exonuclease (’Pac-Man’ symbols) up to the cross-link position. 5’ end positions of mapped reads, depicted by red and blue
arrows, are transformed to a qfrags coverage profile (purple) along the genome. Local maxima within the qfrag coverage are taken as summits. For
each summit position si the number of 5’ end positions within a range of qmax is determined and tested for statistical significance. b Comparison of
5’ end and qfrags coverage profiles for Dorsal and Twist. 5’ end (red and blue) and qfrags (purple) coverage profiles at the rho NEE enhancer for
Dorsal and Twist (taken from IGV [29]). This region is also shown in the original ChIP-nexus publication [11]. Regions surrounded by clusters of 5’ends
on the forward and reverse strand are selectively emphasized by the qfrag method. The qfrags coverage profiles demonstrate two clearly separated
peaks for Dorsal and Twist
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Fig. 6 Evaluation: Reproducibility of peak calling. a-cWe applied the peak calling methods Q-nexus, MACS2, and MACE to a pair of biological
replicates of Twist. The scatterplots show the scores of overlapping peaks of the top 100,000 peaks for different methods. The number of
overlapping peaks and the Pearson correlation coefficient is given in the upper-left corner of each plot. Q-nexus yields the largest number of
overlapping peaks and correlation coefficients of almost 1. d The change of correspondence curve shows that peaks derived by Q-nexus remain
consistent for 10,000 more than those of MACS2. e Q-nexus displays a considerably smaller proportion of irreproducible signals (0.01 < IDR) than
MACS2. f, gWe obtained similar results for the other ChIP-nexus datasets of the transcription factors Dorsal, Max, Myc and TBP. For more detailed
results see Additional file1: Figures S7 to S16
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obtained (Fig. 6f–g and Additional file 1: Figures S7–S16
and Tables S1 and S2).

Discussion
ChIP-nexus is an extension of the ChIP-exo protocol that
was shown to outperform ChIP-exo with respect to reso-
lution and specificity, and additionally requires less input
material [11]. However, to date no bespoke software for
ChIP-nexus analysis has been published, and the origi-
nal analysis of the ChIP-nexus data was performed using
scripts and software such as MACS2 that was originally
designed for ChIP-seq [11]. In this work, we present an
efficient and easy to use software pipeline for ChIP-nexus
data that includes methods for preprocessing and map-
ping of ChIP-nexus reads, estimation of the protected
region width, as well as peak calling. We evaluated our
methods on ten publicly available datasets.
One of the major advantages of the ChIP-nexus proto-

col is the use of random barcodes that allowmonitoring of
PCR overamplification. Our software recognizes random
barcodes and selectively removes PCR duplicated reads
while retaining independent reads whose 5’ ends map to
same position. Additionally, the random barcode informa-
tion is used to generate a plot for duplication levels and
calculate various statistics that can be used for trouble
shooting and optimization.
For ChIP-seq, the size distribution of the fragments

needs to be estimated for most peak calling algorithms
[4, 24, 25]. For ChIP-nexus, it is not the size of the orig-
inal fragments that is important, but rather the segment
of DNA that cannot be digested because of steric inter-
ference by the formaldehyde cross-linked protein (the
“protected region”). We present a method for estimating
the average width of the protected region that is based on
the notion of qfrags [19] and show that, on the ChIP-nexus
data, it yields unbiased signatures that are not affected
by the so-called phantom peak [20], which is not the
case for the cross-correlationmethod developed for ChIP-
seq [2]. The estimates of the protected region width are
in line with distances that were derived in a previous
study of same data [11] using integrated 5’ end coverage
plots around predicted and motif-centered sites. Notably,
our method derives signatures that are highly repro-
ducible for biological replicates and specific for different
factors.
We have previously developed a method using “qfrag-

analysis” to identify candidate peaks in ChIP-seq analysis
[19]. Here, we adapted that algorithm for ChIP-nexus
analysis. We adopted the peak detection step using the
qfrag coverage depth profile along the genome, but for
ChIP-nexus data we keep duplicated reads, assuming that
they originate from different molecules, and form qfrags
using the average protected region width instead of frag-
ment length. Regions bound by the protein of interest are

surrounded by pile-ups of 5’ ends reads mapped to the
forward and reverse strand and therefore will be empha-
sized in the qfrag depth profile. This approach differs from
previous published peak pairing methods for ChIP-exo
[13, 14], in which peaks are detected separately for the for-
ward and reverse strand and subsequently combined into
pairs. The saturation-based method we presented for the
evaluation ChIP-seq analysis involved a statistical analy-
sis of the number of positions within candidate ChIP-seq
peaks to which one or more 5’ read ends mapped. This
approach is less suitable for ChIP-exo and ChIP-nexus
analysis, in which we expected multiple, independent
reads to map to the same position because of the exonu-
clease digestion. We therefore applied a statistical test
based on a standard Poisson model of the count distribu-
tion. With respect to the IDR analysis framework applied
to biological replicates, our results showed substantially
better reproducibility than the other two methods we
tested.

