
Contractions, Removals and Certifying
3-Connectivity in Linear Time

Technical Report B 10-04

Jens M. Schmidt∗
Institute of Computer Science

Freie Universität Berlin, Germany

Abstract
As existence result, it is well known that every 3-connected graph

G = (V, E) on more than 4 vertices admits a sequence of contractions
and a sequence of removal operations to K4 such that every intermediate
graph in the sequences is 3-connected. We show that both sequences can
be computed in linear time, improving the previous best known running
time of O(|V |2) to O(|V | + |E|). This settles also the open question of
finding a certifying 3-connectivity test in linear time and extents to certify
3-edge-connectivity in linear time as well.

1 Construction Sequences
Let G = (V,E) be a finite graph with n := |V | vertices and m := |E| edges. Let
G be connected if there is a path between every two vertices and disconnected
otherwise. For k ≥ 1, a graph G is k-connected if n > k and deleting every set of
k− 1 vertices leaves a connected graph. A vertex (a pair of vertices) that leaves
a disconnected graph upon deletion is called a cut vertex (a separation pair).
Note that k-connectivity does neither depend on parallel edges nor on self-loops.
A graph has connectivity k if it is k-connected but not k + 1-connected. Let a
path P from vertex v to vertex w in G be denoted by v →G w and s(P) = v
and t(P) = w. For a vertex v in G, let N(v) = {w | vw ∈ E} denote its set
of neighbors and deg(v) its degree. For a graph G, let δ(G) be the minimum
degree of its vertices.

A subdivision of a graph G replaces each edge of G by a path of length at
least one. Conversely, we want a notation to get back to the graph without
subdivided edges. If deg(v) = 2, |N(v)| = 2 and v /∈ N(v), let smoothv(G) be
the graph obtained from G by deleting v followed by adding an edge between
its neighbors (we say v is smoothed). If one of the conditions is violated, we
set smoothv(G) = G. Let smooth(G) be the graph obtained by smoothing every

∗This research was supported by the Deutsche Forschungsgemeinschaft within the research
training group “Methods for Discrete Structures” (GRK 1408). Email: jens.schmidt@inf.fu-
berlin.de).

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Repository of the Freie Universität Berlin

https://core.ac.uk/display/199427528?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:jens.schmidt@inf.fu-berlin.de
mailto:jens.schmidt@inf.fu-berlin.de

vertex. For an edge e ∈ E, let G \ e denote the graph obtained from G by
deleting e.

Contracting an edge e = xy in a graph deletes e, identifies vertices x and y
and replaces iteratively two parallel edges by one single edge as long as possible.
This way the simpleness of graphs is preserved by contractions. An edge e is
called contractible if contracting e results in a 3-connected graph. Let Kn be
the complete graph on n vertices and Km

n be the complete graph on n vertices
with m edges between each pair of vertices. For a rooted tree T and x ∈ V (T),
let T (x) be the maximal subtree of T rooted at x.

For convenience, we assume the input graph G to be simple, although all
results can be extended to multigraphs. The following operations are called
Barnette and Grünbaum operations (BG-operations).

• add an edge xy (possibly a parallel edge)

• subdivide an edge ab by a vertex x and add the edge xy for a vertex
y /∈ {a, b}

• subdivide two non-parallel edges by vertices x and y, respectively, and add
the edge xy

A sequence of BG-operations that starts with K4 and ends with a graph
G is called a construction sequence of G. Let G4, G5, . . . , Gz with G4 = K4
and Gz = G be the graphs obtained in a construction sequence of G. As BG-
operations preserve 3-connectivity and K4 is 3-connected, every Gj , 4 ≤ j ≤ z is
as well 3-connected. We can represent the construction sequence in a different,
but equivalent way [1, 4]: Every Gj is identified with a Gj-subdivision Sj in
G, giving the sequence S4, . . . , Sz of subgraphs in G. In particular, S4 is a K4-
subdivision in G. As with contractions, we want the inverse of a BG-operation.
Let removing the edge e = xy of a graph be the operation of deleting e followed
by smoothing x and y. An edge e = xy in G is called removable, if removing e
yields a 3-connected graph.

The vertices v in Sj with deg(v) ≥ 3 are called real vertices, because they
correspond to vertices in Gj . Let Vreal(Sj) be the set of real vertices in Sj .
Note that the graphs Gj may contain parallel edges, although every graph Sj

is simple, because G is simple. We define the links of each Sj to be the unique
paths in Sj with only their end vertices being real. The links of Sj partition
E(Sj), as Sj is simple, 2-connected and not a cycle and therefore two vertices
of degree at least 3 must exist [6, Lemma 12.11]. Let two links be parallel if
they share the same end vertices.

Definition 1. A BG-path for a subgraph Sj ⊂ G is a path P = x →G y with
the following properties:

1. Sj ∩ P = {x, y}

2. Every link of Sj that contains x and y, contains them as end vertices.

3. If x and y are inner vertices of links Lx and Ly of Sj , respectively, and
|Vreal(Sj)| ≥ 4, then Lx and Ly are not parallel.

It is easy to see that every BG-path for a subdivision Sj corresponds to a
BG-operation on Gj and vice versa. The choice of the K4-subdivision S4 is not

2

crucial [4]: At the expense of having additional parallel edges in intermediate
graphs Gj ⊂ G, there exists a construction sequence to G from each prescribed
K4-subdivision in G.

Theorem 2. The following statements are equivalent:

A simple graph G is 3-connected (1)
⇔ ∃ sequence of BG-operations from K4 to G (see [1, 6]) (2)
⇔ ∃ sequence of BG-paths from each K4-subdivision in G to G and

δ(G) ≥ 3 (see [4]) (3)
⇔ ∃ sequence of removals from G to K4 on removable edges e = xy

with |N(x)| ≥ 3, |N(y)| ≥ 3 and |N(x) ∪N(y)| ≥ 5 (see [4]) (4)
⇔ ∃ sequence of contractions from G to K4 on contractible edges e = xy

with |N(x)| ≥ 3 and |N(y)| ≥ 3 (see [5]) (5)

Sequences 2.(2) and 2.(3) can be transformed into each other with a simple
linear time algorithm [4]. Moreover, having sequence 2.(2) gives immediately
sequence 2.(4) in linear time by removing the edges that were added as BG-
operations in reverse order. The following result shows that sequences based
on Barnette and Grünbaums’ characterization are algorithmically at least as
powerful as the well-known sequence of contractions and all other sequences of
Theorem 2.

