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We study a one-dimensional chain of 2N Majorana bound states, which interact through a local quartic
interaction. This model describes for example the edge physics of a quasi-one-dimensional (1D) stack of 2N
Kitaev chains with modified time-reversal symmetry Ty;T~' = y;, which precludes the presence of quadratic
coupling. The ground state of our 1D Majorana chain displays a fourfold periodicity in N, corresponding to
the four distinct topological classes of the stacked Kitaev chains. We analyze the transport properties of the
1D Majorana chain, when probed by local conductors located at its ends. We find that for finite but large
N, the scattering matrix partially reflects the fourfold periodicity, and the chain exhibits strikingly different
transport properties for different chain lengths. In the thermodynamic limit, the 1D Majorana chain hosts a robust
many-body zero mode, which indicates that the corresponding stacked two-dimensional bulk system realizes a

weak topological phase.
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I. INTRODUCTION

Models of interacting Majorana modes provide a simple
platform to study novel physical phenomena. Examples range
from emergent supersymmetric quantum critical behavior
[1] to the physics of black holes [2,3]. One particularly
interesting example is the Sachdev-Ye-Kitaev (SYK) model
with random all-to-all Majorana interactions [2,3], which is
a calculable model with implications for quantum gravity,
quantum information, and quantum chaos [3-15]. Recent
proposals for the realization of the SYK model would
potentially allow to experimentally probe this physics in
a solid state setup [12,16]. A variant of the SYK model
with strong short-range interactions was suggested to exhibit
emergent supersymmetric quantum critical behavior [1,17,18].
Interestingly, this short-range model describes excitations on
the edge of stacked topological superconducting wires, which
is potentially easier to access experimentally.

From a topological point of view, interactions are known
to alter the topological classification of gapped phases as
well as the nature of their emergent boundary states. By
enlarging the phase space, interactions can connect otherwise
distinct topological phases and reduce the number of gapped
phases [19-23]. One notable example occurs in the stack of
one-dimensional topological superconductors with a modified
time-reversal symmetry 72 = 1, corresponding to class BDL
Here the noninteracting system is characterized by a Z index
which counts the number of Majorana modes at its boundary,
while interactions reduce the number of gapped phases to eight
(labeled by a Zg topological index) [19].

It is conceptually useful to think of the eight topological
subclasses as constructed by stacking L topological super-
conducting chains forming a slab of finite transverse size
L [24], with L Majorana modes localized at its boundary.
Interactions of finite range can gap the Majorana modes
without breaking time-reversal symmetry if L is a multiple
of eight, making a system of L mod 8 =0 topological
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superconducting chains adiabatically connected to a trivial
insulator [19]. The remaining nontrivial phases host a spinless
fermion, a Majorana quasiparticle, and a Kramers doublet,
respectively, as boundary excitations. Each of these physical
excitations have markedly distinct measurable features which
can be detected when coupling the edge of the stacked system
to external leads.

Indeed, transport properties provide a prominent tool to
probe topological phases and the nature of their boundary
states in (quasi-) one-dimensional systems [25,26]. The pres-
ence of gapless modes confined to the system ends affects
the scattering of noninteracting fermions when the system is
connected to leads. For noninteracting fermions in a quasi-1D
wire, topological invariants of the system can be directly
related to scattering matrix invariants [27,28], and measurable
transport properties have been computed [26], also in the
presence of disorder [29]. In fact, conductance measurements
have been the first indications of possible topological phases
in engineered nanostructures [30-33]. Remarkably, the nature
of the boundary states that appear in the stacked BDI system
allows to formulate the topological index using a scattering
matrix approach—even in the presence of interactions [34,35].

As long as the number of stacked superconducting chains is
kept finite, the Zg periodicity of the system, being a topological
property, persists independently of the detailed interaction
profile. The interaction range, however, introduces a transverse
length scale for the stacked quasi-1D system. When the
interaction range scales with the system size, the boundary
is essentially a zero-dimensional dot, resulting for example
in the Sachdev-Ye-Kitaev model [2,3]. For a finite-size bound-
ary, the Zg periodicity of the system has been shown to emerge
in the energy level statistics for random interaction strengths
[6]. In the opposite limit when interactions are short ranged, the
stacked setup is two dimensional (2D) of finite transverse size,
with a 1D boundary. This setup allows us to analyze the nature
of interacting 2D BDI system in the thermodynamic limit as
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well as to study the transport properties along its 1D boundary,
in order to determine which, if any, of the Zg periodic structure
persists when the boundary system is macroscopically large.

