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Topological order in two-dimensional (2D) quantum matter can be determined by the topological
contribution to the entanglement Rényi entropies. However, when close to a quantum phase transition, its
calculation becomes cumbersome. Here, we show how topological phase transitions in 2D systems can be
much better assessed by multipartite entanglement, as measured by the topological geometric entanglement
of blocks. Specifically, we present an efficient tensor network algorithm based on projected entangled pair
states to compute this quantity for a torus partitioned into cylinders and then use this method to find sharp
evidence of topological phase transitions in 2D systems with a string-tension perturbation. When compared
to tensor network methods for Rényi entropies, our approach produces almost perfect accuracies close to
criticality and, additionally, is orders of magnitude faster. The method can be adapted to deal with any
topological state of the system, including minimally entangled ground states. It also allows us to extract the
critical exponent of the correlation length and shows that there is no continuous entanglement loss along
renormalization group flows in topological phases.
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Topological order [1] is a striking property of quantum
matter beyond the Landau paradigm and is characterized by
an underlying pattern of long-range entanglement. The
existence of such a pattern can be detected, quantitatively,
by the so-called topological entanglement entropy S, [2].
Other entanglement properties are sensitive to topological
order as well [3]. Moreover, under the effect of a local
perturbation it is also well known that topological order is
generally robust [4,5] and can sustain a finite perturbation.
Intuitively, large closed strings and string nets become
energetically expensive in a topological phase as a string
tension is increased, thus, ultimately favoring a transition
towards a topologically trivial phase. A drawback of using
entanglement to detect such topological transitions, how-
ever, is that it is very difficult to produce sharp numerical
evidence. The reason for this is that commonly used
methods, such as the calculation of the topological con-
tribution in Rényi entropies [6], suffer from a significant
drop in accuracy when close to a quantum critical point [7];
see Fig. 1. Here, we show how multipartite entanglement,
in combination with tensor networks, improves accuracies
to an almost perfect level and, additionally, is computed
orders of magnitude faster than any Rényi entropy.

More specifically, here we use a novel and efficient
tensor network method to evaluate the topological con-
tribution to the geometric entanglement (GE) of blocks,
which we call E,, for a torus partitioned into cylinders.
When close to a quantum phase transition, we find that
this approach completely outperforms in accuracy and
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efficiency calculations of Rényi entropies on infinite
cylinders with tensor networks [10]. Without describing
the technical details, the main result is summarized in
Fig. 1. We apply a string tension g (which corresponds
to a magnetic field in the Hamiltonian [12,13]) to certain
toric code ground states and compute the topological
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FIG. 1 (color online). Left: phase transition for a topological 2D
model with string tension. The black line corresponds to |E, | as
computed in Fig. 4(a) for n, - oo using GE (to be explained
later). The rest of the lines correspond to the best achievable
calculation by the authors of the topological term |S§"> | of the nth
Rényi entropies S = (1 —n)~!log[tr(p")] of half an infinite
cylinder for n = 2,3 and n = o (i.e., the single-copy entangle-
ment [8]), using the methods explained in the Supplemental
Material [9]. Compare also to similar calculations with tensor
networks in, e.g., Ref. [7]. Typical sizes of string nets populating
the ground state for each phase are also represented. Right:
average computation time ratio with respect to |E,|, for the
different topological contributions.
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contribution of the GE of these “strained” toric code states.
Unlike the topological Rényi entropies, the computed E,
stays close to —1 throughout the entire topological phase
and, as the string tension increases, it sharply drops down to
zero at ¢* ~0.56 and remains there in the trivial phase.
From a mapping to a classical two-dimensional (2D)
Ising model [12], we obtain analytically a transition at

g=vI1+ \/5— 1~0.5537, in agreement with the
above. E, is, thus, an excellent tool to pinpoint topological
phase transitions.

