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Abstract. The magnetic interlayer coupling of Fe19Ni81/Cu/Co trilayered
microstructures has been studied by means of x-ray magnetic circular dichroism
in combination with photoelectron emission microscopy (XMCD-PEEM). We
find that a parallel coupling between magnetic domains coexists with a non-
parallel coupling between magnetic domain walls (DWs) of each ferromagnetic
layer. We attribute the non-parallel coupling of the two magnetic layers to local
magnetic stray fields arising at DWs in the magnetically harder Co layer. In
the magnetically softer FeNi layer, non-ordinary DWs, such as 270◦ and 90◦

DWs with overshoot of the magnetization either inwards or outwards relative
to the turning direction of the Co magnetization, are identified. Micromagnetic
simulations reveal that in the absence of magnetic anisotropy, both types of
overshooting DWs are energetically equivalent. However, if a uniaxial in-plane
anisotropy is present, the relative orientation of the DWs with respect to the
anisotropy axis determines which of these DWs is energetically favorable.
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1. Introduction

Since the first demonstration of indirect exchange coupling between the magnetization of two
ferromagnetic (FM) layers separated by a non-magnetic spacer layer in 1986 [1], much attention
has been paid to its oscillatory character [2]–[5]. However, magnetostatic interactions due to
stray fields arising at rough FM/spacer interfaces or domain walls (DWs) can also lead to
strong coupling effects between FM layers, as had already been described in the 1960s [6]–[8].
These early findings were followed by various experimental and theoretical projects concerning
magnetostatic coupling effects at interfaces [9, 10], DWs [11]–[16] or vortex cores [17]. In 180◦

Néel walls, the magnetization turns opposite in the two FM layers to reduce the magnetostatic
energy without the cost of wall energy [7]. On the other hand, in decoupled films, 360◦ DWs or
other kinds of quasi-walls can be found [8, 12, 14], where the magnetization on both sides of
the wall points in the same direction in one of the two FM layers. These walls cost wall energy
without being necessary in this FM layer, which demonstrates the strength of the stray fields
created by DWs. Not so frequently discussed are DWs in coupled films with angles smaller than
180◦ in one layer, where an opposite turn of the magnetization in the other FM layer would lead
to walls with more than 180◦. In this work, we focus on 90◦ Néel walls, which typically appear
in rectangular microstructures of low anisotropy magnetic materials, where the magnetization
is preferentially in a flux-closure domain state. We show the influence stray fields at 90◦ Néel
walls in the magnetically harder layer have on Néel walls in the magnetically softer layer by
comparing experimental observations to micromagnetic simulations. These results contribute
to our understanding of stray field effects at DWs and demonstrate the diversity of magnetic
coupling phenomena.

Trilayered Fe19Ni81/Cu/Co microstructures with sizes 5 × 5, 5 × 15 and 10 × 10 µm2

and thicknesses tFeNi = 4 nm, tCo = 15 nm and tCu = 1.5, 2 and 3 nm are investigated. The Cu
layer acts as a non-magnetic spacer. In the following, Fe19Ni81 will be referred to as FeNi.
To examine the magnetic domain configuration of the different FM layers independently,
we have used x-ray magnetic circular dichroism in combination with photoelectron emission
microscopy (XMCD–PEEM) [18, 19]. This technique provides the lateral resolution and the
element-selective magnetic contrast, which are essential for the study of magnetic micron-sized
systems consisting of different layers. In the FM/spacer/FM trilayer system presented here, the
coupling of the two FM layers is dominated by Néel coupling due to their polycrystallinity,
interface roughness, and the relatively large spacer thicknesses at which indirect exchange
coupling contributions are insignificant. Magnetic domains of the two FM layers are thus
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Figure 1. Line profiles of the x-(dashed lines) and y-(solid lines)components
of the magnetization vector of the FeNi (red) and the Co layer (black)
across non-parallel coupled 90◦ DWs taken from micromagnetic simulations,
illustrating three possibilities: 270◦ DWs (1) and 90◦ DWs with overshoot of the
magnetization outwards (2a) and inwards (2b) relative to the turning direction of
the Co magnetization. Gray arrows indicate magnetization in the two domains,
and red and black arrows indicate magnetization across the DWs in the FeNi and
the Co layer, respectively.

