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Two defect particles that couple to a harmonic chain, acting as common reservoir, can become entangled even
when the two defects do not directly interact and the harmonic chain is effectively a thermal reservoir for each
individual defect. This dynamics is encountered for sufficiently low temperatures of the chain and depends on the
initial state of the two oscillators. In particular, when each defect is prepared in a squeezed state, entanglement
can be found at time scales at which the steady state of a single defect is reached. We provide a microscopic
description of the coupled quantum dynamics of chain and defects. By means of numerical simulations, we
explore the parameter regimes for which entanglement is found under the specific assumption that both particles
couple to the same ion of the chain. This model provides the microscopic setting where bath-induced entanglement
can be observed.
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I. INTRODUCTION

It is commonly understood that the coupling of quantum
systems to external environments destroys quantum effects,
such as quantum superpositions and entanglement. The mi-
croscopic picture is that this coupling generates correlations
between the system and the environmental degrees of freedom
[1]. This results in an increase of the system’s entropy, while
the system state usually reaches a stationary state that is often
well approximated by a thermal state [2,3]. Such dynamics is
well exemplified by the quantum Brownian motion, which can
be microscopically modeled by the coupling of an oscillator
embedded in an ion crystal [4–6]. In Ref. [4], Rubin derived
the conditions under which a defect oscillator thermalizes
with the rest of the chain, which has been initially prepared
in a thermal state at temperature T . This model provides an
interesting realization of an Ohmic reservoir that contains in a
natural way the relevant frequency scales. The physical system
is closed and composed by one defect and the chain. From this
perspective it is important to mention most recent studies that
analyze thermalization in closed systems [7–9], as well as
recent proposals for simulating Ohmic reservoirs with chains
of oscillators [10].

Scaling up these dynamics by increasing the number of
defects embedded in the crystal can lead to some surprises.
Let us first assume that the parameters are chosen such
that a single defect thermalizes with the rest of the chain.
Contrary to the naive expectation that the two defects will
reach a thermal state independent of their initial state, the
two defects can be entangled by the reservoir at sufficiently
low temperatures, even if they have been initially prepared in
a separable state. This result can be ascribed to symmetries
of the total Hamiltonian that effectively decouple collective
variables of the defect oscillators from the rest of the chain,
leading to so-called decoherence free subspaces [11]. This
mechanism of entanglement generation between two objects
that are not coupled directly, but indirectly via a common larger
physical system, has been discussed in various settings (see,
for instance, [12–25]). An important characteristic of most of

these theoretical studies is the assumption that the two objects
couple to an idealized bath with artificially chosen spectral
density. By contrast, in Ref. [26] we considered the model of
a one-dimensional harmonic crystal, whose spectral density
was determined from ab initio calculations, and we showed
that entanglement between distant defects can be generated
by the excitations of the crystal. However, a harmonic crystal
does not always act as a perfect bosonic heat bath, since it
can happen that the defect never relaxes to a steady state, even
in the thermodynamic limit [4]. In the following, we perform
a detailed investigation of the conditions under which (i) a
generic harmonic chain plays the role of a thermalizing heat
bath and (ii) two harmonic defects that couple to this chain
are found to be entangled in the steady state. To this end,
we numerically integrate the exact Heisenberg equations of
motion of the total system, without making any weak-coupling
or Markovian approximations. This allows us to explore the
full parameter regime.

In this work we extend and complement parts of the
findings reported in Ref. [26] and systematically analyze the
entanglement generation based on the microscopic model
shown in Fig. 1, where the two defects couple at the same
site of the ion chain. We examine the correlations between
the defect oscillators for time scales that are smaller than
the recurrence time (due to finite size effects), but for which
a (quasi) stationary state is reached. Our objective is to
connect our model predictions with previous studies on similar
systems that were based on a phenomenological description
of the reservoir [12,16,21–24]. For this purpose we tune the
parameters to a regime in which the chain effectively behaves
like a (quasi) Ohmic reservoir. The numerical study allows us
to determine both the stationary state, if it exists, as well as the
out-of-equilibrium dynamics for a vast range of parameters,
for which a master equation description of the defect dynamics
may not be convenient. The simulations are supported by
analytical investigations that yield a general criterion for the
existence of steady-state entanglement.

This paper is organized as follows: The microscopic model
at the basis of our analysis is introduced in Sec. II. Here,
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FIG. 1. (Color online) Sketch of the microscopic model used for
entanglement generation between the two defect oscillators 1 and 2
(blue and red, respectively). The defects are confined by harmonic
potentials with trap frequency � and couple with the strength γ to a
harmonic chain of N particles. The particles of the chain interact via
nearest-neighbor coupling with the strength κ . The potentials with
trap frequency ωB pin the edge oscillators of the harmonic chain.

the basic idea leading to entanglement generation mediated
by the chain is sketched. Section III describes the theoretical
formalism. The dynamics of the defects is studied in Sec. IV
by means of a generalized quantum Langevin equation. The
spectral density of the chain is discussed and the parameter
regimes for which the harmonic chain acts as an Ohmic
reservoir are identified. In Sec. V a detailed analysis of the
entanglement behavior for different initial conditions and
coupling parameters is given. The conclusions are drawn in
Sec. VI, and the Appendices A–C provide further aspects, as
well as details of the calculations related to the Secs. III–V.

II. ENTANGLEMENT MEDIATED BY THE CHAIN

In this section we first introduce the microscopic model
that provides the basis of our study on entanglement generation
between two oscillators and then present the main idea why the
two defect oscillators can become entangled via the interaction
with the ion chain.