Lemma 3 ([4]). There is a simple algorithm that transforms a given sequence
of type 2.(2) or 2.(3) to a sequence of type 2.(4) and to a sequence of type 2.(5)
in linear time.

This allows us to focus only on computing a sequence of type 2.(3). To
construct such a sequence, we will use the following Lemma for the special case
that H is a K4-subdivision.

Lemma 4 ([4]). Let G be a 3-connected graph and H ⊂ G with H being a sub-
division of a 3-connected graph. Then there is a BG-path for H in G. Moreover,
every link of H of length at least 2 contains an inner vertex on which a BG-path
for H starts.

2 Chain Decomposition
Let G be the simple, 3-connected input graph. According to Lemma 4, it suffices
to add iteratively BG-paths to a K4-subdivision in G to get sequence 2.(3).
Note that we cannot make a wrong decision when choosing one BG-path in the
construction sequence, since Lemma 4 can be applied on the new subdivision
as well and therefore ensures a completion of the sequence. Instead of starting
with a K4-subdivision, we will w. l. o. g. start with a K3

2 -subdivision S3 and
demand that there is a BG-path for S3 that results in a K4-subdivision. We
now construct S3 in G and then describe a decomposition of G into special paths
that allow us to find the BG-paths for each Si, 3 ≤ j ≤ z, efficiently.

An arbitrary Depth First Search (DFS) is performed on G, assigning a Depth
First Index (DFI) to every vertex. Let T be the DFS-tree obtained, r be the

3

root of T and u be the vertex that is visited second in the DFS. Both, r and
u, have exactly one child, as otherwise they would form a separation pair in G.
For two vertices v and w in T , let v be a (proper) ancestor of w and w be a
(proper) descendant of v if v ∈ w →T r (and v 6= w). A backedge is an oriented
edge vw ∈ E(G) \ E(T) from v to w with v being an ancestor of w in T (note
that the orientation differs from standard notation). A backedge vw is entering
a subtree T ′ of a tree if v /∈ V (T ′) but w ∈ V (T ′).

We choose two backedges ra and rb and denote the least common ancestor
of a and b in T with x. The paths x →T r, ra ∪ a →T x and rb ∪ b →T x are
the three subdivided edges of S3 in G having real vertices r and x.

Dependent on T , we describe the decomposition of G into special paths
C := {C0, C1, . . . , Cm−n+1}, called chains, whose edge sets partition E(G).
Additionally, the decomposition yields a total order < on C with C0 < C1 <
. . . < Cm−n+1 that reflects the order in which the chains were computed. Let
low(P) for a path P in G be the vertex in P with maximal DFI value. We set
C0 := x →T r, C1 := ra ∪ a →T x and C2 := rb ∪ b →T x. The remaining
chains are obtained by applying the following procedure subsequently for i =
0, 1, . . . , n−m+1: We iterate over all vertices v ∈ V (Ci) from t(Ci) to low(Ci).
For every backedge vw that is not already in a chain, we traverse the path
w →T r until a vertex x is found that is contained in a chain. The traversed
path including vw forms the new chain Cj = v →G x, with j being the next
free index.

Note that every chain Ci 6= C0 contains exactly one backedge and that s(Ci)
is always a proper ancestor of t(Ci). For an edge e ∈ E(G), let C(e) be the
chain that contains e. The next two lemmas show that C partitions the edge
set of G and admits a tree structure.

Lemma 5. The edge sets of the chains in C partition E(G), hence |C| =
m − n + 2. Let e = e1e2 be an edge in T and f = f1f2 be an edge in G
with e2 = low(e), f2 = low(f) and e2 being an ancestor of f2 in T . Then
C(e) ≤ C(f) holds.

Proof. Whenever a vertex v is processed in the chain decomposition, all its
ancestors and their attached backedges have already been processed. At the
same time, for every child w of v, the tree edge vw is already contained in a
chain, since otherwise all backedges entering T (w) have to start at v, implying
that v is a cut vertex separating T (w). Therefore, w will be processed later.
This implies that every vertex and every edge in G will be processed by the
decomposition. Since all chains are pairwise edge-disjoint, the edge sets of
chains in C partition E(G). Since every chain in C \ {C0} contains exactly
one backedge, C contains m− n+ 2 chains.

The same line of argument settles the second claim for the case when e1 is
an ancestor of s(C(f)), since then e is already contained in a chain at the time
s(C(f)) is processed and C(e) < C(f) holds. The only remaining case is when
s(C(f)) is an ancestor of e1 with s(C(f)) 6= e1. If e is not part of a chain when
C(f) is found, e will be contained in C(f), because e2 is an ancestor of f2, and
C(e) = C(f). Otherwise, e is part of a chain that was found before C(f) and
C(e) < C(f) holds. �

4

Definition 6. Let the parent of a chain Ci 6= C0 be the chain that contains
the edge from t(Ci) to the parent of t(Ci) in T .

Lemma 7. The parent relation defines a tree U with V (U) = C and root C0.

Proof. Let D0 6= C0 be a chain in C and let D1, . . . , Dk be the sequence
of chains containing the edges of t(D0) →T r in that order, omitting double
occurrences. By definition of the parent relation, each Di, 0 ≤ i < k, has the
parent Di+1 and Dk = C0 holds. It follows that U is connected. Moreover, for
each parent Ci of a chain Cj holds Ci < Cj with Lemma 5 and, thus, no cycle
can occur in U . �

2.1 Classifying Chains
In order to find BG-paths efficiently, we extend the chain decomposition by
assigning each chain in C \ {C0} immediately after it was found to one of five
types: 1, 2a + b and 3a + b. These types form a partition of C \ {C0} and are
defined by Algorithm 1. Note that the classification for Ci is dependent on the
type of the parent Ck of Ci. At the beginning, all chains are unmarked.

Algorithm 1 classify(Ci ∈ C \ {C0},DFS-tree T)
1: Ck := parent(Ci) . the parent of Ci in U : Ck < Ci

2: if t(Ci)→T s(Ci) is contained in Ck then . type 1
3: assign Ci to type 1
4: else if s(Ci) = s(Ck) then . type 2: Ck 6= C0, t(Ci) is inner vertex of Ck

5: if Ci is a backedge then
6: assign Ci to type 2a . type 2a
7: else
8: assign Ci to type 2b; mark Ci . type 2b
9: else . type 3: s(Ci) 6= s(Ck), Ck 6= C0, t(Ci) is inner vertex of Ck

10: if Ck is not marked then
11: assign Ci to type 3a . type 3a
12: else . Ck is marked
13: assign Ci to type 3b; create a list Li = {Ci}; Cj := Ck . type 3b
14: while Cj is marked do . the chains in Li form a caterpillar
15: unmark Cj ; append Cj to Li; Cj := parent(Cj)

Lemma 8. Computing a chain decomposition of a 3-connected graph and clas-
sifying each chain with Algorithm 1 takes running time O(n+m).