aligned in parallel. However, this is no longer valid at the DWs, where a non-parallel coupling is
present for spacer thicknesses larger than 1.5 nm. We will discuss three different kinds of non-
ordinary 90◦ DWs in the FeNi layer, allowing an opposite or near-opposite orientation of the
magnetization as compared to the Co layer: 270◦ DWs (case (1)) and 90◦ DWs with overshoot of
the magnetization outwards (case (2a)) or inwards (case (2b)) relative to the turning direction of
the Co magnetization. These possibilities are sketched in figure 1, where red and black arrows
and lines indicate the magnetization in the soft FeNi and hard Co layer, respectively. The x-
and y-components of the magnetization are taken from micromagnetic simulations (see below).
Comparing the magnetization components in the FeNi layer in the three cases, in case (1) both
the x- and y-components reverse, while in cases (2a) and (2b) only the x- or the y-component
changes sign. This will later serve us as a criterion to distinguish case (1) from case (2a) or
(2b) in the experimental images. Note that, due to symmetry reasons, cases (2a) and (2b) are
degenerate in energy as long as no uniaxial magnetic anisotropy is present.
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2. Experimental details

Electron-beam lithography was employed to define the microstructures on top of a GaAs
substrate. Subsequently, magnetic layers were deposited by magnetron sputtering in an Ar+

pressure of 1.5 × 10−3 mbar with a base pressure better than 3 × 10−8 mbar. During deposition,
a magnetic field of 100 mT was applied to introduce a small magnetic in-plane anisotropy in the
Co layer. XMCD images were acquired with an Elmitec PEEM instrument at the UE49-PGMa
microfocus beamline at BESSY II in Berlin. With a grazing incidence of 16◦, this instrument
is particularly suited to the study of samples with in-plane magnetization. A lateral resolution
of about 80 nm was achieved in the measurements presented in this work. Element selectivity
was obtained by tuning the photon energy of the incoming x-ray beam to the Fe L3 absorption
edge at 707 eV for the FeNi layer and to the Co L3 absorption edge at 778 eV for the Co layer.
The magnetic contrast was obtained by calculating the asymmetry, given by the difference in
intensity between two images taken with opposite circular photon helicity and normalized by
the sum.

Micromagnetic simulations were performed with the OOMMF micromagnetic simulator
(http://math.nist.gov/oommf/), which solves the Landau–Lifshitz–Gilbert equation [20, 21] with
the so-called finite differences method for a three-dimensional (3D) cubic mesh. We used a
discretization cell size of 5 × 5 × 2 nm3 and the usual parameters for saturation magnetization
MS and exchange constant A of FeNi (MS = 796 kA m−1, A = 13 pJ m−1) and Co (MS =

1400 kA m−1, A = 30 pJ m−1). The damping coefficient α was set to a relatively large value
of 0.5 for quasi static conditions. The simulations were run until the change in angle of
the magnetization between two successive iterations was less than 0.01 deg ns−1 across all
spins. A parallel coupling between the two FM layers was introduced by the two-surface
exchange term provided in the OOMMF package, using a bilinear surface exchange coefficient
σ = 0.36 × 10−4 J m−2. This corresponds to a Néel coupling for a spacer thickness of 2 nm,
with an interface roughness amplitude of 1 nm and a period of 10–20 nm, which is reasonable
for our samples. Magnetic anisotropy was not considered for simulations of the square-
shaped structures. However, for the rectangular structures, a small in-plane anisotropy field of
20 kA m−1 along the long edge of the structure was introduced to better adapt the simulation to
the experiment.

3. Results and discussion

3.1. Experiment

The spacer thickness tCu influences the ratio between the parallel Néel coupling and the
antiparallel coupling via stray fields at DWs, because of the different decay lengths. In figure 2,
the magnetization of microstructures with tCu = 1.5 nm (a), tCu = 2 nm (b) and tCu = 3 nm (c) is
compared. Color-coded XMCD–PEEM images probing the y-component of the magnetization
are shown for the FeNi layer (top) and the Co layer (bottom). Blue and red contrast corresponds
to the negative and positive y-components of the magnetization, respectively. Consequently,
180◦ DWs separate blue from red domains, while 90◦ DWs are found between blue or red
and white domains. The magnetization within domains is indicated by gray arrows (figure 2,
bottom). With tCu = 1.5 nm, the two FM layers are coupled in parallel. Some 180◦ DWs in the
FeNi layer already indicate a competition between parallel and stray field coupling, visible by
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Figure 2. Color-coded XMCD–PEEM images of trilayer microstructures with
(a) tCu = 1.5 nm, (b) tCu = 2 nm and (c) tCu = 3 nm probing the y-component
of the magnetization in the FeNi (top) and the Co layer (bottom). Blue and
red contrast corresponds to the negative and positive y-components of the
magnetization, respectively. In the FeNi layer, an undulated shape of 180◦ DWs
is visible for tCu = 1.5 nm (black arrows in (a)); and a non-parallel coupling in
90◦ DWs is observed for tCu = 2 and 3 nm (black arrows in (b) and (c)).