The physical system is illustrated in Fig. 1. It is composed of
a chain of N + 2 oscillators that couple with nearest-neighbor
interaction. Among these, N oscillators have mass m and
form an ordered linear chain with interparticle distance a and
interparticle coupling strength κ . The oscillators at both ends
of the chain are pinned by harmonic traps with frequency ωB .
The two additional defects have mass M and are confined by
a harmonic potential with trap frequency �. They couple with
the same strength γ to the oscillator at one edge of the chain.
The chain has been prepared in a thermal state at temperature
T . Our objective is to determine under which conditions the
defect oscillators are entangled in the steady state.

A. Hamiltonian

The Hamiltonian determining the dynamics of the chain
and the defect oscillators reads

H = HS + HB + HI (1)

and comprises the free Hamiltonian of the two defect oscilla-
tors,

HS =
2∑

μ=1

[
P 2

μ

2M
+ 1

2
M�2X2

μ

]
, (2)

the free Hamiltonian of the reservoir,

HB =
N∑

i=1

[
p2

i

2m
+ m

2
ω2

i x2
i

]
+ κ

2

N−1∑
i=1

(xi − xi+1)2, (3)

and the interaction Hamiltonian,

HI = γ

2
[(X1 − x1)2 + (X2 − x1)2], (4)

which is assumed to be switched on at t = 0.
Here, Xμ denotes the position of the defect (μ = 1,2), and

xi the displacement of the chain particle from the equilibrium
position x

(0)
i = ia (i ∈ {1, . . . N}). With the corresponding

canonically conjugate momenta Pμ and pi , the nonvanishing
commutation relations read [Xμ,Pμ] = ih̄ and [xi,pi] = ih̄.
Moreover, the shorthand notation ωi = ωB(δi,1 + δi,N ) incor-
porates the trap frequencies of the edge oscillators in the chain.

B. Basic idea of entanglement generation

In presence of only one defect oscillator, the model in Fig. 1
provides a generalization of Rubin’s model [4]. Rubin showed
in particular that the chain can act as a thermal bath for a
single defect, provided some conditions are fulfilled, which
involve the ratio M/m between the defect and the ions masses,
the strength of the coupling, and the time scales in which the
dynamics are analyzed. The scope of Sec. IV is to determine
under which specific conditions this dynamics is encountered
for a finite chain. In this section we focus on the general idea
and show that the ion chain can create entanglement between
two defects, which are initially prepared in an uncorrelated
quantum state.

In general, bath-induced entanglement is endorsed by the
symmetries of the Hamiltonian or, in the case of open quantum
systems, by the symmetries of the master equation. We first
observe that the total Hamiltonian (1) is invariant under
exchange of the coordinates of the two defect oscillators. It
is therefore convenient to introduce center-of-mass (c.m.) and
relative coordinates for the defect particles,

X± = (X1 ± X2)/
√

2,

and the corresponding canonically conjugate momenta, P± =
(P1 ± P2)/

√
2, where the subscript + (−) denotes the c.m.

(relative) motion. In this representation, the Hamiltonian (1)
can be written as the sum H = H− + H+, where

H− = P 2
−

2M
+ 1

2
M�2

γ X2
− (5)

governs the dynamics of the relative motion, and

H+ = P 2
+

2M
+ 1

2
M�2

γ X2
+ + H ′

B − (
√

2γ ) X+ x1 (6)

describes the coupling of the c.m. motion to the chain. Here,
we denoted by

�γ =
√

�2 + γ /M (7)

the shifted trap frequency and by

H ′
B = HB + γ x2

1

the chain Hamiltonian that includes the effect of the coupling
constant γ on the eigenspectrum. In this form it is evident that
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H− is a constant of motion: The relative motion is decoupled
from the chain. The c.m., on the other hand, behaves as an
effective defect particle that couples to one edge of the chain
with the coupling strength

√
2γ .

Under the conditions for which the chain acts as thermal
bath for a single defect, it will induce thermalization of the
c.m. defect particle and wash out possible initial correlations
between c.m. and relative motion of the defects. While the c.m.
approaches a thermal state at temperature T after a transient
time, the relative motion evolves freely and preserves some
features of the initial states of the defects.

The above-described dynamics is the key point in the
creation of steady-state entanglement between the defects.
For instance, if the relative motion is in a squeezed state and
the temperature of the c.m. is sufficiently low, the product of
the two orthogonal quadratures �X−�P+ (here taken in the
reference frame rotating at the oscillator frequency �γ ) can
fall below the standard quantum limit giving rise to two-mode
squeezing of the defects [27] and thus entanglement. The
squeezing of the relative coordinate can be easily realized by
preparing each individual defect in a squeezed state at the time
t = 0. Figure 2 displays the contour plot of the logarithmic
negativity [28,29] that quantifies the entanglement between
the defect oscillators. The logarithmic negativity is shown as a
function of the chain temperature T and of the initial squeezing
parameter r of each defect oscillator [22,23]. The details of
the calculations are provided in Sec. V.

We note that this kind of dynamics has been predicted
in Refs. [22,23], where contour plots like the one in Fig. 2
have been introduced for the first time. In contrast to our
work, the model used in Refs. [22,23] takes advantage of the
Hu-Paz-Zhang master equation [30] and is based on a phe-
nomenological treatment of the bath. In the present work, the
bath is modeled by a chain of harmonic oscillators. Although
we investigate a parameter regime in which our microscopic

FIG. 2. Contour plots of the logarithmic negativity EN (r̄ ,T̄ ) as
a function of the initial squeezing parameter r̄ of the oscillators
and of the temperature T̄ = T/TS , with TS = h̄�γ /kB defining the
temperature scale. The contour plot is evaluated for a chain of
1000 ions at times at which the c.m. motion has reached a stationary
state. (b) Behavior at low temperatures. The black regions that are
denoted by “NSD” indicate the parameter regime in which the defect
oscillators are entangled in their steady state. The parameters are
m = 0.5M , γ = 0.1κ , and κ = M�2

γ . The squeezing parameters of
both oscillators are taken to be equal. Further details are provided in
Sec. V.

system reproduces the results of the Hu-Paz-Zhang master
equation, we could likewise consider entanglement generation
for a parameter regime in which the c.m. motion does not
reach a thermal state. Such a regime, however, lies beyond
the description based on the Hu-Paz-Zhang master equation
[30,31].