Our method uses projected entangled pair states (PEPS)
[14]. If the PEPS is topological [15], then a robust E, is
extracted via finite-size scaling for large tori. For nontrivial
partitions we find E, to depend on the particular super-
position of ground states on the torus, in agreement with the
behavior of Rényi entropies and entanglement entropy [16].
Our calculations focus mainly on PEPS with a translation
invariant representation. This has two main advantages:
first, it simplifies the calculations, and second, it corre-
sponds to the type of unique ground state of a topological
system that can be found on an infinite plane using, e.g.,
the infinite projected entangled-pair states (iPEPS) method
[17]. Even if such states have a weaker topological
contribution on a torus than minimally entangled states
(MES), they are much simpler to deal with, and already
produce nontrivial topological contributions. In any case,
we shall see that our method can be easily extended to
PEPS representations that are not invariant under trans-
lations, thus, including MES if necessary. Importantly, with
this method we also have access to other properties. For
instance, in the Supplemental Material [9] we show how to
extract the critical exponent v and how to see that there is no
continuous entanglement loss along renormalization group
flows in topological phases [18] together with a fidelity
analysis [19].

GE and topological GE.—The geometric entanglement
of blocks [20,21] has recently proven useful to assess
topological order [22,23]. This multipartite measure has
been extensively used in quantum phase transitions [24]
and can be measured experimentally, e.g., in NMR [25] and
potentially in optical lattice experiments [26]. In contrast to
all other entanglement approaches for topological matter,
the GE takes into account the multipartite structure of
entanglement in quantum many-body states. It amounts to
computing the closest product state |®) to a given quantum
state |¥) in the Hilbert space, where the product state has a
separable structure of n,, blocks, i.e., |®) = [, [¢!]). It,
thus, quantifies the merit of a possible mean-field descrip-
tion of the quantum state. Conveniently, the GE is defined
as Eg = —log [(®|V)[2.

One of the latest findings has been that, for renormal-
ization group (RG) fixed points such as the toric code and
other topological exactly solvable models, the GE of blocks
obeys Eg = Ey — E,, with E, a topological contribution
(the topological GE) and E; some nonuniversal term [22].

It was observed that £, = S, for the considered models.
This constant contribution was shown to be directly con-
nected to the size of the gauge group, which in turn governs
topological order in the system. As for E, it was found that
Ey x n,L, with n;, the number of blocks with a contractible
boundary of size L. Moreover, under perturbations it was
argued that Eg = Ey — E, + O(L™) for L > 1, where
again E, « n,,L, V/ is some exponent, and E, is the (robust)
topological term. Recently, the topological GE has also
been used to identify minimally entangled ground states,
both for Abelian and non-Abelian models [23].

Computing E¢ and E, from a PEPS.—Our approach to
computing the GE of noncontractible blocks E; for large
block sizes and its topological contribution E, uses 2D
PEPS and 1D matrix product states (MPS). Both PEPS and
MPS have been widely discussed in the literature (see, e.g.,
Ref. [27]). It is worth mentioning that PEPS can describe
2D topological phases naturally, both chiral [28] and
nonchiral (or doubled) [15]. For simplicity, here we focus
on nonchiral topological order, but a generalization of our
method to chiral models is also possible.

As a starting point we assume that a PEPS |¥) with
(potentially) topological order is given on a torus of n x L
sites; see Fig. 2(a). We call such a state |¥(n, L)). This
PEPS could be the result of an analytical derivation or have
been computed numerically from a Hamiltonian using, e.g.,
the iPEPS algorithm [17] and later wrapping its tensors
around a finite torus.

The goal now is to extract Eg and E, from such a PEPS.
With this in mind, we partition the torus into n;, cylinders of
equal width [ = n/n,. Thus, each cylinder contains [ x L
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FIG. 2 (color online). (a) PEPS |¥(n, L)) wrapped around a
torus. (b) Product state |®) of MPS with PBC (cylinders with
[ =1). (c) Contraction to compute the optimal state for a given
cylinder. (d) Exact result of the contraction in (c) in terms of the
environment tensor E. (¢) Approximation of E by an effective
environment E described by an MPO. (f) Resulting optimal MPS
for the cylinder in an iteration step (see main text).
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sites; see, e.g., Fig. 2(b). This choice of partition will have a
double benefit. First, it will simplify the tensor contractions
in the method. Second, it will be sensitive to different
ground states on the torus and, hence, to MES.

We focus on the case / = 1 so that n;, = n. In this case,
one needs to find the closest product state |®) =®'*, |4l
of cylinders of one-site width to |¥(n, L)), with |pl]) the
state for cylinder i. To do such a calculation efficiently, we
further approximate |¢!!) for each cylinder by a MPS of L
sites with periodic boundary conditions (PBCs) and bond
dimension y; see Fig. 2(b) [29]. Thus, the original problem
is reduced to finding the product state of MPS with PBCs
that maximize the overlap with a given PEPS on a torus,
which is a well-posed tensor network problem.