their undulated shape (black arrows in figure 2(a)). With tCu = 2 and 3 nm, the opposite contrast
appears at 90◦ DWs in the FeNi layer: blue between a red and a white domain, and red between
a blue and a white domain (black arrows in figures 2(b) and (c)). Thus, the two FM layers
clearly exhibit a non-parallel coupling in the vicinity of 90◦ DWs. Note that in figure 2(c) only
the lower part of the 5 × 15 µm2 structure is shown. Both microstructures, one with tCu = 2 nm
and the other with tCu = 3 nm, exhibit the same kind of non-parallel 90◦ DW coupling. Once
the Néel coupling field drops below the stray field at DWs between tCu = 1.5 and 2 nm, a non-
parallel alignment of the magnetization in the two FM layers arises. However, there is no visible
difference between tCu = 2 and 3 nm.

The domains in the FeNi layer in figures 2(b) and (c) have a blotchy texture compared
to the longitudinal ripple structure that is present in the other images. The ripple structure is
typical of polycrystalline high-anisotropy films [22]. We attribute the blotchy texture to the fact
that the ripples in the Co layer are a variation of magnetization direction, which creates small
but quite irregular stray fields. These stray fields influence the magnetization of the FeNi layer.
The different domain sizes in the three microstructures shown in figure 2 are random and not
related to the Cu thickness.

For a more detailed analysis of the DW coupling, structures with tCu = 3 nm were imaged
in two different geometries, where the x-ray incidence, and accordingly the magnetic contrast,
is along the x- and y-directions, respectively. This provides full information about the in-plane
components of the magnetization, which is necessary for completely characterizing these types
of DWs. The in-plane magnetization of a 10 × 10 µm2 microstructure with tCu = 3 nm is shown
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Figure 3. Color-coded XMCD–PEEM images of a 10 × 10 µm2 microstructure
with tCu = 3 nm, probing the x- and y-components of the magnetization in
(a) the FeNi and (b) the Co layer. Blue and red contrast corresponds to the
negative and positive x- and y-components of the magnetization, respectively.
(c) Wall profiles of two different DWs, as indicated by arrows in (a). Symbols
represent the experimental wall profiles, while lines show the simulated profiles
from figure 1 convoluted with a Gaussian corresponding to the experimental
resolution. The experimental error for the vertical axis corresponding to noise
in the XMCD images can be estimated as ±0.15.

in figure 3 for the FeNi layer (a) and the Co layer (b). The color code of the XMCD–PEEM
images is the same as used in figure 2. The magnetization is in a flux-closure multi-domain
state, as indicated by gray arrows in figure 3(b). The magnetization in 180◦ DWs is oriented
opposite in the two FM layers, as can be seen in the images probing the x-component of the
magnetization, where they appear red in the FeNi layer and blue in the Co layer. In the image
probing the y-component, on the other hand, a non-parallel alignment at 90◦ DWs can be found,
e.g., in the regions indicated by the two boxes B1 and B2 in figure 3(a).

We have analyzed exemplary line profiles of two different types of non-parallel DWs,
labeled as P1 and P2 and indicated by black arrows in figure 3(a). The magnetization
components in both layers along these line profiles are given in figure 3(c). In both cases,
the normalized x-component of the magnetization in the Co layer (black hollow circles)
goes continuously from mCo

x = 0 to −1, while the y-component (black solid circles) shows a
similar change from mCo

y = +1 to 0. Thus the magnetization in the Co layer turns continuously
from the +y to the −x direction, as in ordinary 90◦ DWs. The situation is different for
the FeNi layer. Here, in wall profile P1, the x-component (red hollow circles) starts at
mFeNi

x = 0 and ends at −1 as in the case of Co, but becomes positive in between. Similarly, the
y-component (red solid circles) becomes negative as it evolves from mFeNi