We study the transport properties along a 1D Majorana
chain with local translationally invariant interactions in a setup
where local leads are contacted to its two ends. [Equation
(1) is the simplest generalization of the Hubbard model with
Majorna degrees of freedom.] The model provides an effective
description of the edge of stacked topological superconducting
chains with modified time-reversal symmetry 72 = 1, and has
been shown to posses a rich phase diagram [1,17,18]. We
restrict ourselves to an even number of Majorana fermions
L = 2N in the 1D chain, so that the corresponding stacked
system consists of fermion excitations localized at a single
edge of the 2D system, and falls into four distinct topological
classes depending on N mod 4. The nontrivial phases are
known to host protected boundary excitations which can be
detected when coupling the edge of the stacked system to
external leads.

We compute the the scattering matrix of the 1D Majorana
chain. Using the symmetries of the model, we show that the
scattering matrix partially reflects the fourfold periodicity of
the 2D bulk system, even when the chain is macroscopi-
cally large. The different phases of the stacked system are
characterized by different scattering properties along the 1D
Majorana chain on the boundary, which can be detected
in transport measurements. We find that electrons scattered
from the leads can be fully reflected, can acquire a & phase
shift upon reflection, or can be transmitted across the chain,
depending on the fourfold periodicity of N mod 4. Though
these distinct transport properties do not fully distinguish
all different topological phases, their combination with the
quantum dimension of the system’s state [36], leads to a full
classification of the different topological phases.

Our analysis shows that in the thermodynamic limit our 1D
Majorana chain has a twofold degenerate ground state. The
presence of this zero mode is stable for a generic interactions
which do not break time-reversal and translational symmetry.
Regarding the 1D Majorana chain as an effective model that
emerges on the edge of stacked superconducting chains, the
presence of a robust zero mode at N — oo indicates that
the two-dimensional bulk system is in a weak interacting
topological phase, i.e., a topological phase protected by
translational symmetry. This is quite remarkable given that
its noninteracting analog is topologically trivial. Despite its
stability, we show that the transport properties of the boundary
zero mode become progressively harder to detect when the
system is coupled to single channel leads. This is due to the fact
that the tunneling matrix elements between the two degenerate
ground states decay rapidly in the large N limit.

While the scattering properties along the Majorana chain of
finite size are expected to depend on the detailed coupling to
the leads and the form of interactions, generic local probes can
distinguish a gapped system (v = 0), a fermionic zero-energy
excitation (v = 1, v = 3), and a spin-1/2-like excitation (v =
2). Here v = N mod 4 is the topological index. In addition,
the properties of the system in the thermodynamic limit do
not depend on the detailed coupling, and the weak topological
phase is robust for a generic interaction profile which does not
break translational invariance.
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FIG. 1. (a) Schematics of a 1D chain of Majorana bound states
coupled to left and right leads. Circled pairs of Majorana zero modes
indicate fermionic degrees of freedom and colored lines represent
different possible interaction terms. (b) Equivalent representation of
the Majorana chain in (a) after its mapping to a spin model. The
different interaction terms in (a) are represented by different spin
coupling terms in (b) with the same color code.

II. MODEL AND SYMMETRIES

We study a 1D Majorana chain of length L = 2N with
short-range interactions under open boundary conditions, as
described by the Hamiltonian

2IN-3
Hy=—-W Z ViVie1Yie2Vit3 (D

i=1

where y; are Majorana bound state operators defined by the
algebra {y;,yx} =251 and y; = ij. The system is sketched
in Fig. 1(a). This 1D chain describes for example the low-
energy physics on the edge of a quasi-1D system composed of
2N Kitaev chains [24] with modified time-reversal symmetry
Ty, T~' = y; (symmetry class BDI) [37-39], which precludes
the presence of quadratic Majorana terms [19].

Note that, following a Jordan-Wigner transformation, the
Hamiltonian (1) can be expressed in terms of spin degrees of
freedom as

N-1 N-2
Hy=W Z oo+ W Z 070712, @)
i=1 i=1

which has a natural interpretation in terms of the ladder spin-
chain sketched in Fig. 1(b).