In what follows we describe an optimization procedure,
well suited for gapped topological phases, to solve this
problem. The method assumes a translation invariant PEPS,
but it can also be generalized to PEPS without translation
symmetry (such as MES).

(1) Assume translation invariance so that cylinders are
repeated periodically. While not necessary for a finite
system, this assumption simplifies the calculations and
also produces good results for translation-invariant PEPS.
Here, a two-cylinder unit cell is already sufficient, but
bigger unit cells can also be considered.

(2) Fix all tensors in the MPS to some initial
(e.g., random) values except for one cylinder and
optimize variationally the MPS tensors for that cylinder.
The result of this optimization is given by the diagrams
in Figs. 2(c) and 2(d). Notice, though, that for a 2D
lattice the environment tensor E cannot be computed
both exactly and efficiently and, therefore, needs to be
approximated. _

(3) Compute an effective environment E approximating
the exact environment E, using some method to approxi-
mate contractions of 2D tensor networks. In our case we
assume further translation invariance within each cylinder
and use the iTEBD method for nonunitary evolutions
[30,31], without explicitly implementing the boundary
conditions imposed by the torus geometry, and adapted
to deal with matrix product operators (MPOs). The spe-
cifics are explained in the Supplemental Material [9]. As a
result of this approach, an infinite MPO of bond dimension
' is produced that is then cut at length L and wrapped
around a circle with PBC. Such an approximation is
particularly accurate for large L and gapped phases, which
is precisely the regime of interest to extract E,. This finite
MPO with PBC describes the effective environment E; see
Fig. 2(e).

(4) Approximate the optimal MPS for the cylinder as in
Fig. 2(f).

(5) Substitute this MPS in all the equivalent cylinders by
translation invariance.

(6) Repeat the procedure for the next cylinder in the
unit cell.

(7) Tterate until convergence.
The optimal overlap is, thus, evaluated as

[(®[¥(n, L))|
Apax(n, L) = , 1
) VI{@[R)[(®(n, L)[¥(n, L))| W

with |®) = ®/”, |¢!!), and |p!) the optimal MPS for each
cylinder. In this expression, the numerator can be approxi-
mated using, e.g., the procedure described in the first
section of the Supplemental Material [9] with a computa-
tional cost of O(nuy’y'3D3 + Ly'). The norm of |®) is
simply the product of the norms of the n;, MPS of size L
with PBC, which can be evaluated exactly and efficiently in
O(Ly’) steps (see, e.g., Ref. [27]). The norm of the n x L
PEPS |¥(n, L)) can be approximated as in the first section
of the Supplemental Material [9] with a computational cost
of O(n(y"*D° + y"3D%) + Ly"?), with y" the bond dimen-
sion of the needed MPO. Finally, the GE is given by
Eg(n,L) = ~logyAf (n. L).

For an n x L PEPS on a torus, it is thus possible to
approximate Eg(n,L) as above. To get the topological
contribution, the next step is to perform finite-size scaling
with respect to n and L. In particular, we have
Eg(n>1,L>1)~anL —E,(n,L), where E,(n,L)
includes both the topological component E, as well as
finite-size corrections. We can then fix n and compute
Eg(n, L) for increasing L. Doing a linear fit for large L
allows us to extract an approximation to the topological
GE by extrapolating the fit down to L = 0. The larger # is,
the more accurate the approximation is. Thus, the
value of the topological correction is finally estimated as
E, =lim,,;  E,(nL).

Some remarks are in order. First, accuracy can always be
improved by increasing the different bond dimensions or by
applying tensor network methods that explicitly take into
account PBC rather than iTEBD, or by using larger unit
cells (and even completely breaking translation invariance
along any direction) in the product state |®). Second,
cylinders of larger width / > 1 can be considered by using a
PEPS for an [-leg ladder with PBC to approximate the state
|pll) within each cylinder, or perhaps even a MPS with
PBC and physical dimension d' (with d the physical
dimension of a single site). An example of such a
calculation is shown in the Supplemental Material [9].
Third, MES can also be studied introducing minor changes
in the method. For this, notice that the PEPS representation
of an MES is translation invariant except for, e.g., one
cylinder where a Wilson loop operator acted. Thus, one
chooses |®) as a translation-invariant product state of MPS,
except for the Wilson loop cylinder, where a different MPS
is chosen. The rest of the method just follows. Fourth, the
method relies on single-layer contractions of a 2D tensor
network, which are computed both more efficiently and
more accurately than the double-layer contractions in
Rényi entropy calculations. This is model independent
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FIG. 3 (color online). Eg(n, L) for the toric code with string
tension on the square lattice (similar results are also obtained for
the honeycomb lattice). (a) Case g = 0.4. The extrapolation of the
linear fit (red dashed line) for, e.g., n = 20 hits L = 0 around
~ —1 (red dot), as expected in the topological phase. (b) Case
g =0.6. The same calculation yields ~0, as expected in the
polarized phase.