y = +1 to 0. Comparing
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the experimental wall profiles P1 (figure 3(c), left) with the simulated ones (figure 1), they show
a clear correspondence to the 270◦ DW. Note that to account for the experimental resolution,
the simulated profiles were convoluted with a Gaussian with a half-width at half-maximum
(HWHM) of 30 nm. The results of this convolution are represented by solid and dashed lines
in figure 3(c). For wall profile P2, it can be seen how the y-component of the magnetization
in the FeNi layer is very similar to the corresponding one in wall profile P1. In contrast, the
x-component goes from mFeNi

x = 0 to −1 without changing its sign. Comparing again with
the simulated wall profiles in figure 1, this type of DW can be identified as a 90◦ DW with
overshoot of the magnetization outwards (case (2a) of figure 1). In general, good agreement
between experiment and simulation is achieved. Note that the y-component of the FeNi layer
in profile P2 has a deeper minimum in the experiment than in the simulation, indicating that the
overshoot is larger in the experiment. The out-of-plane component Mz is considered to be zero
in the experiment, which is confirmed by the micromagnetic simulations, where Mz turns out to
be less than 10% of the saturation magnetization Ms.

Summarizing the above findings, in the experimental images we have identified two types
of non-ordinary 90◦ DWs in the magnetically softer FeNi layer of a trilayered microstructure:
(1) 270◦ DWs and (2) 90◦ DWs with an overshoot of the magnetization outwards relative to
the turning direction of the Co magnetization. While DWs of type (1) give an opposite contrast
in the x- and y-components, DWs of type (2) are mainly visible in the images probing the
y-component of the magnetization.

3.2. Micromagnetic simulations

We have performed micromagnetic simulations for two different structure shapes: squared
1 × 1 µm2 in a four-domain Landau state and rectangular 1 × 2 µm2 in an elongated four-
domain Landau state. The FM/spacer/FM trilayer system comprises 4 nm FeNi, 2 nm spacer
and 16 nm Co. In all simulations, the magnetization of the Co layer was first relaxed separately,
without the FeNi layer. The result was then used as the starting configuration for the relaxation
of the complete trilayer. Since the Co layer stays rather unchanged during relaxation of the
trilayer system, in the following we will focus on the effect of the stray field arising from the
Co layer on the FeNi layer.

Simulations of the squared microstructure are shown in figure 4, where the magnetization
m = M/MS of the FeNi layer (figure 4(a)) and of the separately relaxed Co layer (figure 4(c))
are shown together with the stray field Hdemag (figure 4(b)) calculated 4 nm above the Co layer,
i.e. at the central plane of the FeNi layer. Color-coded x-, y- and z-components are represented
from left to right. The stray field has significant intensities where the magnetization changes
direction: in the DWs and at the vortex core in the center of the microstructure. Its direction
at DWs is indicated by arrows in figure 4(b): magnetic charges lead to a stray field, which is
oriented opposite to M in the Co layer. The result of the relaxation of the trilayer system for
the FeNi layer, which was initially in the same Landau state as the Co layer, is represented in
figure 4(a). The effect of the stray field is clearly visible at the corners of the structure. All
four DWs are of type (2a) or (2b) (see figure 1). In the upper right corner of the structure, the
magnetization turns with an overshoot inwards. In all other corners, it turns with an overshoot
outwards, as found for the wall profile P2 in the experimental images. It is not clear a priori
whether the relaxation will lead to DWs of type (2a) or (2b). In the initial configuration, the
magnetization in the DWs is parallel in both layers but antiparallel to Hdemag in the FeNi layer.
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Figure 4. Simulation of a 1 × 1 µm2 structure with Landau configuration.
(a) Relaxed magnetization m = M/Ms of the FeNi layer in the combined
trilayer system, (b) stray field Hdemag 4 nm above the separate Co layer and
(c) magnetization m of the separate Co layer.

This represents a symmetric maximum in energy and M can relax in any of the two directions.
If this symmetry is broken by a small external field (1 mT) pointing either inwards or outwards
along the DWs in the beginning of the relaxation process, all of the configurations with inwards
or outwards overshoot of the magnetization for the four DWs can be created. Moreover, all of
them have the same total energy in the case of a squared structure without anisotropy.