Proof. The DFS tree T can be obtained in time O(n + m). The subdivision
S3 can be found in time linearly dependent on E(S3) by taking two arbitrary
backedges ra and rb with r being the root of T and finding the lowest common
ancestor of a and b by traversing T upwards. The computation of each remaining
chain Ci, i > 2, takes time linearly dependent on its length, too, which gives a
running time of O(n+m) for the chain decomposition.

In order to obtain a fast classification in Algorithm 1, we store the following
information on each chain Ci: A pointer to its parent Ck (for Ci 6= C0), pointers

5

to s(Ci) and t(Ci) and the information whether Ci is a backedge. In addition,
for each inner vertex of Ci a pointer to Ci is stored. That allows us to check
vertices on being contained as inner vertices or end vertices in arbitrary chains in
O(1). If Ck = C0, we can check the condition on Ci being of type 1 in constant
time by testing whether s(Ci) and t(Ci) are contained in C0. If Ck 6= C0, we
check in constant time whether s(Ci) and t(Ci) are contained in Ck \ {s(Ck)}.
The condition for type 2 needs constant time as well. Every chain is marked at
most once, therefore unmarked as most once in line 15 of Algorithm 1, which
gives a total running time of O(n+m). �

2.2 Restrictions
Definition 9. Let a subdivision Sj ⊆ G be upwards-closed if for each vertex in
Sj the edge to its parent is in E(Sj). Let Sj be modular if Sj is the union of
chains.

In order to find BG-paths efficiently, we want to restrict every subdivision
Sl to be upwards-closed and modular.

Lemma 10. Let Sl be upwards-closed and modular. Then a BG-path P for Sl

is a chain if and only if Sl+1 is upwards-closed and modular.

Proof. If P is a chain, t(P) is contained in Sl and Sl+1 must be upwards-closed
and modular due to the DFS structure. If P is not a chain, we assume to the
contrary that Sl+1 is upwards-closed and modular. Then P must be the union
of t > 1 chains; let Ci be the first chain in P . Now P cannot start with t(Ci),
since s(Ci) is in Sl and property 1.1 contradicts t > 1. Thus, P starts with
s(Ci), which contradicts t > 1 as well, as Sl+1 is upwards-closed and a second
chain in P would include another backedge in P at a vertex that is already
incident to two DFS tree edges. �

Lemma 10 shows that this restriction implies every BG-path to be a chain.
Unfortunately, configurations exist where no BG-path for a subdivision Sl is a
chain (show an example here) and we have to weaken the restriction in order
to ensure the existence of a construction sequence. Instead of forcing every
subdivision to be upwards-closed and modular, we will only assume that the
current subdivision Sl has that properties and then find t BG-paths that result
in an upwards-closed subdivision when applied successively and whose union
is the union of t distinct chains. This ensures Sl+t to be modular and implies
z = |C| = m−n+2. Since S3 is upwards-closed and modular, we now can assume
that whenever we are searching for a new BG-path, the current subdivision Sl is
upwards-closed, modular and consists of exactly l chains (and at least l links).

We impose the additional restriction (R2) (see Figure 1), which will prevent
some BG-paths in the sequence from violating property 1.3. In total, we obey
the following restrictions in a construction sequence:

(R1) For each subdivision Sl, BG-paths are only added as

• single chains of type 1, 2a or 3a, respectively, with Sl+1 being upwards-
closed and modular or as

6

(a) allowed (b) forbidden

Figure 1: The effect of restriction (R2) on the dashed BG-path.

• set of t > 1 successive BG-paths that construct an upwards-closed mod-
ular subdivision Sl+t differing from Sl in exactly t chains of types 2b
and 3b.

(R2) For each subdivision Sl, every link of Sl that contains only tree edges of
T has no parallel link, except C0 in S3.

We will prove the existence of a construction sequence restricted by (R1)
and (R2) in Section 3. Now it is shown that restriction (R2) implies property 1.3
on upwards-closed modular subdivisions.

Lemma 11. Let Sl be a subdivision constructed under (R1) and (R2) (in par-
ticular, Sl is upwards-closed and modular). Then each path P for Sl having
properties 1.1 and 1.2 is a BG-path. If P is additionally a chain of type 2a or
3a, (R1) and (R2) are preserved.

Proof. For the first claim, assume to the contrary that P violates property 1.3.
Then |Vreal(Si)| ≥ 4 must hold and Sl 6= S3 follows. Let R and Q be the parallel
links of Sl that contain the end vertices of P as inner vertices, respectively. At
least one of them, say R, contains a backedge, since otherwise T would contain
a cycle. Let Ci 6= C0 be the chain in Sl that contains R. Since Ci contains
exactly one backedge, s(Ci) is an end vertex of R. If R ⊂ Ci, Q must contain
a backedge, as t(Ci) is an inner real vertex of t(R) →T s(R). In that case, all
inner vertices of Q lie in a subtree of T that cannot be reached by P due to
property 1.1 and Sl being upwards-closed. Thus, R = Ci and with the same
argument Q = t(Ci) →T s(Ci) holds. With (R2), Sl must be S3 and Q = C0,
which contradicts our assumption.

For the second claim, each chain Ci of type 2 or 3 has by definition an inner
real vertex in t(Ci) →T s(Ci) and therefore preserves (R2). If Ci is of type 2a
or 3a, (R1) is preserved as well, as Sl+1 is upwards-closed and modular with
Lemma 10. �

We now show that the chains of type 3a help to find BG-paths efficiently.

Lemma 12. Let Ck be the parent of a chain Ci 6= C0.

• If Ci is not of type 1, Ck 6= C0 and t(Ci) is an inner vertex of Ck.

7

Figure 2: A chain Ci 6⊆ Sl of type 3.

• Let Ck but not Ci be contained in a subdivision Sl constructed under (R1)
and (R2). If Ci is either of type 3a or of type 1 with an inner real vertex
in t(Ci)→T s(Ci), Ci is a BG-path for Sl preserving (R1) and (R2).

Proof. Assume to the contrary that Ci is not of type 1 and Ck = C0. Because
t(Ci) is contained in C0, s(Ci) must be in C0 as well. But then Ci would be of
type 1, since t(Ci) →T s(Ci) ⊆ C0. Therefore, if Ci is not of type 1, Ck 6= C0
holds and Ck must start with a backedge. Then the definition of the parent
relation implies that t(Ci) is an inner vertex of Ck.