We also would like to mention that entanglement mediated
by a chain of oscillators has been investigated in a series
of works, such as [15,32–35]. In these works the chain is
a homogeneous one-dimensional crystal and thus possesses
discrete translational invariance. The regime is such that a
unique stationary state exists in the thermodynamic limit
which corresponds to a thermal state [6]. In Refs. [32–34] the
authors characterize entanglement between two components
of the chain in the steady state. The entanglement found in
Refs. [15,35] between the ions at the chain edges is
instead a dynamical effect, which obviously vanishes in the
thermodynamic limit.

III. THEORETICAL FORMALISM

In this section we develop the mathematical formalism,
which we employ in the following sections for the character-
ization of the chain and for the analysis of the steady-state
entanglement between the defects.

For later convenience, we introduce the vector op-
erators for the reservoir particles xT = (x1, . . . ,xN ) and
pT = (p1, . . . ,pN ) and rewrite the reservoir Hamiltonian (3)
in the form

HB = p2

2m
+ 1

2
xT V x, (8)

with the potential matrix V ∈ RN×N given by

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

mω2
B + κ −κ

− κ 2κ −κ

. . .
. . .

. . .

−κ 2κ −κ

−κ mω2
B + κ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (9)

The coupling between the oscillators and the reservoir induces
a shift in the trap frequencies of the defect and chain particles
that depends on the coupling strength γ . This effect can be
highlighted by rewriting the full Hamiltonian (1) in the form

H =
2∑

μ=1

[
P 2

μ

2M
+ M

2
�2

γ X2
μ

]
+ p2

2m
+ 1

2
xT V (γ ) x

− γ x1 (X1 + X2) , (10)

where

V (γ ) = V + 2γ e1 ⊗ eT
1 (11)

denotes the potential matrix including the shift due to the
interaction. The quantity eT

1 = (1,0, . . . ,0) ∈ RN is the first
unit vector and ⊗ represents the dyadic product.

An important point consists of the boundary conditions. For
the model under consideration, we assume that the oscillators
at both ends of the chain are confined by harmonic potentials
with frequency ωB . Although the potential of the ion at the
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other chain edge, j = N , has no influence on the dynamics
of the defects for the time scales which are relevant to our
analysis, we include it for symmetry reasons. As long as not
specified elsewhere, we assume that ωB = √

κ/m throughout
this paper.

A. Initial states

The initial state of the defect oscillators and the chain is
given by the density matrix

χ (0) = ρ1 ⊗ ρ2 ⊗ ρB(T ),

where ρμ denotes the state of the defect oscillator (μ = 1,2)
and

ρB(T ) = exp(−βHB)/Z (12)

describes the thermal state of the chain at temperature T .
Here, Z = Tr{exp(−βHB)} is the partition function and
β = (kBT )−1 the inverse temperature with kB as Boltzmann
constant. Due to this choice of χ (0), there exist neither
correlations between the defect oscillators nor between the
defects and chain at t = 0.

More specifically, the defect oscillators are assumed to
be prepared in pure states ρμ = |sμ〉〈sμ|. Here, |sμ〉 denotes
a squeezed state whose squeezing parameter sμ = rμeiφμ is
given by the absolute value rμ � 0 and the angle φμ ∈ (−π,π ].
The corresponding first and second moments read 〈Xμ〉 =
〈Pμ〉 = 0 and

[σμ(0)]11 = 〈
X2

μ

〉 − 〈Xμ〉2

= h̄

2M�

(
e−2rμ cos2 φμ

2
+ e2rμ sin2 φμ

2

)
, (13)

[σμ(0)]22 = 〈
P 2

μ

〉 − 〈Pμ〉2

= h̄M�

2

(
e−2rμ sin2 φμ

2
+ e2rμ cos2 φμ

2

)
, (14)

[σμ(0)]12 = 1

2
〈XμPμ + PμXμ〉 − 〈Xμ〉〈Pμ〉

= −h̄

2
sinh(2rμ) sin φμ, (15)

with 〈·〉 = Tr{·χ (0)}. The moments in Eqs. (13)–(15) define
the initial covariance matrices σμ(0) of the defect oscillators
at the time t = 0.

For the following analysis it is also convenient to introduce
the initial covariance matrix of the harmonic chain. We express
it in terms of the individual block matrix elements

σxx(0) = 〈x ⊗ xT 〉 − 〈x〉 ⊗ 〈x〉T ,

σpp(0) = 〈p ⊗ pT 〉 − 〈p〉 ⊗ 〈p〉T ,

σxp(0) = 1
2 〈x ⊗ pT + p ⊗ xT 〉 − 〈x〉 ⊗ 〈p〉T ,

whose explicit forms depend on the potential matrix (9) and
read [6]

σxx(0) = h̄

2
(mV )−

1
2 coth

[
βh̄

2

(
V

m

)1
2
]
,

(16)

σpp(0) = h̄

2
(mV )

1
2 coth

[
βh̄

2

(
V

m

)1
2
]
,

together with σxp(0) = 0 and 〈x〉 = 〈p〉 = 0.