Conclusions
In this study, we present an integrated analysis pipeline
implemented in C++ for the analysis of ChIP-nexus and
ChIP-exo data. The pipeline begins with efficient meth-
ods for preprocessing ChIP-nexus reads to remove PCR
duplicates by exploiting information in the random bar-
codes included in ChIP-nexus adapters to recognize PCR
duplicates. This step is skipped for ChIP-exo analysis. We
introduce an algorithm that creates pseudo-controls from
the data with which true signal can be differentiated from
pseudo-peaks, which allows us to accurately estimate the
width of the protected region. Our method then performs
an analysis of the qfrag distribution to center candidate
peaks and then performs a statistical analysis of the read
depth distribution to identify peaks. We demonstrate that
our method displays a higher reproducibility than other
approaches to ChIP-nexus analysis. An efficient and easy-
to-use implementation of our method is freely available at
https://github.com/charite/Q.

Methods
Preprocessing of raw FASTQ reads
We implemented an efficient Q-nexus preprocessing
application, flexcat (that is based on flexbar [26]), using
the SeqAnC++ programming library [27]. flexcat removes
the random and the fixed barcodes, inserts the ran-
domized barcode into the ID field of the sequence (for
instance, TL:ATGCC would be added to the description
line of a sequence with the random barcode ATGCC), and
clips adapter sequences. In ChIP-nexus reads, the random
barcode is followed directly by a fixed four-nucleotide
barcode. Reads that display no fixed barcode or more
than one different nucleotide within the fixed barcode are
discarded.

https://github.com/charite/Q
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Readmapping
In principle, Q-nexus can be used with any read map-
per, whereby only uniquely mappable reads should
be used for downstream analysis. In the experiments
described in this work, we used bowtie [16] version 1.1.2
with the settings --chunkmbs 512, -k 1, -m 1,
--best, --strata.

Processing of aligned reads
We implemented an efficient tool called nexcat that scans
BAM files in order to identify sets of PCR duplicates.
The random barcode from the FASTQ description line
is carried over into the BAM file, and can thus be used
to distinguish PCR duplicates from IMUB reads. PCR
duplicates are identified as sets of reads with an identical
random barcode whose 5’ terminus is located at the same
genomic position and all but one of those reads are dis-
carded. Since Q-nexus peak calling utilizes only the 5’ end
of each read, it does not matter which read is retained.

Assessment of Q-nexus duplication levels
Our method has three different ways of defining “dupli-
cation”. Identically mapped (IM) reads, are simply reads
whose 5’ end maps to the identical chromosomal location.
The information in the random barcodes is not relevant
for the determination of IM reads. Identically mapped
with identical barcode (IMIB) reads are defined as IM
reads that additionally have an identical random barcode.
The ChIP-nexus analysis pipeline [11] removes all IMIB
reads except one at each position. We name the remain-
ing reads identically mapped with unique barcode (IMUB)
reads (in the original publication, these reads were named
“usable reads”). The duplication plots shown in Fig. 2b–c
provide an overview of IM, IMIB, and IMUB reads accord-
ing to the proportion of reads that have a given duplication
level ( Fig. 2a and Additional file 1: Figure S1). We calcu-
late an overall duplication level as the proportion of reads
with a duplication level of two or more among all reads.
Table 2 shows the overall duplication levels according to
each of the three definitions of “duplication”.

Binding characteristics: qfrag length distribution and
pseudo control
We refer to 5’ end positions of reads that map either to
the forward or the reverse strand as hits. The outcome of
ChIP-nexus experiment is modeled as a set of hits:

T = { h = (pos, strand) | pos ∈ {1, . . . , l}∧strand ∈ {f , r}},
where l is the length of the chromosome. A qfrag is
defined to be the genomic interval between an ordered
pair of hits (hi, hj), such that hi is on the forward strand,
hj is on the reverse strand. For the distribution of qfrag-
lengths qfrags of fixed lengths are considered and for each
length δ = 2, . . . ,� the number of qfrags is determined:

Qt(δ) = |{(hi, hj) | hi ∈ Tf ∧ hj ∈ Tr ∧ hj − hi = δ}|.
The pseudo-control is derived from the original data by
inverting the strand information for each given hit, i.e

h′.strand :=
{
f , if h.strand = r
r, otherwise

and subsequently shifting the (strand inverted) hit by one
read length rl towards 5’ end, i.e.

h′.pos :=
{
h.pos + rl − 1, if h′.strand = r
h.pos − rl + 1, otherwise

The distribution of qfrag-length in the pseudo-control is
defined as before:

Qp(δ) = |{(h′
i, h′

j) | h′
i ∈ T ′

f ∧ h′
j ∈ T ′

r ∧ h′
j − h′

i = δ}|.
We use the difference between Qt(δ) and Qp(δ) as sig-
nature and the maximum value as estimate for the
protected-region width �′′′, i.e.

�′′′ = argmax
δ

Qt(δ) − Qp(δ).