For the second claim, let Ci first be of type 3a. Since Sl is upwards-closed,
modular and contains Ck, Ci satisfies the property 1.1 of BG-paths. In addition,
s(Ci) 6= s(Ck) holds by definition and with Ck < Ci, s(Ci) must be an inner
vertex of the path t(Ck) →T s(Ck) (see Figure 2). Therefore, the only chains
Cj that contain s(Ci) and t(Ci) are different from C0 and fulfill Ci ∩ Cj =
{s(Ci), t(Ci)} = {s(Cj), t(Cj)}. This implies Ci having property 1.2. Using
Lemma 11, Ci is a BG-path for Sl that preserves (R1) and (R2).

If Ci is of type 1, property 1.1 follows from the same argument as before.
Additionally, the inner real vertex in t(Ci)→T s(Ci) prevents any link contain-
ing s(Ci) and t(Ci) from having s(Ci) or t(Ci) as an inner vertex and therefore
ensures property 1.2. Lemma 11 implies that Ci is a BG-path for Sl and Ci must
preserve (R1) and (R2), the latter due to the inner real vertex in t(Ci)→T s(Ci).

�

2.3 Caterpillars
While chains of type 3a form BG-operations under the conditions of Lemma 12,
chains of types 1 and 2 in general do not. For every chain Ci of type 3b,
Algorithm 1 collects a list Li that contains only Ci and chains of type 2b (see
line 15). We call each list Li a caterpillar. Caterpillars bundle the single chains
of type 2b, which cannot immediately be added as BG-paths, and will offer a
simple decomposition into successive BG-paths later.

Proposition 13. Every caterpillar Li contains exactly one chain of type 3b,
namely the chain Ci. All other chains in Li are of type 2b.

8

Lemma 14. C \ {C0} is partitioned into the chains of types 1, 2a, 3a and the
chains being contained in caterpillars. Moreover, no chain is contained in two
caterpillars.

Proof. With Proposition 13, it remains to show that every chain Ci of type 2b
or 3b is contained in exactly one caterpillar. If Ci is of type 3b, Ci is part of the
caterpillar Li (see Algorithm 1, line 13) and will not be assigned to a second
caterpillar afterwards, as it is not marked. Otherwise, Ci is of type 2b and was
therefore marked. We show that, after all chains in C have been classified, Ci is
not marked anymore. This forces Ci to be contained in exactly one caterpillar, as
the only way to unmark chains is to assign them to a caterpillar (see Algorithm 1,
line 15) and no chain is marked twice.

Let Ck be the parent of Ci. Because Ci is of type 2b, s(Ci) = s(Ck) holds
and Ci is not a backedge, implying that the last edge e of Ci is in T . Let x be the
end vertex of e different from t(Ci). Using Lemma 12, Ck 6= C0 holds and t(Ci)
is an inner vertex of Ck. Then at least one backedge vw with v /∈ {s(Ci), t(Ci)}
must enter T (x), since otherwise s(Ci) and t(Ci) would be a separation pair
of G. Let Cj be the minimal chain with respect to < that contains such a
backedge.

As Cj > Ci holds due to Lemma 5, the vertex v is an inner vertex of
t(Ci) →T s(Ci), implying that Cj is not of type 2. In addition, Cj is not of
type 1, since t(Cj) →T v contains edges from Ci and Ck. At the time Cj is
found in the chain decomposition, every chain that already ends at a vertex
in T (x) starts at s(Ci) and is therefore of type 2a or 2b. Since chains that are
backedges cannot have children, the parent of Cj is marked and Cj is of type 3b.
Moreover, every chain corresponding to an inner vertex of the path Cj →U Ci is
marked. This concludes Ci to become unmarked due to line 15 of Algorithm 1.

�

Definition 15. Let the parent of a caterpillar Lj be the parent of the chain in
Lj that is minimal with respect to <. Let a caterpillar Lj with parent Ck be
bad if s(Cj) is a descendant of t(Ck) and s(Ck) →Ck

s(Cj) contains no inner
real vertex (see Figure 3(a)). Otherwise, Lj is called a good caterpillar (see
Figure 3(b)).

We now show that, under some minor conditions, caterpillars can be decom-
posed into multiple BG-paths nicely.

Lemma 16. Let Lj be a caterpillar that contains t chains and has parent
Ck. Let Ck but no chain in Lj be contained in a subdivision Sl that was con-
structed under (R1) and (R2). Then the chains in Lj can be efficiently de-
composed into t successive BG-paths preserving (R1) and creating subdivisions
Sl+1, Sl+2, . . . , Sl+t, each of which satisfies (R2), if and only if Lj is good.

Proof. Let Lj be good and let y be the last vertex of the minimal chain in
Lj , thus y ∈ V (Ck). We assume at first that s(Cj) is a proper ancestor of t(Ck)
(see Figure 3(b)). Then the path P = Cj ∪ (t(Cj) →T y) fulfills properties 1.1
and 1.2 and is a BG-path for Sl with Lemma 11. Adding P preserves Sl to be
upwards-closed but not modular. The restriction (R2) is also preserved, as t(Ck)
is real and, for Sl = S3, Ck must be either C1 or C2, implying that s(P) becomes

9

(a) A bad caterpillar
Lj with parent Ck.

(b) A good caterpillar Lj

with parent Ck.

Figure 3: Two kinds of caterpillars.

an inner real vertex of C0. Successively, for each chain Ci of the t− 1 chains in
Li \ {Cj}, we now add Ci \ P , which is a BG-path yielding an upwards-closed
subdivision for analogue reasons.

Now assume that s(Cj) is a descendant of t(Ck) (see Figure 3(a)). Then
s(Cj) ∈ V (Ck) and since Lj is good, there is a real vertex a strictly between
s(Cj) and s(Ck) in Ck. We first show that t(Ck) →T s(Ck) contains an inner
real vertex as well. Assume the contrary. Then Ck must be of type 1 and has
been added before, contradicting restriction (R2) unless Sl = S3. But Sl must
be different from S3, since a exists, and it follows that t(Ck)→T s(Ck) contains
an inner real vertex b. Let Ch be the parent of Cj . Then (Cj ∪Ch)\ ((t(Cj)→T

y) \ {t(Cj)}) is a BG-path due to the real vertices a and b and we add it,
although it neither preserves Sl+1 to be upwards-closed nor modular. We next
add t(Cj)→T y, which restores upwards-closedness. The resulting subdivisions
Sl+1 and Sl+2 both satisfy (R2), as b is real in Sl+1 and Sl+2 and y is real
in Sl+2. We proceed with adding successively paths, namely for each chain
Ci of the t − 2 remaining chains in Li \ {Cj , Ch} the path Ci \ (t(Cj) →T y).
With the same line of argument, these paths obtain upwards-closed subdivisions
Sl+3, . . . , Sl+t, each of which satisfies (R2).