The model has three discrete symmetries. The first is a
charge conjugation symmetry Hy = T HyT, ', which can be
represented as

N € odd,

N € even,

[H;\; V2j71]K7
[TT}= K,

where K denotes complex conjugation. Regarding the chain as
describing the edge model of a quasi-1D bulk composed of 2N
Kitaev chains, this operator can be understood as the projection
of the global time-reversal symmetry on the low-energy
degrees of freedom on the edge [20,21]. Importantly, while
the global time-reversal symmetry T2 = 1, its local projection
T} = £1 depends on the total number of fermionic sites N of
the chain. In addition to charge conjugate, the system possesses
two additional symmetries, namely the parity of the odd or the

T, =
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even subchain, respectively:

Py = [ [ (—ivaisysia).
i

P, = l_[ (—1Vai—1V4i)-
i

Studying the representations of the three discrete sym-
metries as a function of the number of spins N reveals
that the Majorana chain described in Eq. (2) falls into four
symmetry-protected topological phases labeled by different
v =N mod 4. Those are distinguished by the sign of 7}
and by the fact that time-reversal symmetry commutes or
anticommutes with the total parity P = P,P, [21,40]. In
addition, for the Hamiltonian in Eq. (1), the four symmetry-
protected phases can be characterized by different subsets of
noncommuting symmetry operators:

(A) Forachain with v = 0, the local time-reversal operator
commutes with both even chain and odd chain parities
[T.,P.]=[T.,P,] =0, and the system has a unique ground
state.

(B) For a chain with v = 1, {T, P,} = 0, giving rise to a
twofold degeneracy of the ground-state manifold, where the
two ground states differ by the parity of the odd chain.

(C) For a chain with v =2, {T;,P,} = {T.,P.} =0, and
the ground state is twofold degenerate, where the two ground
states differ by the relative parities of the odd and the even
chain but have the same total parity.

(D) For a chain with v = 3, {T;, P,} = 0, and the ground

state is twofold degenerate, where the two ground states differ
by the parity of the even chain.
Thus each of the three nontrivial phases (v =1,2,3) are
characterized by a twofold degenerate ground state, which
is spanned by the parity of the even and/or odd subchains
(Fig. 2), in contrast to the unique ground state in the trivial
phase (v = 0).

III. TRANSPORT AND SCATTERING PROCESSES

To study the transport properties of the Majorana chain
in Eq. (1), we assume that it is coupled to noninteracting
leads located at two ends of the system. We consider local
tunneling so that electrons can tunnel from the lead to the end-
fermionic site of the chain, as described by the Hamiltonian
H = H0+HT + HL + HR,Where

Hr = ZtLCTL,de + [RCTRkaR + H.c. 3)
k

and
Hj:L,R = Z Gj(k)C}kaj’k.
k

Here c; annihilates an electron of energy €;(k) with mo-
mentum k in lead j, dp = (y1 +iy»2)/2, and dg = (yov—1 +
iyan)/2, where L, R label the left and right leads [Fig. 1(a)].
The current operator at the left lead is

iL = 8,]\7L = —i ZtLCLde +H.c.
k

In general, the evaluation of the average current (/;—; g) and
the low frequency current fluctuations . ¢(. gy=-5j(@w=0) =
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FIG. 2. (a) Typical many-body spectra for different system sizes
N = 8-15. The degeneracies of some low-lying levels are indicated
by the numbers nearby. For N mod 4 = 1,2,3, all energy levels are
exactly twofold degenerate. For N mod 4 = 0, the lowest two levels
are nondegenerate, while the third level is again exactly twofold
degenerate. (b) The scaling of the low-energy gaps as defined in
(a) with increasing system sizes up to N = 29. The linear fitting
(dashed line) is made according to the data of the largest four system
sizes for each N mod 4. The negative y intercept for A; suggests
that the twofold exact degeneracy of the lowest two levels for N
mod 4 = 0 will be recovered in the thermodynamic limit. The y
intercepts for the other four gaps have roughly similar nonzero values,
suggesting finite gaps in the thermodynamic limit. Intriguingly, as
shown in the inset, the unique fifth order polynomial in 1/N that goes
through all data points for each N mod 4 gives a y intercept for A,
remarkably close to zero while the A, 3 45’s extrapolate to virtually
identical finite values. We set W = 0.5 in this figure.