B. Dimensionless variables

With the total Hamiltonian and the initial covariance ma-
trices at hand, we now introduce a dimensionless description
of our microscopic model. This reformulation is useful for the
determination of the logarithmic negativity between the two
defects.

A typical length scale is the width of the ground state of the
defect oscillator Hamiltonian (2),

αγ = √
h̄/(M�γ ).

The dimensionless position and momentum operators for
the two defects are defined as X̄μ = Xμ/αγ , P̄μ = αγ Pμ/h̄.
For the oscillators of the reservoir we accordingly define
x̄i = xi/αγ and p̄i = αγ pi/h̄. These definitions imply the
nonvanishing commutation relations

[X̄μ,P̄μ] = i = [x̄i ,p̄i].

We further introduce the dimensionless mass m̄, trap
frequencies ω̄B and �̄, and coupling constants κ̄ and γ̄

according to

m̄ = m/M, ω̄B = ωB/�γ , �̄ = �/�γ ,

κ̄ = κ/
(
M�2

γ

)
, γ̄ = γ /

(
M�2

γ

)
.

With this choice, the mass of the defects M defines the unit
mass, the shifted frequency �γ , Eq. (7), is the unit frequency,
and the energy M�2

γ sets the relevant energy scale. We note
that the rescaled coupling strength γ̄ = γ /(γ + M�2) can
only take on values in the interval 0 � γ̄ < 1. Here, γ̄ = 0
corresponds to γ = 0, while γ̄ → 1 represents the limit of
infinitely large coupling γ → ∞.

The rescaled Hamiltonian H̄ = H/(h̄�γ ) then reads

H̄ = 1

2

2∑
μ=1

[
P̄ 2

μ + X̄2
μ

] + p̄2

2m̄
+ 1

2
x̄T V̄ (γ ) x̄

− γ̄ x̄1(X̄1 + X̄2), (17)

with V̄ (γ ) = V (γ )/(M�2
γ ). The rescaled time is given by the

variable

t̄ = �γ t.

For later convenience we also report the Hamiltonians
governing the dynamics of relative and c.m. motion in their
dimensionless form. They are given by

H̄− = 1
2 (P̄ 2

− + X̄2
−) (18)

and

H̄+ = 1

2
(P̄ 2

+ + X̄2
+) + p̄2

2m̄
+ 1

2
x̄T V̄ (γ ) x̄ − X̄+(γ̄ T x̄), (19)

where we have introduced the dimensionless coupling vector
γ̄ T = (

√
2 γ̄ ,0, . . . ,0) ∈ RN .

According to these definitions, an operator function
f (Xμ,Pμ; xi,pi) acting on the Hilbert space of the total system
takes the rescaled form f̄ = f (X̄μ,P̄μ; x̄i ,p̄i) and satisfies the
Heisenberg equation

df̄

dt̄
= i [H̄ ,f̄ ].
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We now come to the rescaled covariance matrices. With
the dimensionless temperature T̄ = kBT /(h̄ �γ ), the inverse
temperature β̄ = T̄ −1 = β h̄�γ , and the potential matrix
V̄ = V/(M�2

γ ), the nonvanishing block matrix elements (16)
read in dimensionless form

σ̄x̄x̄ = 1

2
(m̄V̄ )−

1
2 coth

[
β̄

2

(
V̄

m̄

)1
2
]
,

(20)

σ̄p̄p̄ = 1

2
(m̄V̄ )

1
2 coth

[
β̄

2

(
V̄

m̄

)1
2
]
.

Based on an appropriate one-to-one mapping r = r(r̄ ,φ̄) and
φ = φ(r̄ ,φ̄) between the original and the new squeezing
parameters r̄μ � 0, φ̄μ ∈ (−π,π ], the covariance matrices
for the defect oscillators (13)–(15) can be expressed in the
convenient form

σ̄μ(0) = 1
2 OT (φ̄μ) S(e2r̄μ ) O(φ̄μ). (21)

In this expression, we introduced the symplectic and orthogo-
nal matrices (z ∈ C)

S(z) =
(

z−1 0

0 z

)
and O(φ) =

(
cos φ

2 sin φ

2

− sin φ

2 cos φ

2

)
. (22)

In this way, the elements of the initial covariance matrix for
the defect oscillators (13)–(15) reduce to

[σ̄μ(0)]11 = 1

2

(
e−2r̄μ cos2 φ̄μ

2
+ e2r̄μ sin2 φ̄μ

2

)
,

[σ̄μ(0)]22 = 1

2

(
e−2r̄μ sin2 φ̄μ

2
+ e2r̄μ cos2 φ̄μ

2

)
,

[σ̄μ(0)]12 = −1

2
sinh(2r̄μ) sin φ̄μ.

The above-mentioned one-to-one mapping is discussed in
detail in Appendix A . The new parameters r̄μ and φ̄μ define the
squeezing of the defect oscillators with respect to the shifted
trap frequency �γ . Therefore, the squeezing parameter r̄ = 0
corresponds to the ground state of a harmonic oscillator with
trap frequency �γ .

C. Formal solution of the equations of motion

The formal solution of the Heisenberg equations of motion
for the position and momentum operators of both defect and
bath oscillators can be written as a linear map between their
initial and final values. For this purpose, we introduce the
vector of the position and momentum operators for defect
and chain oscillators, ζ T = (X̄1,P̄1,X̄2,P̄2,x̄T ,p̄T ) ∈ R4+2N ,
and rewrite the total Hamiltonian (17) as H̄ = 1

2 ζ T H̄ ζ , with
the positive definite matrix H̄. Furthermore, we introduce the
antisymmetric block matrix

J =
(

J2 0

0 JN

)
= −J T = −J −1

that contains the submatrices

J2 =

⎛
⎜⎜⎜⎝

0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

⎞
⎟⎟⎟⎠ and JN =

(
0 1N

−1N 0

)
. (23)

Here, 1N ∈ RN×N denotes the identity matrix.
By means of these definitions, the Heisenberg equations of

motion for the position and momentum operators reduce to

dζ

dt̄
= i [H̄ ,ζ (t̄)] = J H̄ ζ (t̄).