In both cases, Sl+t is modular, since Lj is a list of chains. Moreover, the t
chosen BG-paths preserve (R1), as the chains in Lj are of types 2b and 3b only,
t > 1 holds and Sl+t is upwards-closed. All paths can be computed in time
linearly dependent on the total number of edges in Lj .

For the only if part, let P1 and P2 be the first two BG-paths in a decom-
position of the chains in Lj ; these exist, since t > 1 holds in every caterpillar.
Let Lj be bad, as otherwise the claim follows. Then s(Cj) ∈ V (Ck). We show
that Lj cannot be bad, as Sl contains a real vertex in Ck strictly between s(Cj)
and s(Ck). Because of properties 1.1 and 1.2, P1 ∩ Sl = {s(Ck), s(Cj)} must
hold and P1 is a link of Sl+1 being parallel to s(Cj)→Ck

s(Ck). Since only the
chain of type 3b in Lj starts at s(Cj), both end vertices of P2 must be different
from s(Cj). Then, due to properties 1.1 and 1.2, P2 joins inner vertices of the
parallel links P1 and s(Cj) →Ck

s(Ck) in Sl+1, contradicting property 1.3, as

10

|Vreal(Sl+1)| ≥ 4. �

3 Existence of the Restricted Construction Se-
quence

We show that there still exists a construction sequence under restrictions (R1)
and (R2).

Definition 17. Let Sl be a subdivision of G constructed under (R1) and (R2).
We define the equivalence relation ∼ on E(G) \ E(Sl) with

• ∀e ∈ E(G) \ E(Sl) : e ∼ e and

• ∀e, f ∈ E(G) \ E(Sl) : e ∼ f if there is a path e →G f without an inner
vertex in Sl.

Let the equivalence classes of ∼ be the segments of Sl. Note that every segment
consists of a disjoint union of chains. For a chain Ci that is not contained in Sl,
let the segment of Ci be the segment of Sl that contains Ci.

Lemma 18. Let Sl be a subdivision constructed under (R1) and (R2) and let Ci

be a chain of type 3 such that s(Ci) ∈ V (Sl), Ci 6⊆ Sl and Ci is minimal among
the chains of type 3 in its segment H. Let D1 > . . . > Dk be all ancestors of
Ci in H with D1 = Ci and Dk being the minimal chain in H. Then all chains
D1, . . . , Dk can be successively added as BG-paths preserving (R1) and (R2)
(possibly being part of caterpillars), unless one of the following exceptions holds:

1. Ci is of type 3a, k = 2, Dk is of type 1, s(Ci) is an inner vertex of
t(Dk) →T s(Dk) and there is no inner real vertex in t(Dk) →T s(Dk)
(Figure 4(a)),

2. Ci is of type 3b, Dk is of type 2b and Li = {D1, . . . , Dk} with Li being
bad (Figure 4(b)),

3. Ci is of type 3b, Li = {D1, . . . , Dk−1}, Dk is of type 1, s(Ci) is an inner
vertex of t(Dk) →T s(Dk) and there is no inner real vertex in t(Dk) →T

s(Dk) (Figure 4(c)).

Proof. Let D ∈ {D2, . . . , Dk}. Then D is not of type 3 by assumption and
not of type 2a, as chains of that type cannot have children. Assume that D
is of type 2b and let Lj be the caterpillar containing D due to Lemma 14. If
Cj 6= Ci, Cj < Ci holds, as otherwise Cj would not be the chain of type 3b in
Lj . But then Cj contradicts the minimality of Ci, since Cj is not contained in
Sl and of type 3b. We conclude that every chain in {D2, . . . , Dk} of type 2b is
contained in Li and forces Ci to be of type 3b. This is used in the following case
distinction.

Let Ci be of type 3a. If k = 1, Ci is a BG-path for Sl with Lemma 12
and the claim follows. Otherwise, k > 1 and all chains in {D2, . . . , Dk} are
of type 1. Then s(D2) is a proper ancestor of s(Ci), since D2 < Ci and Ci is
not of type 2. Moreover, s(Ci) is a proper ancestor of t(D2), because otherwise

11

(a) 18.1 (b) 18.2 (c) 18.3

Figure 4: The three exceptions of Lemma 18. The black vertices in 18.1 and 18.3
can also be non-real.

H ∩ Sl = {s(D2), t(D2)} is a separation pair of G due to the minimality of Ci.
It follows that s(Ci) is an inner vertex of t(D2) →T s(D2). If k > 2, D3 must
contain t(D2)→T s(D2), because D2 is of type 1 and a child of D3. Therefore,
the edge e joining s(Ci) with the parent of s(Ci) in T is contained in D3. But
since Sl is upwards-closed, e is also contained in Sl, contradicting that D3 6⊆ Sl.
Thus, k = 2. If t(D2) →T s(D2) contains an inner real vertex, D2 and Ci can
be subsequently added as BG-paths with Lemma 12, otherwise 18.1 is satisfied.

Let Ci be of type 3b. Then all chains in {D2, . . . , Dk} that are of type 2b
must be contained in Li. Since every caterpillar Lj contains the parent of the
chain Cj and since Sl contains no chain in Li due to (R1), k > 1 holds and D2
is of type 2b with D2 ∈ Li. Let Dt with 1 < t ≤ k be the minimal chain in
Li. If t = k and Li is good, all chains in Li can be decomposed to BG-paths
according to Lemma 16. If t = k and Li is bad, 18.2 is satisfied. Only the
case k > t remains. Then Dt+1 is of type 1 and, using the same arguments
as in the case for type 3a, s(Ci) is an inner vertex of t(Dk) →T s(Dk) and
k = t+ 1. If t(Dk)→T s(Dk) contains an inner real vertex, Lemmas 12 and 16
imply that Dk and Li can be iteratively added as set of successive BG-paths,
preserving (R1) and (R2). Otherwise, 18.3 is satisfied. �

We extend Lemma 18 to non-minimal chains of type 3.

Lemma 19. Let the preconditions of Lemma 18 hold. If Ci is not contained in
one of the exceptions 18.1-18.3 (as Ci), the chains of type 3 in H that start in Sl

and their ancestors in H can be successively added as BG-paths, preserving (R1)
and (R2).

