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Abstract

We show that n random points chosen independently and uniformly from a parallel�
ogram are in convex position with probability��

�n��

n��

�
n�

�
�
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� The result

A 	nite set of points in the plane is called convex if its points are vertices of a convex
polygon
 In this paper we show the following result


Theorem � The set A of n random points chosen independently and uniformly

from a parallelogram S is convex with probability��
�n��
n��

�
n�

��

�

A large part of studies in stochastic geometry deals with the convex hull C of
a set of n points placed independently and uniformly in a 	xed convex body K in
R
d
 Typical questions are� How many vertices does C have What is the volume

of C What is the surface area of C See �WW� for a survey
 In this paper we
settle one very special case � the probability that C has n vertices in the case K
is a parallelogram
 It is interesting that our approach is purely combinatorial� with
no use of integration
 We think that our method based on an approximation of
the uniform distribution in a square by a large grid might have other applications

However� it is already not clear how to apply our method for K a triangle or in
three dimensions


In this section we prove Theorem �� and in the next section we mention some
applications of Theorem �


Proof of Theorem �� Let n � � be a 	xed integer
 Since a proper a�ne trans�
formation transfers the uniform distribution on S onto the uniform distribution on
a square� we may and shall assume that S is a square
 We shall approximate the
square S by a grid whose size tends to in	nity


Let m be a positive integer �denoting the size of the grid�
 Partition the �axis�
parallel� square S by m � � horizontal and by m� � vertical lines into m� squares
S�� � � � � Sm� of equal size
 The centers of the squares S�� � � � � Sm� form a square grid
m � m� Every point of A lies in each of the squares S�� � � � � Sm� with the same
probability ��m�
 Move every point of A to the center of the square Si in which it
lies� and denote the obtained multiset by A�m�
 It is not di�cult to see that

Prob�A is convex� � lim
m��

Prob�A�m� is convex��

Thus�
Prob�A is convex� � lim

m��
Prob�Rm is convex��

where� for every m � �� Rm is a multiset of n points chosen randomly and indepen�
dently from the square grid Gm � f�i� j� � i� j � �� �� � � � �mg �each point of Gm is
always taken with the same probability ��m��
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Let M�Gm� be the set of all multisets of size n with elements from Gm� and let
C�Gm� be the set of all convex n�element subsets of Gm
 It is easy to see that

Prob�A is convex� � lim
m��

Prob�Rm is convex� � lim
m��

jC�Gm�j

jM�Gm�j
� lim

m��

jC�Gm�j�
m�

n

� �

In the sequel we shall estimate the size of C�Gm�

Every convex set R � C�Gm� is uniquely de	ned by the smallest axis�parallel

rectangle Q�R� containing R and by the set V �R� of the n integer vectors forming
the boundary of the convex hull of R oriented in counterclockwise order


Let X�R� and Y �R� be the multisets of the 	rst and of the second coordinates
of vectors in V �R�� respectively
 Formally�

X�R� �
�

�x�y��V �R�

fxg� Y �R� �
�

�x�y��V �R�

fyg�

Let C��Gm� be the set of all convex sets R � C�Gm� such that � �� X�R� � Y �R�
and that the directions of the n� vectors �x� y� formed by all the n� pairs x �
X�R�� y � Y �R� are distinct
 Thus� in particular� the multisets X�R� and Y �R� are
sets for any R � C��Gm�
 It is not di�cult to see that

lim
m��

jC ��Gm�j

jC�Gm�j
� ��

Therefore�

Prob�A is convex� � lim
m��

jC�Gm�j�
m�

n

� � lim
m��

jC��Gm�j�
m�

n

� �

In the estimation of the size of C��Gm� we use an auxiliary set S de	ned by

S � f�X�R�� Y �R�� Q�R�� � R � C��Gm�g�

The following construction shows that� for every �X�Y�Q� � S� there are exactly n�
sets R � C��Gm� with �X�R�� Y �R�� Q�R�� � �X�Y�Q��

Take any of the n� one�to�one correspondences f � X � Y between X and Y �
and de	ne a set V of n vectors by V � f�x� f�x�� � x � Xg� Due to the de	nitions
of C��Gm� and S� vectors in V have distinct directions and� consequently� form the
�counterclockwise oriented� boundary of the convex hull of a unique set R � C��Gm�
	tting into the rectangle Q


Thus�
jC ��Gm�j � n� � jSj

and

Prob�A is convex� � lim
m��

jC ��Gm�j�
m�

n

� � lim
m��

n� � jSj�
m�

n

� �

It remains to estimate the size of the set S which is done in the sequel technical
part of the proof