The main feature of the calculated Landau configuration is the vortex at the crossing
point of the four DWs. Close to it, the four DWs join a circling magnetization. The in-plane
amplitude of Hdemag is decreasing from the structure corners to the vortex core, and DWs of
type (1) or type (2) cannot be maintained up to the joining point of the 90◦ DWs as it is found in
the experiment. On the other hand, the experimental domain configuration, e.g. inside the two
boxes B1 and B2 in figure 3(a), does not contain a vortex in the Co layer. Two 90◦ DWs rather
join in a 180◦ DW. To account for that in the simulation, we extended the squared structure
to a rectangular structure where the vortex core is not directly at the DW junction in the Co
layer. Different initial magnetizations MFeNi

0 for the FeNi layer were used, as shown for the
lower half of the structure in figures 5(a)–(d). The upper half is point symmetric with respect
to the center of the structure. The magnetization is given by big gray arrows in the domains
and by small arrows in DWs: red for the FeNi layer and black for the Co layer. Figure 5(e)
sketches the magnetization of the Co layer for the complete structure. In the experiment, a
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Figure 5. Sketch of the initial configurations of the magnetization of the FeNi
layer for simulations of a 1 × 2 µm2 structure. The magnetization is given by big
gray arrows in the domains and by small arrows in DWs: red for the FeNi layer
and black for the Co layer. (a) M is parallel in both layers, (b) M turns opposite in
the 180◦ DWs of the two magnetic layers but parallel in the 90◦ DWs, (c) M turns
opposite also in the left DW, creating 270◦ DWs in the FeNi layer, (d) two joining
270◦ DWs and (e) sketch of the Co magnetization in the complete microstructure.
The circles and squares represent vortices and antivortices, respectively.

small in-plane anisotropy along the y-direction is present, which is now included in these
simulations.

First, the initial magnetization for the FeNi layer was relaxed separately, so that the
magnetization in both FM layers is mostly parallel (figure 5(a)). The result of the relaxation
of the combined trilayer system is shown in figure 6(a). Figure 6(d) represents the stray field
Hdemag calculated 4 nm above the single Co layer and figure 6(e) the magnetization of the
separately relaxed Co layer. In contrast to the vortex in the squared structure (figure 4), Hdemag

now features a smooth function of the position near the joining point of the two 90◦ DWs.
Note that the wall profiles shown in figures 1 and 3(b) were obtained by line scans along the
black arrows in figure 6(b) for DWs of type (2) and figure 6(c) for type (1) DWs. The FeNi
layer exhibits after relaxation a 90◦ DW of type (2a) on the left and a 90◦ DW of type (2b)
on the right (figure 6(a)), which can also be found in the experimental images (e.g. box B2
in figure 3(a)). The important effect of the magnetic anisotropy is that the 90◦ DWs do not
divide the corner of the structure symmetrically any more, as in the case of the square structure.
The angle between the DW and the long edge of the structure is larger. In consequence,
the degeneracy between DWs of type (2a) and (2b) in the FeNi layer is now lifted. Domain
walls that display an overshoot of the magnetization such that the magnetization component
parallel to the anisotropy axis (y-axis in the present case) changes its sign are energetically
favored. Hence, these DWs are mainly visible in the images showing the y-component of the
magnetization. The same behavior is observed in the experimental images. For the 180◦ DW,
however, the relaxation process ends up in an asymmetric solution, because the orientation of
this wall is only partly reversed. If in the initial magnetization the 180◦ DW already has opposite
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Figure 6. Relaxed magnetization of the lower half of the rectangular structure
for different initial configurations MFeNi

0 . (a) MFeNi
0(a) as sketched in figures 5(a), (b)

MFeNi
0(b) as sketched in figure 5(b) or MFeNi

0(random) and (c) MFeNi
0(c) or MFeNi

0(d) as sketched
in figures 5(c) and (d), respectively. Black arrows indicate the positions at which
the wall profiles shown in figures 1 and 3(c) are taken. (d) Stray field Hdemag 4 nm
above the separate Co layer; (e) relaxed magnetization of the separate Co layer.
The x-, y- and z-components are shown from left to right.

magnetization orientations in the two FM layers (figure 5(b)), the relaxed magnetization of
the FeNi layer (figure 6(b)) has the same kind of 90◦ DWs as before, but the 180◦ DW is now
symmetric. The total energy is now lower: 7388 J m−3 versus 7655 J m−3. If parallel oriented
90◦ DWs in both FM layers are lower in total energy than a 270◦ DW in the soft FM layer, it is
very unlikely to go from one to the other by relaxation, since the total energy is mostly lowered
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in each iteration. On the other hand, in the experimental images, DWs of type (1) are present
in e.g. the lower left or upper right corner of the structure in figure 3(a). A random initial
magnetization MFeNi

0(random) in the FeNi layer could allow the relaxation process to end up in a 270◦

DW. This is analogous to the deposition of the FeNi layer on top of a Co layer with a certain
domain configuration, and therefore depicts a realistic configuration. The relaxation process,
nevertheless, runs into the same solution with DWs of type (2a) and (2b) (figure 6(b)), as al-
ready obtained for MFeNi

0(b) (figure 5(b)). The experimental interface roughness and the statistical
distribution of crystalline grains in the Co layer were not included in the simulations, which
could be one reason why no 270◦ DWs evolve from MFeNi

0(random). It should also be mentioned
that maybe 270◦ DWs are more easily formed if the magnetic domains are larger, or the DWs
longer.