Proof. Using Lemma 18, we add the chains Ci, D2, . . . , Dk in H as BG-paths.
This partitions H into new segments; let H ′ ⊆ H \ {Ci, D2, . . . , Dk} be such a

12

(a) Cj cannot be contained in excep-
tions 18.1 and 18.3.

(b) Cj cannot be contained in ex-
ception 18.2.

Figure 5: After Ci was added, the next minimal chain Cj is in no exception.

new segment. If H ′ does not contain chains of type 3 that start in Sl, the claim
follows for such chains inH ′. Otherwise, let Cj be the minimal chain of type 3 in
H ′ that starts in Sl and let Cj > D′2 > . . . > D′k be its ancestors in H ′. We show
that Cj is not contained in one of the exceptions 18.1-18.3 and can therefore
be added as BG-path with Lemma 18, along with its proper ancestors in H ′.
First, assume to the contrary that Cj is contained in exception 18.1 or 18.3 (see
Figure 5(a)). Because D′k is a proper descendant of Dk and D′k is of type 1,
s(Cj) ∈ V (Sl) cannot be an inner vertex of t(D′k)→T s(D′k), contradicting the
assumption. Now assume to the contrary that Cj is contained in exception 18.2
(see Figure 5(b)). Then Cj is of type 3b and part of a bad caterpillar Lj , whose
parent D is not contained in H ′. Because Lj contains only chains in H ′, D
must be a descendant of Dk and is therefore contained in H \ H ′. Since Lj

is bad, s(Cj) is contained in Sl ∩ D and it follows with s(Cj) 6= s(D) that D
must end in Sl at the vertex s(Cj). As Dk is the only chain in H that ends
in Sl, D = Dk must hold. But this contradicts Lj being bad, as D contains
the inner real vertex s(Dk−1). Thus, Cj and its ancestors in H ′ can be added,
partitioning H ′ into smaller segments. Iterating the same argument for these
segments establishes the claim for all chains of type 3 in H that start in Sl. �

Each of the exceptions 18.1-18.3 in Lemma 18 contains a certain path without
inner real vertices. We refer to this path in the following way.

Definition 20. Let a chain Ci that is of type 1 or 2a and has parent Ck be
dependent on the path s(Ci) →Ck

t(Ci). Let every chain Ci of type 2b or 3b
that is contained in a caterpillar Li that parent Ck be dependent on the path
s(Ci) →T t(Ck) ∪ t(Ck) →Ck

s(Ck) (chains of type 3a are not dependent on
anything).

13

The following lemma shows that the only chains of type 1 that cannot be
added are either backedges or are contained as Dk in exceptions 18.1-18.3.

Lemma 21. Let Sl be a subdivision constructed under (R1) and (R2), let Cj

be a chain in Sl and let Dk be a child of Cj that is of type 1 and not in Sl. If
Dk is not a backedge, there is a chain of type 3 in the segment containing Dk

that starts in t(Dk)→T s(Dk) ⊂ Cj. If Dk is neither a backedge nor contained
(as Dk) in the exceptions 18.1 and 18.3, Dk can be added as BG-path.

Proof. Let H be the segment of Dk and assume that Dk is not a backedge.
We first show that H contains a chain of type 3 that starts in t(Dk)→T s(Dk).
We can assume that Dk is not contained in the exceptions 18.1 and 18.3, as
then H would contain such a chain by definition. Let x be the last but one
vertex in Dk. Since G is 3-connected, there is a minimal chain Ci entering T (x)
such that s(Ci) is an inner vertex of t(Dk) →T s(Dk), as otherwise the inner
vertices of Dk would be separated by {s(Dk), t(Dk)}. By definition of the chain
decomposition, Ci must be of type 3a or 3b. Because Dk is not contained in
exceptions 18.1 and 18.3 and H cannot contain exception 18.2, Lemma 18 can
be applied on Ci, obtaining the last claim. �

The next lemma ensures for every subdivision Sl the existence of a chain or
caterpillar that obtains a BG-path for Sl, preserving (R1) and (R2).

Theorem 22. Let Sl be constructed under (R1) and (R2) and let Ci be a chain
such that, for every proper ancestor Cj of Ci, every child of Cj and every chain
of type 3 starting in V (Cj) is contained in Sl. Let X ′ be the set of children of Ci

that are not contained in Sl and let Y ′ be the set of chains of type 3 that start in
Ci and are not contained in Sl. Then the chains in X ′ ∪̇ Y ′ can be successively
added as BG-paths (possibly being part of caterpillars) such that (R1) and (R2)
is preserved and every chain in Y ′ is followed by its proper ancestors in its
segment.

Proof. By assumption, Ci is contained in Sl. Let D 6⊆ Sl be a child of Ci. If
Ci = C0, D must be of type 1. Let Ci 6= C0. Then D cannot be of type 3b, as
otherwise it would be contained in Sl due to (R1) and Ci ⊂ Sl. It is neither of
type 3a, since in that case s(D) is contained in a proper ancestor of Ci, implying
D ⊂ Sl by assumption. We conclude that D is of type 1 or 2 and focus on the
cases where D can not be added. Let P be the path on which D depends on.
If D is of type 1, P does not contain an inner real vertex, as otherwise D can
be added as BG-path due to Lemma 12. With Lemma 21, D must be either a
backedge or be contained as the minimal chain in exception 18.1 or 18.3. If D is
of type 2a, s(Ci) is real and neither t(D) nor an inner vertex in P can be real,
since otherwise D can be added as BG-path, preserving (R1) and (R2). If D is
of type 2b, D is the minimal chain of a caterpillar La with parent Ci. According
to Lemma 16, La is bad and, thus, corresponds to exception 18.2. The following
is a list of the possible cases for which a child D of Ci is not added.

1. D is of type 1 without an inner real vertex in P and either a backedge or
the minimal chain in exception 18.1 or 18.3

2. Ci 6= C0 and D is of type 2a without a real vertex in P \ {s(D)}

14

3. Ci 6= C0 and D is of type 2b without an inner real vertex in P (D is the
minimal chain in exception 18.2)

We iteratively add all chains D in X ′ ∪̇ Y ′ that do not satisfy one of the
above three cases 22.1-22.3 for D ∈ X ′ and whose segments do not contain
one of the exceptions 18.1-18.3 for D ∈ Y ′ (the latter followed by adding the
proper ancestors in the segment of D according to Lemma 19). Let X be the
set of remaining chains in X ′ and let Y be the set of remaining chains in Y ′.
If X = ∅, Y = ∅ holds as well, as otherwise the minimal chain in the segment
containing one of the exceptions 18.1-18.3 is a child of Ci, contradicting X = ∅.
This implies the claim for X = ∅.