Their formal solution reads

ζ (t̄) = T (t̄) ζ (0), (24)

with the symplectic matrix

T (t̄) = eJ H̄ t̄ .

The time evolution of the total covariance matrix,V(t̄), is given
in terms of the linear mapping by the relation

V(t̄) = T (t̄)V(0) T T (t̄), (25)

where V(0) is the total covariance matrix at t = 0, which is
composed of the initial covariance matrices (20) and (21) and
takes the form

V(0) =

⎛
⎜⎜⎜⎝

σ̄1(0) 0 0 0

0 σ̄2(0) 0 0

0 0 σ̄x̄x̄(0) 0

0 0 0 σ̄p̄p̄(0)

⎞
⎟⎟⎟⎠ .

Equation (25) represents the basis of the numerical simulations
used in the analysis of entanglement generation. In this context,
the covariance matrix of the defect oscillators �̄(t̄) is of
particular interest. It is extracted from the total covariance
matrix V(t̄) according to

[�̄(t̄)]ik = [V(t̄)]ik, (26)

with i,k ∈ {1,2,3,4}. Since we aim at the determination of
the steady-state entanglement, it suffices to evaluate the
covariance matrix �̄(t̄) at times t̄ > t̄th. Here, t̄th represents
the time scale at which the c.m. defect oscillator reaches a
stationary state, provided the harmonic chain acts as a thermal
bath. For this reason, we examine in the next section the
conditions for which the reservoir displays this behavior.

IV. CHARACTERIZATION OF THE RESERVOIR

The harmonic chain plays a basic role in our study of
entanglement generation between the defects for the following
reason: Although the total dynamics is unitary and the system
is finite, the chain can act as a thermal bath for the c.m. motion
of the defects, while the relative motion is uncoupled. In order
to understand under which conditions this mechanism leads
to entanglement, a detailed knowledge about the action of the
chain on the c.m. motion is necessary. Hence, the purpose of
this section is to characterize the chain in terms of a reservoir
and identify the parameter regime for which these conditions
are valid.

A. Generalized quantum Langevin equations for the defects

Let us consider the dynamics of the defect oscillators.
The dynamics of the relative motion is governed by the
Hamiltonian (18), and the solution of the corresponding
Heisenberg equations of motion simply describes the evolution
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of a harmonic oscillator with frequency �γ , that reads

X̄−(t̄) = X̄−(0) cos t̄ + P̄−(0) sin t̄ ,
(27)

P̄−(t̄) = −X̄−(0) sin t̄ + P̄−(0) cos t̄ ,

where we recall that t̄ = �γ t . The c.m. motion, nevertheless,
remains coupled to the oscillator at the chain edge. We rewrite
its equation of motion in terms of a generalized quantum
Langevin equation (GQLE). Starting from the Heisenberg
equations of motion for the operators X̄+, P̄+, x̄, and p̄, the
GQLE follows by formal integration of the equations for the
chain degrees of freedom [5] and takes the form

d2X̄+
dt̄2

+
∫ t̄

0
�̄+(t̄ − t ′)

dX̄+
dt ′

dt ′ + [1 − �̄+(0)] X̄+(t̄)

= F̄+(t̄) − �̄+(t̄) X̄+(0). (28)

Here, we have introduced the memory-friction kernel [5],
which reads

�̄+(t̄) =
N∑

j=1

(γ̄ +
j )2

m̄(ω̄+
j )2

cos(ω̄+
j t̄) (29)

for t̄ � 0, while it vanishes otherwise. We have also introduced
the operator-valued random force, which is defined by [5]

F̄+(t̄) =
N∑

j=1

[
γ̄ +

j cos(ω̄+
j t̄) x̄+

j (0) + γ̄ +
j

m̄ω̄+
j

sin(ω̄+
j t̄) p̄+

j (0)

]
.

(30)

In the expressions for the memory-friction kernel and the
random force, the quantities ω̄+

j and γ̄ +
j appear. The first ones

denote the eigenfrequencies of the potential matrix V̄ (γ ) given
by Eq. (11). They follow from the diagonalization of the chain
potential V (γ ) and are defined by the relation

OT
+ V̄ (γ )O+ = m̄ · diag((ω̄+

1 )2, . . . ,(ω̄+
N )2), (31)

where O+ is the orthogonal matrix which diagonalizes V̄ (γ ). In
particular, the orthogonal matrix O+ establishes the relation
between the normal and the original coordinates, x̄+ = OT

+ x̄
and p̄+ = OT

+ p̄ (see, e.g., Ref. [36]). The quantities x̄+
j (0)

and p̄+
j (0) in Eq. (30) stand for the j th component of the

vectors x̄+ and p̄+, respectively. The parameters γ̄ +
j are the

coupling strengths to the j th normal mode of the reservoir
and are given by γ̄ + = OT

+ γ̄ . In the following we adopt the
convention that the eigenfrequencies are ordered according to
0 < ω̄+

1 < ω̄+
2 < · · · < ω̄+

N .
An important quantity that characterizes the influence of

the reservoir on the c.m. motion is the environmental spectral
density. This quantity is the Fourier cosine-transform of the
memory-friction kernel (29)

J̄+(ω̄) = ω̄

∫ ∞

0
�̄+(t̄) cos(ω̄t̄) dt̄

= π

2

N∑
j=1

(γ̄ +
j )2

m̄ ω̄+
j

δ(ω̄ − ω̄+
j ). (32)

The spectral density provides important insight into the action
of the chain on the dynamics of the c.m. motion of the defect.