and explains the overall computational gain from
Fig. 1. A more detailed justification is provided in the
Supplemental Material [9].

Topological phase transitions from E,—Using the
above method, we computed E; and E, for the toric
code model [4] with string tension on the square and
honeycomb lattices. Details about the PEPS for these
models as well as the blocking schemes are given in the
Supplemental Material [9]. The string tension g drives
the systems towards a phase transition between topologi-
cal and polarized phases. Using the notation from
Ref. [22], we considered perturbations to two nonequiva-
lent ground states |0,0) and |+,+) for the honeycomb
lattice, whereas for the square lattice we considered
perturbations to the |0,0) state. In the topological phase,
these states are the unique ground states of the system on
an infinite plane, but on a torus they correspond to a
superposition of MES with topological entropy S, = —1
for a noncontractible bipartition [16].

Our calculations were done for tori up to n = 100 and
L = 100. Larger sizes could have easily been considered if
necessary. In Fig. 3 we show an example of the scalings with
L for different values of n up to n = 20 for two different
string tensions g = 0.4, 0.6 on the square lattice. The linear
fitis computed from the last half of L values, which produces
robust results. In the plots, the extrapolation of the fit to
L =0 hits the vertical axis around —1 if g is small,
corresponding to the topological phase, and around 0 for
large g, corresponding to the polarized phase. From the fits
we can extract E,, as a function of n = n,, and g, as shown in
Figs. 4(a)—4(c) for the three states considered. Remarkably,
these plots show very sharp indications of topological phase
transitions for all these models for large n,. With this
approach we also extracted E, for one of the MES of the
square lattice toric code on a torus without perturbation.
Specifically, we considered the state |=,) = 27'/2(]0,0) +
|1,0)) (in the notation of Ref. [22]), which has §, = —2fora

2 12 >

- 0
1 10,0>

0 20 40 60 80 100
Ny

FIG. 4 (color online). Absolute value of E, extrapolated from
the scaling with L as in Fig. 3, as a function of the string tension g
[for (a)—(c)] and the number of blocks n,, [for (a)- (d)]. Plots are
for the perturbed (a) |0,0) state on the square lattice, (b) |0, 0)
state on the honeycomb lattice, and (c) |+,+) state on the
honeycomb lattice. Notice that (b) and (c), though being ground
states on the same lattice, have different transition points. This is
because the string tension g was applied in different bases, hence,
corresponding to different physical perturbations. However, we
have also checked that when the same perturbation is applied to
different ground states on the same lattice the topological phase
transition takes place at the same critical point, showing that the
transitions in E, do not depend on the specific choice of ground
state. (d) Unperturbed toric code on a square lattice for two
different ground states: an MES |Z;) and a non-MES |0, 0).

nontrivial torus bipartition [16]. Remarkably, we also find
E, = =2 for this state; see Fig. 4(d).

Conclusions.—We obtained sharp evidence of topologi-
cal quantum phase transitions for 2D system by calculating
E, using a new and efficient tensor network method for
nontrivial partitions on a torus. Our method completely
outperforms similar tensor network calculations of Rényi
entropies for infinite cylinders by being orders of magni-
tude more accurate and efficient close to criticality [7]. This
approach can also be applied to different ground states,
including MES, and allows us to extract other nontrivial
information about the system (e.g., correlation length
critical exponent and lack of continuous entanglement loss
along RG flows in topological phases). Our work motivates
further research along several directions. For instance, it
would be possible to use these tools to study chiral
topological order [32], topological critical exponents,
and MES. Beyond tensor network methods, it would be
interesting to study how to compute E, using quantum
Monte Carlo calculations and compare the accuracy and
efficiency to that of 2-Rényi entropy calculations.
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