We prove the theorem by showing that X = ∅ must hold. Assume to the
contrary that X 6= ∅ and let St be the current subdivision (all segments will be
dependent on St). Then Ci must contain a link L of length at least two, because
the dependent path P in each of the cases 22.1-22.3 is in Ci and contains a
non-real vertex due to the 3-connectivity and simpleness of G. According to
Lemma 4, L contains an inner vertex v on which a BG-path B starts (not
necessarily being a chain and not necessarily preserving (R1) or (R2)). Let e
be the first edge of B. Then e is not contained in the segment of any x ∈ X,
as otherwise B would not have property 1.2, because v is non-real and all start
vertices of the chains in the segment of x that are in St are contained in L. Thus,
C(e) cannot be a child of Ci and it follows that s(C(e)) = v. In particular, C(e)
is not of type 1.

The segment of e cannot contain a chain of type 3 that starts in Ci, as it
otherwise contains a chain x ∈ X of type 1 or 2b due to exceptions 18.1-18.3,
contradicting the previous argument. In particular, C(e) is not of type 3 and
the only remaining case is that C(e) is of type 2.

Let Ck be the maximal ancestor of C(e) that is not of type 2. Then s(Ck) = v
holds by construction of the chain decomposition and Ck must be contained in
the segment of C(e) due to (R1), (R2) and v being non-real. Since the segment
of e cannot contain a chain of type 3 that starts in Ci, Ck must be of type 1.
But then, as v is an inner vertex of L, Ck must be a child of Ci, contradicting
that e is not contained in the segment of any x ∈ X. This is a contradiction to
the existence of B and it follows that X = ∅, which implies the claim. �

Corollary 23. Let G be a 3-connected graph with a chain decomposition C =
{C0, . . . , Cm−n+1}. Then C3, . . . , Cm−n+1 can be added to S3 = C0 ∪ C1 ∪ C2
such that every chain satisfies (R1) and (R2).

Remark. From Theorem 22, one can possibly derive the characterization of 3-
connected graphs of Vo in [7, 8].

4 A Linear-Time Algorithm
With Lemma 8, a chain decomposition C0, . . . , Cm−n+1 can be computed by
essentially one DFS-traversal in O(n+m). According to Theorem 22, we can find
a construction sequence that satisfies (R1) and (R2) by the following method:
Iteratively for each chain Ci, 3 ≤ i ≤ m − n, we add the children of Ci and
the chains of type 3 that start in Ci as BG-paths or, if of type 3b, as part of

15

caterpillars, which can be decomposed into BG-paths. This obtains the desired
construction sequence of type 2.(3), which can be transformed easily to the
other sequences 2.(2), 2.(4) and 2.(5). However, Theorem 22 does not specify in
which order the children of Ci and the chains of type 3 that start in Ci have to
be added. Moreover, this order depends strongly on the input graph. We show
how the computation of this order can be integrated in the chain decomposition
while preserving the overall running time of O(n+m).

We maintain the following information during the chain decomposition: On
each vertex v /∈ {s(C0), t(C0)}, we store a pointer to the unique chain that
contains v as an inner vertex. On each chain Cj , we store pointers to s(Cj) and
t(Cj), a list Children12(Cj) of the children of Cj that are of type 1 or 2 and the
information whether Cj was already added. For each chain Ci 6= C0, we save a
list Type3(Ci) of pointers to the chains of type 3 that start in Ci \{s(Ci), t(Ci)}.
For C0, we save the list Type3(C0) of pointers to the chains of type 3 that start
in C0. For each caterpillar Lk, we maintain the list of chains that are contained
in Lk and store a pointer to this list on Ck and on the minimal chain in Lk.

Let Ci be the current chain, i.e., all chains Cj with j < i satisfy the pre-
conditions of Theorem 22. Let Sl be the current subdivision. Then Type3(Ci)
contains exactly the chains of type 3 that start in Ci and are not contained in
Sl, because the chains Ci 6= C0 that start with s(Ci) or t(Ci) cannot be con-
tained in Sl. Let X be the children of Ci that are not contained in Sl. It follows
from the first argument in the proof of Theorem 22 that X ⊆ Children12(Ci).
In order to ensure X = Children12(Ci), all chains in Children12(Ci) that are
contained in Sl are deleted in time O(|E(Ci)|).

We partition Type3(Ci) into the classes of chains that are contained in the
same segment of Sl. This is done by storing a pointer for each Cj ∈ Type3(Ci) to
the minimal chain Dk of the segment H that contains Cj . If Dk is a backedge,
H consists only of one chain Dk = Cj , which can be added immediately due to
Lemma 18. For every chain Cj ∈ Type3(Ci) in a segment H containing at least
two chains, we traverse and mark the path (t(Cj) →T u) \ {u}, where u is the
first ancestor of t(Cj) in T that is contained in Sl or marked. Let P be the first
traversed path in H. Then the last but one vertex of P must be an inner vertex
of the minimal chain Dk in H and we use Dk as marker for P , for all paths that
end at P and for all further paths that are contained in H. This way Ck can
be computed by traversing only the chains that we can add by Theorem 22; the
total running time amortizes therefore to O(n+m).

Let nowH be the segment of a chain Cj ∈ Type3(Ci). If the minimal chainD
in H is not of type 1 or 2b, we can immediately add Cj along with its ancestors
in H due to Lemma 19. Otherwise, D is contained in Children12(Ci) and the
previous computation provides the set H ∩ Type3(Ci). If D is of type 2a and
t(D) is real, we add D. Now every remaining chain D in Children12(Ci) is the
chain D of one of the cases 22.1-22.3 with the only exception that there may
be inner real vertices on its dependent path P ⊆ Ci. If P contains an inner
real vertex, each chain in H ∩ Type3(Ci) can be added along with its ancestors
in H. If P does not contain an inner real vertex, no chain in H can be added
under (R1) and (R2). It is therefore possible to restrict ourselves to find an
ordering on the chains Children12(Ci), because the chains in the segments of
every such chain can be added immediately afterwards. However, we lack an
efficient way of choosing subsequently chains in Children12(Ci) that contain an
inner real vertex in their dependent path, although Theorem 22 guarantees the

16

(a) The chain Ci with the chains in
Type3(Ci) ∪ Children12(Ci).

(b) The dashed intervals in I0 are constructed
from the real vertices in Ci \ s(Ci).