fdt (L (1) — (1;),1;(0) — (Ij)]+) through the interacting sys-
tem in Eq. (1) encompasses multiparticle as well as energy-
nonconserving processes. However, at voltage biases and
temperature lower than the gap that separates the ground-
state manifold from the excited states, i.e., eVy,eVp < Ag,
the system is characterized either by a nondegenerate or
by a doubly degenerate ground state. As we discuss in
the detailed analysis below, in both cases, the low energy
physic is described by a Fermi liquid and the transport
properties can be fully characterized by a unitary scattering
matrix Wy, = SWi,. The scattering states are in the basis

Win = [Y1,o(E) YL w(E) YR (E), g n(E)]" of electron ()
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and hole (%) modes at a given energy € from the Fermi seas of
the left and right leads.

At zero temperature the current at the left lead L and the
current fluctuations can be expressed as [41-43]

n=5 Y sena) [dE AL E1(E)

a,b=e,h j=L,R
“
2¢?
Fi=" D D sen@sen(b)
k,=L,R a,b,y,6=e,h
« / dE Atyas(i,a; E) sy (jobs E) fi (E)
x [1 = fis(E), ©)

where Aky;[,s(i,a; E) = 5,',](5,"[5[1'),50’5 — S;Iky*(E)Siala(E) with
sf . the components of the scattering matrix S, f;,(E) =
O[E — sgn(b)eV,] is the zero temperature Fermi-Dirac dis-
tribution, and sgn(a) is positive (negative) for a = e(h). In the
following subsections we study the transport properties of the
different topological phases.

A.v=0

A chain with N mod 4 = 0 realizes a trivial phase with a
unique ground state (quantum dimension 1), separated from
the excited stated by a finite gap A, as shown in Fig. 2. At
low voltage eV < A,, the system resembles a trivial insulator
and the scattering matrix is S(w) = l4x4.

B.v=1

A chain with N mod 4 =1 has two degenerate ground
states (quantum dimension 2) which are distinguished by
the parity of the odd subchain. The ground-state manifold
is separated by a finite gap Ay from the rest of the spectrum
(Fig. 2). We distinguish the two ground states by the odd chain
parity quantum number P,|gs,) = %|gs, ). For a chain with N
mod 4 = 1, tunneling to and from the two leads changes the
parity of the odd subchain and therefore may toggle between
the two ground states. When projecting onto the ground-state
manifold, and to the lowest order in the tunneling #; g, the
operators d; and dy can be expressed as

Pd\P = algs,)gs_| + Blgs_)(gs, | = afT + Bf, (6)

PdyP = algs,){gs_| + Bles_)es | =af +Bf. (D

where P =" __ |gs,)(gs,| is the projection operator on
the ground-state manifold. Since the system possesses an
inversion symmetry Z, Zo jI_l =0 N41—j, Which can be
written as Ide’l = (]_[,N:? djdi)dN+1_j in terms of the
fermions, the coefficients introduced in Eqs. (6) and (7) satisfy
o« =& and B = —pB. The scaling of matrix elements « and
B with system size is shown in Fig. 3. While « and B are
substantially different in magnitude for any system size leading
to interesting consequences in transport, we expect them to
decay exponentially with a common exponent as we elaborate
on in Sec. IV.
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FIG. 3. The scaling of « and 8 with increasing system sizes for
N mod 4 =1 up to N =29. The exponential for B oc e %%V ig
obtained by fitting (dashed line) the data of all system sizes. The
precise scaling of « is harder to predict from the available system
sizes, although it is most likely exponential in the large N limit. The
inset shows the logarithm of the ratio «/ 8 which likely approaches a
finite value for large N, although the existing finite size data do not
unambiguously confirm this scenario.

When projecting the Hamiltonian on the ground-state
manifold, we find

H = P(Hy + Hr)P = PHy P
= > (el T+ Bicl H+He, @

k i=L,R

where oy p = atr g, B = Ptr,and Br = —Ptg. Equation (8)
shows that in the weak tunneling limit, the contributions to the
current are dominated by single-particle processes. We can
therefore compute the scattering matrix as

Sw)=1-2niWi(w—H+inWWhH~'w,

where W is the matrix that describes the coupling of the
ground-state manifold of Eq. (1) to the leads.