FIG. 3. (Color online) (a) Spectrum ω̄
(0)
j of the potential V̄

[Eq. (9)] for the parameter values m̄ = 0.5, γ̄ = 0.1, and κ̄ = 1 and
(b) corrections �ω̄j to the eigenfrequencies of V̄ (γ ) for the coupling
strengths γ̄ = 0.1 (solid line), γ̄ = 0.15 (dotted line), and γ̄ = 0.2
(dashed line). The chain is composed of N = 1000 ions.

Before we proceed, we characterize the chain’s normal
modes. The eigenfrequencies are the solutions of Eq. (31),
which includes the shift due to the coupling of the defects with
the edge ion. By appropriately setting the frequency of the
edge potentials to the value ω̄B = √

κ̄/m̄ (see Appendix B),
we obtain for the normal mode spectrum in the limit γ̄ → 0

ω̄
(0)

j = ω̄cut sin

(
kja

2

)
, (33)

where ω̄
(0)

j ≡ ω̄(0)(kj ) and kj = jπ/[a(N + 1)] is the wave
number, which appropriately denotes the modes when
the Bloch theorem applies and takes on the values
(j ∈ {1, . . . ,N}). This expression agrees with the one
found for periodic boundary conditions [4]. The frequency
ω̄cut = √

4κ̄/m̄ is the high-frequency cutoff. The resulting
spectrum [Eq. (33)] is displayed in Fig. 3. The eigenmodes,
however, are, strictly speaking, not phononic waves.

Let us now consider the case γ̄ > 0. We expect for
sufficiently small γ̄ that the effect of this coupling on the
chain normal-mode spectrum is negligible. To quantify this
statement, we consider the difference �ω̄j = ω̄+

j − ω̄
(0)

j that
involves the eigenfrequency ω̄+

j given by Eq. (31) and the
corresponding frequency ω̄

(0)

j obtained in the limit γ̄ → 0.
Figure 3(b) displays the corrections �ω̄j for different coupling
strengths γ̄ = 0.1,0.15,0.2 and constant κ̄ = 1. For these
values, the difference �ω̄j is much smaller than all other
physical parameters.

Figures 4(a) and 4(b) display the spectral density for a
choice of the parameters γ̄ and κ̄ and taking m̄ = 0.5. For
most of the parameter values the spectral density is linear
about the value ω̄ = 1, which corresponds to the frequency of
the defect oscillator. In this case, the chain acts like a (quasi)
Ohmic environment. A change in the mass ratio m̄ affects the
spectral density in so far as the eigenfrequencies scales with
ω̄+

j ∼ 1/
√

m̄, leading to a change in the bandwidth ω̄cut.

B. Thermodynamic limit

In Ref. [4] Rubin showed that a chain of oscillators with
one embedded defect, exhibiting a spectrum as in Eq. (33), can
act like an Ohmic bath for the defect particle. This behavior
is found in Rubin’s model provided that the temperature of
the chain is finite, the mass ratio satisfies m/M < 1, and
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FIG. 4. (Color online) Spectral density J̄+(ω̄) as a function of ω̄.
The parameters in (a) are κ̄ = 1, while γ̄ = 0.1 (solid line), γ̄ = 0.15
(dotted line), and γ̄ = 0.2 (dashed line). In (b) we take γ̄ = 0.1 while
κ̄ = 0.5 (dashed line), κ̄ = 1 (solid line), and κ̄ = 1.5 (dotted line). In
both cases the mass ratio is m̄ = 0.5. The spectral densities is linear
in the vicinity of the oscillator frequency ω̄ = 1. A slight difference
is found for the cases γ̄ = 0.2, κ̄ = 1 (a) and γ̄ = 0.1, κ̄ = 0.5 (b),
where J̄+(ω̄) ∼ ω̄a with a > 1 in the vicinity of ω̄ = 1.

the thermodynamic limit is taken, which corresponds to the
limit N → ∞ keeping the interparticle distance a in the chain
constant [37]. Finite size effects are found for times larger
than the time scale t̄rev, which is discussed in the next section.
However, they can be neglected if (i) the defect oscillator
reaches a stationary state over time scales t̄th such that t̄th � t̄rev

and (ii) the analysis can be restricted to these time scales.
We now discuss these assumptions in relation to our

microscopic model, where, different from Rubin’s model,
the coupling strength γ appears in addition to the coupling
constant κ . We are specifically interested in identifying the
parameter regimes for which the effective defect of our model,
the c.m., thermalizes with the rest of the chain.

For this purpose we first consider the formal solution of
the Heisenberg equations of motion in Eq. (24) in terms of
the linear mapping T+(t̄) = eJ+H̄+ t̄ (here the positive definite
matrix H̄+ and the antisymmetric matrix J+ are defined
in analogy to the discussion of Sec. III C). The GQLE can
formally be solved by applying a Laplace transformation to
both sides of Eq. (28), which yields an algebraic equation
for the Laplace transform of X̄+(t̄). In this case the residue
theorem can be applied [38]: The simple poles of the integrand
are determined from the eigenfrequencies of the positive
definite matrix W̄+ = T̄

1/2
+ V̄+ T̄

1/2
+ with the block matrices

T̄+ =
(

1 0

0 1N

m̄

)
and V̄+ =

(
1 −γ̄ T

−γ̄ V̄ (γ )

)
, (34)

which respectively originate from the kinetic and potential
energy part of the Hamiltonian H̄+ in Eq. (6). The sum
of the residues yields a quasiperiodic function which is
equivalent to the expression for X̄+(t̄) deduced from the linear
mapping T+(t̄). As in Rubin’s model of a single defect in
a one-dimensional crystal [4], thermalization is found in the
limit N → ∞ due to the formation of a continuous frequency
band, provided no isolated frequencies above the frequency
band occur. The existence of such isolated frequencies would
result in residual oscillations of the coupled defect (in our case
the c.m. motion) at long times.