�

For �X�Y�Q� � S� partition each of the two sets X and Y into two subsets
containing elements with the same sign�

X� � fx � X � x � �g� X� � fx � X � x � �g�

Y � � fy � Y � y � �g� Y � � fy � Y � y � �g�

Suppose that each of the sets X��X�� Y �� Y � is ordered in an arbitrary way

Denote s � jX�j and t � jY �j
 Thus�

X� � fx�� � � � � xsg� X� � fxs��� � � � � xng�

Y � � fy�� � � � � ytg� Y � � fyt��� � � � � yng�

For every �X�Y�Q� � S� where Q � f�x� y� � a� 	 x 	 a�� b� 	 y 	 b�g� the
orders on the sets X��X�� Y �� Y � uniquely determine four sets D�� E��D�� E� of
integers from the set f�� �� � � � �mg in the following way�

D� � fa� �
kX
i��

xi � k � �� �� � � � � sg� D� � fa� �
kX

i�s��

xi � k � s� s� �� � � � � ng�

E� � fb� �
kX
i��

yi � k � �� �� � � � � tg� E� � fb� �
kX

i�t��

xi � k � t� t� �� � � � � ng�

Note that the sets D�� E��D�� E� satisfy the following conditions�

jD�j� jD�j � n� �� a� � minD� � minD�� a� � maxD� � maxD�� ���

jE�j� jE�j � n� �� b� � minE� � minE�� b� � maxE� � maxE�� ���

For any �X�Y�Q� � S� we obtain jX�j�jX�j�jY �j�jY �j� di�erent ��tuples of sets
D�� E�� D�� E� corresponding to di�erent orders on the sets X�� X�� Y �� Y �

Denote the set of all these ��tuples �D�� E��D�� E�� by F�X�Y�Q�
 Thus�

jF�X�Y�Q�j � jX�j�jX�j�jY �j�jY �j�

� �jD�j � ����jD�j � ����jE�j � ����jE�j � ����

where �D�� E��D�� E�� is an arbitrary ��tuple in F�X�Y�Q�
 For � 	 i 	 n � �
and � 	 j 	 n � �� we say that a ��tuple �D�� E��D�� E�� of sets of integers has
property Pi�j if

Pi�j� jD�j � i � �� jE�j � j � �� and the sets D�� E��D�� E� satisfy ��� and ���
for some � 	 a� � a� 	 m and � 	 b� � b� 	 m


There are
�
n��
i

��
m
n

�
�
�
n��
j

��
m
n

�
��tuples �D�� E��D�� E�� with Pi�j and jD� 
D�j �

jE� 
 E�j � �
 It follows that there are �� � o���� �
�
n��
i

��
m
n

�
�
�
n��
j

��
m
n

�
��tuples

�D�� E��D�� E�� with Pi�j
 �Throughout the proof� o��� denotes functions of m
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which tend to � as m tends to in	nity
� Most of them �i
e
� a �� � o�����fraction of
them� lie in the disjoint union �

�X�Y�Q��S

F�X�Y�Q��

Thus�

jSj �
X

�X�Y�Q��S

� �
X

�X�Y�Q��S

jF�X�Y�Q�j

jX�j�jX�j�jY �j�jY �j�
�

�
n��X
i��

n��X
j��

��� o���� � �� � o����
�
n��
i

��
m
n

��
n��
j

��
m
n

�
�i� ����n� i� ����j � ����n� j � ���

�

� �� � o����

�
m

n

��

�

n��X
i��

n��X
j��

�
n

n�i��

�
�
�

n
n�j��

�
�n���

�
n� �

i

��
n� �

j

�
�

� ���o����

�
m

n

�� �

�n���

�
n��X
i��

�
n

n� i� �

��
n� �

i

���n��X
j��

�
n

n � j � �

��
n� �

j

��
�

� �� � o����

�
m

n

��
�

�n���

�
�n � �

n� �

��

�

Hence�

Prob�A is convex� � lim
m��

n� � jSj�
m�

n

� � lim
m��

�� � o����
�
m
n

�� �
n�

�
�n��
n��

���
m�

n

� �

�

��
�n��
n��

�
n�

��

�

� Applications and related results

In this section we sketch some applications of our result


�� Replacing the parallelogram by a convex body� It is known that� for every
bounded convex bodyK in the plane� there are two parallelograms� one containingK
and one contained in K� whose areas di�er from the area of K at most by a constant
factor �e
g
� see �Ba� for analogous results�
 Using this result and Theorem �� it is
not di�cult to show that there are two positive constants c� and c� such that the
set of n points chosen independently and uniformly from an arbitrary convex body
is convex with probability at least