The resulting scattering matrix generically allows for
all possible single-particle scattering channels which are
controlled by the coupling to the leads and the interaction-
dependent parameters o and 8. When the leads are coupled
symmetrically to the chain t;, = tg = ¢, the scattering matrix
takes a simple form:

ee eh ee
Ser St SLR 0
he hh hh
SpL SLL 0 s/%
S(w) = ;
s¢ 0 5¢ Seh
RL RR RR
hh he hh
0 sk SRk SR
with
iw
ee hh ee hh
S = S =S =S =
LL LL RR RR .0
Ma?2+ ) +iw
2 2
see — see — F(ﬁ — )
LR RL F(az + /32) + la) ’
he he eh __ _eh 2FO{/3

SpL = SRR = SLL = SRR = —F(a2 F A tio’

and I’ = 272,
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From Eq. (4) we obtain the current at the left lead

2¢2
IL:T Ve — Ve +

B v
(az + ’32)2 L R\
Similarly, the zero-temperature noise is obtained from Eq. (5)
as

2¢* 2ap(B> — o))

yLR(w =0)=- h (0[2 + 132)4

(VL + V).

Note that /; # 0 even when a voltage bias is applied only
at one of the two leads. This is because electrons can be
exchanged directly between the leads and the grounded bulk
superconductor.

C.v=2

For a chain with N mod 4 = 2, the two degenerate ground
states (quantum dimension 2) have opposite fermion parities
on both the even and odd subchains. We label the two ground
states as |gs, _) and |gs_, ) where the two indices label the
parity of the odd and even subchain, respectively, and we have
assumed that the two ground states have odd total parity P, P,.
Since Hy modifies the parity of only one of the two subchains,
it has vanishing matrix elements on the ground-state manifold.
Consequently, the low-voltage transport is dominated by
virtual transition into the excited states.

To find how these higher order processes affect the transport
properties, we perform a Schrieffer Wolff transformation to
derive the effective Hamiltonian taking into account virtual
transitions to excited states. The resulting effective model is
up to an additive constant given by

Heir = Z Zej(k)c‘];!kcj,k + % Z {(Jz +Ay)

j=L.R k kK’

) S v
X |:ch6er — %} -, - A )I:chch/ — %]}

+{T+ Z <J—CLkCLk’ + J+CTLkCRk/

k,k'

+Aych e + Achch,> + H.c. } )

where we have defined 7, = |gs, _)(gs, | —lgs_,){gs_,|
and 7, = |gs, _)(gs_, |, and the coefficients are given by

| 2

1Bul® — |&, 2 1Bal” = laal?
Jo= Y APy P
: {"” Eg—En ez E,—E,

n
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TABLE 1. Values of the coefficients J,, J_, J,, A,, Ay, A_
entering the effective Hamiltonian Eq. (9) for different N = 4m + 2.

=10 N =14 N =18
JZ/(ltRl2 + |tL|2) 1.076385 1.071858 1.067348
J/Qtrty) 0.420549 0.333439 0.27389
J_/Qt]tg) 0.06542 0.0677778 0.0657269
sz/(ltRl2 — |tL|2) 1.076385 1.071858 1.067348
AL /Qtptg) 0.150967 0.141257 0.128129
A_/Q2t]tR) 0.150967 0.141257 0.128129
and

|B~n|2 - |55n|2 2 |ﬁn|2 - |O(,,|2
A= {|tR|2—+|tL| —_
Xn: E, — E, E,—E,
BuBn

AL = 2tpt _,
o= 3

-2 ¥ 5
n

Here the sum is over excited states |n; ¢}, for which Hy|n, o) =
En|ns,s’), Po|”x,x’> = Sl”s,s/)’ and Pe|ns,s’) = S/|n.v,s’>7 Eg isthe
ground state and

o = (gs_y dilnis) = ((gs,_ld]In__))*,
B = (g5, _ldiIn__) = ((gs_|d|Ins1)*,
Gy = (gs_yldyln_—) = —((gs,_ld}In44 )",
Bu = (g5, _ldvInis) = —((gs_ ld}In__))",

where the second equality follows from charge conjugation
symmetry 7;. The symmetry of the system under spatial
inversion Z, which for the case of v = 2 exchanges the even
and odd parities (P, <> P,), imposes the constraints

n = 5n/§n,
ﬁn = _Sn&nv

where 8, = £ is an n-dependent sign. We evaluate «, and
B, numerically for different system sizes and determine the
corresponding values for the coefficients of the effective
Hamiltonian J,, J_, J+, A,, AL, A_, which are reported in
Table 1.