Figure 6: Mapping the dependent paths in the chain Ci to intervals. Different
shades depict different segments.

existence of such chains. We deal with this problem by the following approach.
Let H be the segment that contains a chain D ∈ Children12(Ci). We map

the dependent path P of D to a set of integer intervals I(D) on the path
t(Ci) →Ci s(Ci), where vertices depict integers. If D is a backedge, H = {D}
holds and we set I(D) := {[s(P), t(P)]} (see Figure 6). Otherwise, D must be
in case 22.1 or 22.3 and H contains a chain of type 3 that starts at an inner
vertex of P by Lemma 21. Then the precomputed set H ∩ Type3(Ci) is non-
empty and we can efficiently extract the set {v1, . . . , vk} of vertices in H ∩ P ,
k ≥ 3, ordered by increasing distance to r ∈ V (T); note that every vertex in
H ∩ P occurs only once and that t(D) is also contained in H ∩ P if D is of
type 2b. We set I(D) := {[v1, vk], [v1, v2], [v2, v3], . . . , [vk−1, vk]}. Additionally,
we add for the ordered set {t(Ci) = w1, w2, . . . , wu = s(Ci)} of real vertices
in Ci, u ≥ 3, the set of intervals I0 := {[w1, w2], [w2, w3], . . . , [wu−2, wu−1]}.
Let I be the set of all generated intervals. By construction, |I| is at most
3
2 ∗ |Children12(Ci)| + |Type3(Ci)| + |{x|x is inner real node in Ci}|, where the
first two terms are linearly dependent on the length of chains that will be added
and the last term sums up to at most n in total.

Let two intervals [a, b] and [c, d] overlap if a < c < b < d or c < a < d < b.
We find the next chain having an inner real vertex on its dependent path by
finding a next overlapping interval when starting with an interval in I0. We show
that these two methods are equivalent. Clearly, an overlap of two intervals, of
which exactly one is contained in the preimage of a chain in Sl, induces an inner
real vertex in the other interval. Conversely, let D2 be a chain in Children12(Ci)
with the dependent path P2, let H be the segment containing D2 and let D1

17

be the chain that provides the first inner real vertex for P2 (real vertices can
only be provided by the remaining chains in Children12(Ci)∪Type3(Ci)). Then
[s(P1), t(P1)] ∈ I(D1) overlaps [s(P2), t(P2)] ∈ I(D2) or the start vertex v of
a chain in H ∩ Type3Ci is an inner vertex of [s(P2), t(P2)]. In the latter case,
v is by construction the end point of a chain in I(D1). It therefore suffices to
find an ordering π of I that starts with an interval of I0 such that for every two
subsequent intervals I1 and I2 in π holds

• I1 overlaps I2,

• I2 ⊆ I0 or

• I2 ⊂ I(D) for a chain D such that I(D) contains a smaller interval in the
ordering.

For the set I of intervals, let the overlap graph O of I be the graph (I, E′)
with two intervals being in E′ if and only if they overlap. If we drop the three
latter conditions, there exists an sequential algorithm finding π in time O(|I|)
by computing the connected components of O [3]. Note that the connected
components give us also the information whether there exists π in the case of
non-3-connected graphs. The Lemmas 4.1 and 4.2 in [3] allow for a simplified
variant of this algorithm, which first constructs by two simple sweep lines the
forests F1 and F2 such that the connected components of F1 ∪ F2 (having at
most 2|I| edges) partitions I into the same vertices as the connected components
of O. We extend this algorithm to deal with our additional three conditions by
merging the intervals in I0 and I(D) for each D ∈ Children12(Ci) to the same
connected component; the number of additional edges in F1 ∪ F2 is at most |I|
and the asymptotic linear running time is preserved. Using Corollary 23, this
gives the following result.

Corollary 24. The construction sequences 2.(2), 2.(3), 2.(4) and 2.(5) of a
3-connected graph can be computed in time O(n+m).

Remark. The algorithm should easily extend to a certifying 3-connectivity test.
The main argument is that, for a graph G that is not 3-connected, a subdivision
must occur for which no BG-path exists by Theorem 2. But every path that
contradicts property 1.2 or 1.3 leads to a cut vertex or separation pair. It would
be interesting to show how to get implicitly all the separation pairs (and the
unique SPQR-tree), as done in [2].
Remark. Note that Ci can already be processed when all chains with a starting
vertex in low(Ci)→T r for r being the root of T have been found. Therefore, the
chain decomposition does not have to be finished for testing whether a proper
ordering on the chains Children12(Ci) ∪ Type3(Ci) exists and these chains can
immediately be added in the affirmative case. In that sense, the 3-connectivity
is checked locally for each chain Ci; it might be interesting whether it is faster
than the algorithm of Hopcroft and Tarjan [2] in practice.

5 Verifying the Construction Sequence
The certificate of the 3-connectivity of G, e.g., the construction sequences 2.2
and 2.3, can be stored in O(n+m) space and easily verified in time O(n+m)
as described in [4].

18

References
[1] D. W. Barnette and B. Grünbaum. On Steinitz’s theorem concerning convex 3-

polytopes and on some properties of 3-connected graphs. Many Facets of Graph
Theory, Lecture Notes in Mathematics, 110:27–40, 1969.

[2] J. E. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected components.
SIAM J. Comput., 2(3):135–158, 1973.

[3] S. Olariu and A. Y. Zomaya. A time- and cost-optimal algorithm for interlocking
sets – With applications. IEEE Trans. Parallel Distrib. Syst., 7(10):1009–1025,
1996.

[4] J. M. Schmidt. Construction sequences and certifying 3-connectedness. In 27th
International Symposium on Theoretical Aspects of Computer Science (STACS’10),
Nancy, France, pages 633–644, 2010.

[5] W. T. Tutte. A theory of 3-connected graphs. Indag. Math., 23:441–455, 1961.
[6] W. T. Tutte. Connectivity in graphs. In Mathematical Expositions, volume 15.

University of Toronto Press, 1966.
[7] K.-P. Vo. Finding triconnected components of graphs. Linear and Multilinear

Algebra, 13:143–165, 1983.
[8] K.-P. Vo. Segment graphs, depth-first cycle bases, 3-connectivity, and planarity of

graphs. Linear and Multilinear Algebra, 13:119–141, 1983.

19

	Construction Sequences
	Chain Decomposition
	Classifying Chains
	Restrictions
	Caterpillars

	Existence of the Restricted Construction Sequence
	A Linear-Time Algorithm
	Verifying the Construction Sequence