Evaluation: Binding characteristics
5’ end coverage aroundmotif centered binding sites
For each dataset summits were derived using Q [19]
with the following parameter settings: --fragment-
length-average 15, --fragment-length-
deviation 10, --keep-dup and sorted by signifi-
cance. The top 2,000 peaks (summit position ± 40) were
used for a de novo motif analysis with DREME [28] using
default settings. The top 30,000 peaks were filtered for
those with an occurrence of the top motif in a distance of
at most the length of the motif. Finally, the selected sum-
mits were centered to the center of the motif occurrence.
Around themotif filtered and centered sites the integrated
distribution of 5’ ends were determined using Q with
the following parameter settings: --bed-hit-dist
<CENTERED_SITES_BED>,--keep-dup,
--pseudo-control.

Cross-correlation analysis
We performed cross-correlation analysis using the func-
tion get.binding.characteristics of the SPP
package (version 1.11) with the following parameter set-
tings: srange=c(2,110),bin=1.

MACS2
The predicted fragment lengths were derived in the course
of peak calling with parameter settings as stated below.

MACE
The optimal border pair sizes of MACE were derived
in the course of peak calling with parameter settings as
stated below.
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qfrag-length distribution with pseudo-control
We derived qfrag-length distributions using Q with the
following parameter settings:
--qfrag-length-distribution, --step-num
110, --keep-dup.

ChIP-nexus peak calling
We use qmin = �′′′ − x and qmax = �′′′ + x to form qfrags
from all hits on the forward and reverse strand that satisfy
qmin ≤ hj.pos − hi.pos ≤ qmax. We used a value of x =
5 by default, which is a parameter for the deviation from
estimated protected-region width.
We calculate the depth of qfrags at any given position

and search the qfrag coverage profile along the genome for
free-standing local maxima which we refer to as summits
that correspond to predicted binding positions, where
free-standingmeans that there is no position with a higher
qfrag depth within a radius of qmin. For each summit si the
number of 5’ ends within the range si−qmax, . . . , si+qmax,
denoted as k, is determined. Assuming a null model in
which reads are evenly distributed across the genome,
P-values are calculated using the Poisson distribution.

P(x ≥ k) = 1 −
k−1∑
i=0

Pois(i, λ)

where

λ = 2 · qmax · |Tf | + |Tr|
l

All regions covered by at least one qfrag are tested.
P-values are corrected for multiple testing using the
Benjamini-Hochberg procedure [22].

Evaluation: reproducibility of peak calling
IDR analyses were performed with parameter settings rec-
ommended for pairs of biological replicates. Peak lists
were derived for Q-nexus, MACS2 and MACE as stated
below.

Peak calling parameters for Q-nexus
We used version 1.3.0 of Q with the following parame-
ter settings: --nexus-mode, --top-n 200,000. Q-
nexus predicts single binding positions or summits. The
summits were extended by 2 bp in upstream and down-
stream direction, sorted by signal score, i.e. the num-
ber of 5’ ends that map for a given summit si into the
range si − qmax, . . . , si − qmax, and only the top 100,000
were kept.

Peak calling parameters for MACS2
We used version 2.1.0.20150731 of MACS2 in the
callpeak mode with the following parameter settings
--keep-dup all, --pvalue 5e-01, --call-
summits. Furthermore, we used --gsize dm for

Drosophila and --gsize hs for Human to specify the
size of the genome. MACS2 tends to combine multiple
adjacent summits into broader broader peaks and only
reports the highest summit position, but the option
--call-summits causes MACS2 to report all sum-
mits. The summits were extended by 2 bp in upstream
and downstream direction, sorted by P-value, and only
the top 100,000 were kept.

Peak calling parameters for MACE
We used version 1.2 of MACE. The python script for
preprocessing was used with the following parameter set-
tings: --kmerSize 0, which turns off the nucleotide
bias correction. We did this, because according to the
implementation the length of each read has to be greater
than three times the kmer-size. Discarding all (clipped)
reads shorter than 19 leads to a significant loss of infor-
mation. The python script for peak calling was used with
the following parameter settings: --pvalue 0.99. The
MACE algorithm does not report peaks, but border pairs,
i.e. pairs of peaks on the forward and reverse strand with
a distance that approximates to a optimal border pair size
that is estimated from the data. We defined the centers
between the border pairs as summits. The summits were
extended by 2 bp in upstream and downstream direc-
tion, sorted by P-value, and only the top 100,000 were
kept.

Additional file

Additional file 1: Supplementary figures and tables. The following
additional data are available with the online version of this paper.
Additional data file 1 contains an explanatory figure for duplication levels
as well as figures and tables for additional analyses including duplication
rate plots, examples for mapping artifacts, 5’ end coverage around motif
centered binding sites, cross-correlation plots, qfrag-length distributions,
scatterplots of signal scores of overlapping peaks and corresponding IDR
plots, as well as two tables containing the total numbers of overlapping
peaks and overlapping peaks with IDR ≤ 0.01 for all pairs of biological
replicates. (PDF 3840 kb)
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