The model described by Eq. (9) is a variant of the
compactified two-channel Kondo model whose low-energy
physics has been analyzed by the study of RG flow [35,44,45].
This analysis shows that the low voltage and temperature
limit is governed by screening of the ground-state spin
degree-of-freedom by the lead electrons, and the physics is
that of a one-channel Kondo. At low temperature the system
is described by a Fermi liquid theory and is characterized
by a unitary scattering matrix which takes the standard form
S = —1l4x4 [46]. While this 7w phase shift does not affect
the conductance, it can in principle be detected in a phase
sensitive interference type of measurement. Importantly, the
form of the scattering matrix is a direct consequence of the
presence of two single-channel terminals, of the fact that a
tunneling process cannot induce first order transitions within
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the twofold degenerate ground state, and that these transition
are generically present as second order process, as captured

by (9).

D.v=3

A chain with N mod 4 = 3 is topological equivalent to
a chain with N mod 4 = —1, which is the inverse phase of
N mod 4 = 1 [34]. Here v and —v are inverse of each other
in the sense that when combined, the phase and its inverse
form a trivial phase [47]. The properties of two chains with
N mod4=—1and N mod 4 = 1 strongly resemble each
other. Both phases are characterized by a twofold ground-state
degeneracy (quantum dimension 2), and a fermionic zero mode
that toggles between them, changing the total parity of the
chain. In addition, a recent study of the energy level statistics
in a related model with random long-range interactions [6]
showed that the phase v =1 and its inverse v = —1 have
identical energy level statistics. Despite these similarities,
our model with local interactions presents distinct transport
properties for the two phases.

When N mod 4 = —1, the ground-state manifold is
spanned by the parity of the even subchain, while tunneling
events from the left and right leads change the parity of the
odd subchain. Therefore, tunneling of electrons to and from
the leads does not introduce transitions within the degenerate
subspace, in any order in perturbation theory. The transport
properties of the system with N mod 4 = —1 sites follow
that of a nondegenerate ground state and the scattering matrix
is given by S = lgx4.

To summarize the discussion above, it demonstrates that, at
low voltage bias eV « A,, the interacting Majorana chain of
length 2N is described by a unitary matrix. The form of the
scattering matrix together with the ground-state degeneracy
(or quantum dimension) allows us to fully resolve the fourfold
periodicity of the chain. We note that the form of the scattering
matrix for v=1 and v =0 depends exclusively on the
possibility of a resonant single fermion tunneling and on the
nondegeneracy of the ground state, respectively. As such, they
are expected to persist for a general interaction profile of finite
range and in the presence of generic local probes. The form
of the scattering matrix is also remarkably generic for v = 2,
since the time-reversal symmetry of the problem precludes
tunnel-induced first order transitions within the degenerate
ground state. Therefore, the transport properties measured in a
two terminal setup can generically distinguish the presence
or absence of a fermonic or spin-1/2-like zero modes,
independent of the particular form of the interaction profile.

IV. THERMODYNAMIC LIMIT

Regarding the chain as the boundary of a stack of topo-
logical 1D superconductors, the distinct transport properties
described above reflect the different nature of the zero
modes localized at the boundary of the stacked system.
In all of the three nontrivial classes the system hosts a
topologically protected zero mode. This zero mode gives rise
to a twofold degeneracy in the spectrum of the boundary.
As this degeneracy is topologically protected, it must persist
even when the boundary system is macroscopically large. The
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FIG. 4. An interacting Majorana chain, divided into groups of
four per site. An intrasite interaction term couples the four Majorana
modes leaving a twofold degeneracy per site corresponding to a spin-
1/2 chain. Intersite interaction terms between two neighboring spins
results in a unique spin-singlet ground state. The two ways in which
the spin system can be coupled pairwise are topologically distinct.

trivial phase corresponding to N mod 4 = 0, on the other
hand, has a unique nondegenerate ground state for any finite
N. This raises the question: which of these paradigms will
reflect the characteristic behavior of the boundary system in
the thermodynamic limit? A hint to the answer lies in the
observation that while the degeneracy in the three nontrivial
phases is protected by topology and cannot be lifted for any
interaction profile, the nondegenerate ground state in the N
mod 4 = 0 case is a result of a specific (albeit generic) choice
of the interaction Hamiltonian. (As a counterexample, a chain
Hamiltonian with N mod 4 = 0 and uniform all-to-all inter-
actions is characterized by a twofold degenerate ground state.)