�
c�
n

�n
and at most

�
c�
n

�n





�

�� The expected area of a random triangle� It is not di�cult to show that

Prob�A is convex� � � � E�Area of T� � ��

where A is a set of four random points selected independently and uniformly from
a convex body S of area �� and T is a triangle with random vertices selected also
independently and uniformly from S
 If S is a parallelogram� Theorem � yields that
the expected area of T is

�� ������

�
�

��

���
�

which was also shown in �He� by a di�erent method


�� Convex subsets of a random set� The author originally considered Theo�
rem � in connection with the following result


Theorem � Let A be a set of n random points chosen independently and uniformly

from a parallelogram� Let c�A� be the largest convex subset of A� Set h � ����e �

����� Then c�A� � �n��� with probability smaller than
�
h
�

���n���
� for any � � h�

Proof� Let � � h� For simplicity� assume that �n��� is an integer
 The set A
contains

�
n

�n���

�
subsets of size �n���
 According to Theorem �� each of them is

convex with probability ��
��n�����
�n�����

�
��n�����

��

�

It follows that the expected number of convex independent subsets of A of size
�n��� is at most

�
n

�n���

�
�

��
��n�����
�n�����

�
��n�����

��

�
n�n

���

�
�n���

e

	�n��� �


B� ��n

���

�
�n���

e

	�n���
�
CA

�

�

�

�
��e�

��

��n���

�

�
h

�

���n���

�

Consequently� A contains a convex independent subset of size � �n��� with proba�

bility smaller than
�
h
�

���n���



One application of Theorem � on so�called dense sets may be found in the
author�s PhD
 thesis �Va�


By a more careful handling with the result of Theorem �� one can prove that�
for any � � � and any su�ciently large n � n����

�h�� � ��n��� 	 c�A� 	 hn���
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holds with a high probability


�� Construction of random convex sets� Emo Welzl pointed out that the above
proof of Theorem � yields a fast way how to construct a random convex set of
size n in a square
 Let Mn be the set of all n�element subsets of a square S� and
let 	 be the probabilistic measure on Mn corresponding to a choice of n points
selected independently and uniformly from the square S
 Let Cn be the set of

all convex n�element subsets of S
 Theorem � gives 	�Cn� �
��

�n��
n��

�
�n�
��
� The

measure 	� � 	��	�Cn��jCn is a probabilistic measure on Cn
 With respect to
	�� a random convex set A � Cn can be constructed in a straightforward way by
repeated choosings of an n�point random subset A of S with respect to 	� until the
set A is convex
 However� this procedure has the expected running time at least

��R �
�
n��
�
�n��
n��

���
� � ��R � �n��e��n���� where R is the time required for 	nding a

random real number uniformly distributed in the interval ��� ��
 The above proof of
Theorem � yields a procedure which constructs a random convex set with respect to
	� essentially faster� in time O�n log n�n �R�P �n��� where R is as above and P �n�
is the time required for constructing a random permutation of the set f�� �� � � � � ng

Of course� the argument also applies for any parallelogram


�� The limit shape of a random convex set� Scale and shift the square grid
n�n so that it 	ts into the square S � f�x� y� � �� 	 x� y 	 �g� and consider the set
K�n� of all its convex subsets
 B�ar�any �B�a� proved that for every � � � there exists
n� such that for every n � n� the following holds� if we randomly choose an element
A of K�n�� each with the same probability� then the Hausdor� distance between the
boundary of the convex hull of A and the curve f�x� y� �

p
�� jxj�

p
�� jyj � �g

is smaller than � with a high probability
 �Hausdor� distance between two sets is
the maximum distance of a point in any of the two sets to the other set
�

It is interesting that random convex sets have the same limit shape
 Consider
the square S � f�x� y� � �� 	 x� y 	 �g again� and de	ne Cn and 	� as in the above
paragraph �Construction of random convex sets	� With a help of the above proof of
Theorem �� it can be shown that for every � � � there exists n� such that for every
n � n� the following holds� if we randomly choose an element A of Cn with respect
to the measure 	�� then the Hausdor� distance between the boundary of the convex
hull of A and the curve f�x� y� �

p
�� jxj�

p
� � jyj � �g is smaller than � with a

high probability

Let us note that the limit shape curve of the boundary of the convex hull of n

random points chosen independently and uniformly inside any planar convex body
K is �obviously� the perimeter of K
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