Here, we are interested in the parameter regime in which
the c.m. motion of the defect reaches a stationary state before

FIG. 5. (Color online) Diagram illustrating the existence of
isolated frequencies of the matrix W̄+ for different coupling strengths
γ̄ and κ̄ and the two mass ratios m̄ = 0.5 (a) and m̄ = 1 (b). At
least one isolated frequency is found for the parameters below the
black boundary line: The value of the largest one is indicated by the
contour lines. The dots in the white region indicate the parameter
values used in our simulations: They all lie in the region where no
isolated frequencies exist.

the time scale t̄rev, and in particular, when this stationary
state is a thermal state at the temperature T in which the
chain was initially prepared. In order to identify the coupling
strengths γ̄ and κ̄ for which this is verified, we perform a
numerical search of the isolated frequencies of the matrix W̄+
The results are presented in Fig. 5 for mass ratios m̄ = 0.5
and m̄ = 1. In the region above the broad curves no isolated
frequency of W̄+ was found. In this domain thermalization of
the defect c.m. occurs in the thermodynamic limit according
to our numerical simulations. In the segmented region below
the boundary curve, at least one isolated frequency of W̄+
exists. Here, the labels on the contour lines indicate the value
of the largest isolated frequency of the normal modes. The
dots in the upper region indicate the parameter values used in
our simulations: They all lie in the region where no isolated
frequencies exist.

C. Finite chains

Since our analysis is essentially numerical, we consider
finite chains and we aim at observing a (transient) stationary
state of the c.m. motion before finite size effects become rele-
vant. The latter are characterized by the time scale t̄rev = L/cs,
where L = Na is the chain length and cs = ω̄cut a/2 the sound
velocity [39]. The time scale t̄rev grows linearly with the
particle number N , showing that by choosing a sufficiently
large number of particles thermalization of the defect particle
could be observed before finite-size effects become significant
(which we denote by “revivals”).

We illustrate the thermalization of the c.m. mo-
tion of the defects by showing the time evolution of
the variances �X̄2

+(t̄) = 〈X̄2
+(t̄)〉 − 〈X̄+(t̄)〉2 and �P̄ 2

+(t̄) =
〈P̄ 2

+(t̄)〉 − 〈P̄+(t̄)〉2 in Fig. 6. After a transient time, the vari-
ances approach their stationary values �X̄2

+(T̄ ) and �P̄ 2
+(T̄ )

that depend on the initial temperature of the chain, but not on
the initial squeezing of the defects. The appearance of revivals
after t̄rev is clearly visible.
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FIG. 6. Time evolution of the variances �X̄2
+(t̄) (black) and

�P̄ 2
+(t̄) (gray) for the temperature T̄ = 10−5 of the chain. After a

transient time, the covariance matrices reach the stationary values
�X̄2

+(T̄ ) = 0.5031 and �P̄ 2
+(T̄ ) = 0.4988, which indicate that the

harmonic chain causes squeezing of the momentum variable at very
low temperatures. The dotted vertical line represents the revival time
t̄th ≈ 1416. The other parameters were chosen to be m̄ = 0.5, κ̄ = 1,
γ̄ = 0.1, φ̄1 = φ̄2 = 0, and r̄1 = r̄2 = 1

4 ln(1 − γ̄ ).

A good estimate for �X̄2
+(T̄ ) and �P̄ 2

+(T̄ ) follows from the
assumption that the total system (defects and harmonic chain)
is in the thermal state ρ̄th = exp(−β̄H̄ )/Z̄th. Here, H̄ denotes
the total Hamiltonian (17), β̄ the inverse temperature of the
initial chain (12), and Z̄th = Tr{exp(−β̄H̄ )} the corresponding
partition function. With the help of Eqs. (20) and (34), we find
the following values for the stationary state variances of the
defects:

�X̄2
+(T̄ ) = 1

2

[
W̄

− 1
2+ coth

(
β̄

2
W̄

1
2+

)]
11

,

�P̄ 2
+(T̄ ) = 1

2

[
W̄

1
2+ coth

(
β̄

2
W̄

1
2+

)]
11

.

The indices on the right-hand side of the equations indicate the
(1,1) elements of the matrices inside the brackets. The fact that
this estimate works so well, despite the unitary time evolution
of the total system, is reminiscent of the concept of “canonical
typicality” [2,3] that recently gained a lot of attention.

The parameter values of our microscopic model have to
meet several constraints. First of all, the coupling strength
κ̄ must be sufficiently large in order to guarantee that the
frequency of the two oscillators lies well below the cutoff
frequency ω̄cut and more specifically in the linear region of the
spectral density. Moreover, the value γ̄ must be sufficiently
small such that the dispersion spectrum of the harmonic chain
is not significantly perturbed by the coupling with the defects.
There is also a further bound to the coupling strength γ̄ that
stems from the necessity to reduce computational resources. In
fact, γ̄ determines the rate at which the c.m. motion reaches a
stationary state. Very small values of γ̄ would require that one
chooses an increasing particle number N in order to observe a
stationary state well before t̄rev, which results in a formidable
computational problem.