To address this question, it is instructive to consider a
partition of the Majorana chain into sites consisting of four
Majorana modes, as illustrated in Fig. 4. In the absence
of interactions, the Majorana operators of each site span a
fourfold degenerate ground state. An intrasite interaction term
ViV Yxvi couples the four Majorana modes leaving a twofold
degeneracy per site. This, in fact, realizes a spin-1/2 chain.
It can be readily verified that generic intersite interaction
terms that couple two neighboring spins lift the fourfold
degeneracy of their respective local Hilbert spaces resulting
in a unique ground state of the two-spin system (Fig. 4).
The two ways in which the local spins can be dimerized in
pairs are topologically distinct, and the interface between
them hosts a local spin-1/2 zero mode. We conclude by
noting that the constant interaction profile chosen in our
model lies at the phase boundary between these two distinct
phases. It is therefore characterized by the presence of an
extended (gapless) mode along the 1D chain. The energy of
the extended mode scales inversely with the system size. In the
thermodynamic limit, the excitation energy of this extended
mode goes to zero and the ground state becomes doubly
degenerate. This is indication of the emergence of a weak
topological phase, namely a phase with an emergent zero
mode protected by translational invariance. This is analogous
to the emergent of a weak topological phase in a noninteracting
model of stacked topological insulators [48]. This picture is
supported by the scaling of the first excited state energy with
system size (Fig. 2).

While the boundary zero mode remains stable for a generic
interaction which does not break time-reversal and transla-
tional symmetry, its transport properties become progressively
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i

FIG. 5. Thelocal density profile (n;) =

1

(Wi |d,-Td,- |W2)) shown in green (red), respectively, for different system sizes ranging from N = 26

to N =29. For N = 26, 27, and 29, |W(;)) is the exactly twofold degenerate ground state. For N = 28, we use |¥,()) = (1) + |\I/2))/ﬁ,
where |U()) are the lowest two eigenstates of the Hamiltonian (1) separated by an energy splitting for finite-size chains. For each N, |¥))

form shifted charge density waves.

undetectable when the system is coupled to single channel
leads. This is because the tunneling matrix element between
the two degenerate ground states vanishes exponentially in
this limit (Fig. 3). The reason for this exponential suppres-
sion can be seen in Fig. 5, which shows that the density
profile of the two ground states form shifted charge density
waves. Such a density profile indicates that the two ground
states are expected to have exponentially vanishing matrix
elements upon flipping the occupation locally at the system’s
end.

V. CONCLUSIONS

We have studied the transport properties of an interacting
Majorana chain of length 2N with local interactions and
coupled to external metallic leads. The model describes for
example the low-energy excitations on the edge of stacked
topological superconducting chains with a modified time-
reversal symmetry. This stacked system falls into four topo-
logical classes depending on N mod 4. We show that at low
voltage bias, the transport properties of the 1D Majorana chain
on the edge are characterized by a unitary scattering matrix,
which, for finite but large N, partially reflects this fourfold
periodicity. As a consequence the chain exhibits strikingly
different transport properties for different N mod 4. The
four periodicity of the ground states can be fully identified
by combining the transport properties with the quantum
dimension of the system.

While the scattering properties along the Majorana chain
are expected to depend on the detailed coupling to the leads
and the form of interactions, the nature of the zero mode

in the three nontrivial phases, is determined by topology.
The results for a the gapped phase (v = 0), the fermionic
zero-energy excitation (v = 1), and a spin-1/2-like excitation
(v = 2) will remain the same for generic local probes, see
discussion in Sec. III. Conversely, the results of the v =3
phase is nongeneric and will depend on the detailed coupling
to the even subchain or on breaking the subchain parity
symmetries, and should be a subject of a separate detailed
study.