A 270◦ DW does not seem to correspond to a deep minimum in total energy. However,
explicitly assuming a 270◦ DW in the initial magnetization (figure 5(c)), the relaxation process
preserves it (figure 6(c)), proving that this configuration does represent a local minimum of the
total energy. It also agrees nicely with the experiment (box B1 in figure 3(a)). In this case, the
total energy of 7538 J m−3 is slightly higher than for the solution with two DWs of type (2), but
still lower than for the solution with an asymmetric 180◦ DW. Finally, two joining 270◦ DWs
(figure 5(d)) are considered. Comparing the four initial configurations in figures 5(a)–(d), in
panel (a) there is no vortex at the DW junction, in panel (b) there is a vortex in the FeNi layer
at the DW junction, in panel (c) this vortex is shifted to the end of the 270◦ DW at the lower
left corner of the microstructure, and in panel (d) there are vortices in both lower corners of
the microstructure and an antivortex in between, just below the DW junction. The fact that in
figure 5(d) the antivortex does not lie on a line with the two vortices is already a hint that this
configuration could be unstable. The relaxation process indeed eliminates one of the two 270◦

DWs by annihilation of the antivortex with one of the vortices. The result is again the same as
obtained for MFeNi

0(c) (figure 5(c)) with only one 270◦ DW (figure 6(c)). In this context, note that
in the experimental images, two joining 270◦ DWs are not observed.

Indirect magnetic coupling in thin magnetic multilayered structures is of considerable
interest, particularly because of its importance in magnetoresistive or other kinds of magnetic
storage devices. In single layer microstructures, where the magnetization is in a vortex state, two
kinds of information could be stored: the sense of magnetization rotation around the vortex core
(chirality c) and the magnetization orientation in the vortex core (polarity p), which is either up
or down. In coupled trilayer microstructures, the relative orientations c1c2 = ±1 and p1 p2 = ±1
of the individual layers provide further opportunities [17]. Our results show that in square-
shaped trilayer microstructures with a four-domain closed-flux Landau state, one could think of
additionally encoding one bit in each overshoot DW by its inwards or outwards orientation. For
this purpose, it would be advantageous to optimize interface roughness and magnetic anisotropy
towards a deep minimum in total energy for inwards and outwards overshoot DWs, without
favoring one of the two. Efficient reading and writing of the stored information remains a
challenge.

In future experiments, it will be interesting to compare the dynamic behavior of these
DWs to those in single layer FeNi films [24] or stronger coupled trilayer structures [25]. The
precession modes will depend on the wall type (1, 2a or 2b), and on the configuration at the
joining point: two joining type (2) DWs, like in figure 6(b), or a type (1) DW joining a type (2)
DW, like in figure 6(c).
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4. Conclusion

In summary, we have investigated the effects of stray fields and magnetic anisotropy in
coupled FeNi/Cu/Co trilayered microstructures, especially in the vicinity of 90◦ DWs. Due
to magnetostatic interlayer coupling, we found a non-parallel orientation of the magnetization
of the two FM layers at 90◦ DWs for Cu thicknesses larger than 1.5 nm. This result clearly
indicates that the DWs in the softer FeNi layer must be different from ordinary 90◦ DWs.
From a comparison between the experimental findings and micromagnetic simulations, we have
identified two different types of non-ordinary DWs that can be formed in the soft FM layer:
(1) 270◦ DWs or (2) 90◦ DWs with an overshoot of the magnetization outwards or inwards
relative to the turning direction of the Co magnetization. We have attributed the formation of
these types of DWs to a reduction in the magnetostatic energy originating from the fringe field of
the DWs in the magnetically harder FM layer. Micromagnetic simulations have also shown that
without magnetic anisotropy, inwards or outwards DWs are energetically equivalent. However,
if a uniaxial in-plane anisotropy field, as present in the experimental structures, is included in
the simulation, the experimentally observed configuration is energetically favored.
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