We further provide numerical evidence that in the ther-
modynamic limit the chain has a twofold degenerate ground
state. Regarding the Majorana chain as an effective model that
emerges at the end of a system of stacked superconducting
chains, the emergence of a robust mode indicates that the bulk
two-dimensional system is in a weak interacting topological
phase. Our finite-size numerics suggest that the two degenerate
ground states form shifted charge density waves, indicating
that the coupling to the leads vanishes exponentially with
increasing system size. We note that while the transport
characteristics along the Majorana chain of finite size are
expected to depend on the detailed coupling to the leads and
the form of interactions, the properties of the system in the
thermodynamic limit do not, and the weak topological phase
is robust for a generic interaction profile which does not break
translational invariance.
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|
APPENDIX: DERIVATION OF THE EFFECTIVE SD MODEL FOR v =2

We perform a Schrieffer Wolff transformation on the Hamiltonian H = Hy + Hr [Eqgs. (1) and (3)] taking into account virtual
transitions to excited states. For this purpose we define the following projection operators on the ground-state manifold and on
the excited states, respectively:

Py
Pe

lgs, ) {gs, |+ lgs_ ) {gs I

1 — P - Z |ns,s’><ns,s’|s

n,s,s’

where the sum is over excited states |1, ), for which Hy|n, ¢) = Enlng.y), Polnsy) = s|ns.g), and P,|ng ) = s'|ng ¢). Noting
that tunneling events from the right lead change the parity on the even subchain while tunneling events on the left lead change
the parity of the odd subchain, the matrix elements of the tunneling Hamiltonian between the ground-state manifold and excited
states are

ge = PoHP, =P, Hr P, = ZZ{|gS+ ”++|(l‘RCR WP+ ther @) +1gs, ><n__|(thZ,k/3n — tjcp ko)

+lgs_ treiBy) + |g57+)(n——|(tRCR,k&n + ther kB,

where we have used the relations which follow from charge conjugation symmetry 7} :
_cldiingy) = ((gs,_ld]In_))",

B = (gs,_ldiln__) = ({gs_ |d]|n. )",

+><n++|(tLCL,k05n -

oy = (gS

—((gs4_ld}Iny4 ),
—((gs_yld}In__))*.

&, = (gs_,ldyln-_) =
Bn = (gs+_|dN|n++) =

The resulting effective model is given by Hefr = Hgo(E, — Hee)’lHeg:
zlﬁn | al® 2 1Bul? =l o 1@, lota|?
= |gs N tr t|"———————— ' t 17, Ske.kr
Her = |gs, ) g+|;;znz{| | CkCRk‘H | E, —E, CkCLk 173 E,— E+| lE—E Kok
2|an |,3n| sl l® = 1Bal? 2 1Bl 2 1Bul?
Tl gs_+|ZZ{|t e T g, o\l g T g T )
kk' n
2,5,105* ; 28, B t 2aFat 26, B, +
+ |gS+7><gS,+| ; Zn: (lRlZEgTCR «CL, iRty ————— E _E, cr, kCR k’+thL E 1 E?n CR.KCL k' +t;§lL E 1 _E, €L kCRK
+ H.c.
2|ﬂn | n|2 2|,3n| |an|2 Skk 2|,3n| |&n|2 2|.Bn|2 |an|2
—Q;Xn:{|t| CRkCRk'+|l|ﬁCLkCLk—— |f|ﬁ 153 |ﬁ
Eﬂﬁ T 2(1*0[* 2&:}3 }

{‘E+ ;; (l‘Rl‘L E CR (CLk IR Eg - cr, kCR k,—l—thL—E z CRKCL.K +thL E "y Cp kCRK +H.c.t,
where the last equation is up to an additive constant and we have defined . = |gs, _){(gs, | —Igs_ ){gs_.| and 7, =
|gs,_){gs_,|. Introducing the coefficients:

|Bul® — || 1Bul® — la|®
Jo= > P g P
Eg — E, E, - E,
n

@y B

Jp =25t y ——o,
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| 2

|Bn|2_|o~‘n|2 2|,3n _|an|2
A =§ PP P
z {| Rl 174 E,—E,

n

BB
AJr = ZZRIL —_

we arrive at the expression given in Eq. (9) of the main text.

E, - E,

*
A_ =25t —r 1
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