In order to account for all these requirements, we have
chosen the parameter values m̄ = 0.5, γ̄ = 0.1, and κ̄ = 1 as
standard parameters for our numerical simulations throughout
this paper. As in the previous figures, we illustrate the
changes in the numerical results that arise from differ-
ent coupling constants by using the two parameter sets:

FIG. 7. (Color online) Variances �X̄2
+(T̄ ) (three upper curves)

and �P̄ 2
+(T̄ ) (three lower curves) of the c.m. motion after thermal-

ization for large temperatures T̄ ∈ [0,6] (a) and for low temperatures
T̄ ∈ [0,0.2] (b). The parameters are m̄ = 0.5, κ̄ = 1, and γ̄ = 0.1
(solid line), γ̄ = 0.15 (dotted line), and γ̄ = 0.2 (dashed line).

(i) The γ̄ -variation parameters. The results are presented for
three different coupling strengths γ̄ = 0.1,0.15,0.2 and for the
fixed parameter value κ̄ = 1. (ii) κ̄-variation parameters. The
results are presented for constant γ̄ = 0.1 and for variable κ̄ =
0.5,1,1.5. For the case γ̄ = 0.1, κ̄ = 1.5 we used N = 2000
ions in the chain, while in all other cases it was sufficient
to work with N = 1000 ions in order to observe that the
c.m. motion reached a stationary state well before the revival
time t̄rev.

It is instructive to analyze the variances of the c.m. position
and momentum, after the steady state has been reached.
Figure 7 shows the variances �X̄2

+(T̄ ) and �P̄ 2
+(T̄ ) for a large

temperature range T̄ ∈ [0,6] (a) and for small temperatures
T̄ ∈ [0,0.2] (b) given the γ̄ -variation parameters with m̄ =
0.5. For large temperatures (a) the variances grow linearly with
a slightly different slope for the individual coupling strengths
γ̄ , whereby �X̄2

+(T̄ ) > �P̄ 2
+(T̄ ). In the low temperature

regime (b), we observe squeezing of the c.m. momentum
�P̄ 2

+(T̄ ) < 1/2 that increases for larger coupling strengths
γ̄ . We note that this squeezing is induced by the coupling
with the bath and has been identified in the studies reported
in Refs. [22,23]. It is reminiscent of the squeezing found for
large coupling strengths in the Drude model [5,40].

Figure 8 displays the corresponding behavior of the c.m.
variances for the κ̄-variation parameters. As before, we find a
linear behavior of �X̄2

+(T̄ ) and �P̄ 2
+(T̄ ) for large temperatures

(a). For low temperatures (b), the squeezing of the variance
�P̄ 2

+(T̄ ) < 1/2 becomes larger for smaller κ̄ and vice versa.
Finally, we emphasize that a mass ratio m̄ = 1 leads only to

marginal changes in the temperature behavior of the variances
�X̄2

+(T̄ ) and �P̄ 2
+(T̄ ).

These properties directly affect the behavior of bath-
mediated entanglement between the defect oscillators, as we
show in Sec. V.

D. Memory effects

We now analyze memory effects in our model using our
parameter choice. For this purpose we discuss the memory-
friction kernel �̄+(t̄) of the GQLE (28) that is connected to the
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FIG. 8. (Color online) Variances �X̄2
+(T̄ ) (three upper curves)

and �P̄ 2
+(T̄ ) (three lower curves) for large and low temperatures,

T̄ ∈ [0,6] (a) and T̄ ∈ [0,0.2] (b), respectively. The parameters are
m̄ = 0.5, γ̄ = 0.1, and κ̄ = 0.5 (dashed line), κ̄ = 1 (solid line), and
κ̄ = 1.5 (dotted line).

spectral density J̄+(ω̄) for t̄ � 0 according to relation

�̄+(t̄) = 2

π

∫ ∞

0

J̄+(ω̄)

ω̄
cos(ω̄t̄) dω̄,

which inverts Eq. (32). For strict Ohmic dissipation, the
memory-friction kernel would read �̄+(t̄) = 2�̄ δ(t̄) with �̄ as
friction constant, and the GQLE would reduce to the ordinary
Langevin equation without memory effects, provided that the
“slip term” −2� δ(t̄) X̄+(0) and the oscillator frequency shift
−2� δ(0) X̄+(t̄) can be disregarded [5]. However, in our model
we do not meet the requirements of a strict Ohmic environment
since the cutoff frequency ω̄cut is only a few times larger than
the oscillator frequency of the two coupled oscillators. For this
reason, memory effects are present.

Figures 9(a) and 9(b) display the memory-friction kernel
as a function of time: An oscillatory decay is observed over
a time scale t̄ that is of the order of one, corresponding to
t ∼ 1/�γ [41]. Hence, non-Markovian effects are present,
but irrelevant for the dynamics of entanglement generation
between the defects, as is shown in the following.

V. CHAIN-MEDIATED ENTANGLEMENT BETWEEN
THE DEFECTS

In this section we report the predictions of our model on
correlations between the two defect oscillators. Entanglement
is quantified by means of the logarithmic negativity [28,29],
that is evaluated using the covariance matrix at the time scale

FIG. 9. (Color online) Memory-friction kernel �̄+(t̄). The plots
in (a) and (b) are evaluated for the parameters of the curves for the
spectral density in Figs. 4(a) and 4(b), respectively.

at which the c.m. motion of the two defects has reached
a (quasi) steady state (before the revival time). We present
the results for the logarithmic negativity found for different
choices of parameters, such as the initial squeezing of the
defect oscillator, the temperature of the chain, and the coupling
strength between chain and defects.

A. Logarithmic negativity of the oscillators

Since the state of the two defects is a Gaussian state at
all times, the most convenient entanglement measure for our
purpose is the logarithmic negativity [28,29,42].

In what follows, we present the final results and refer
to Appendix C for further details on the calculations. The
logarithmic negativity reads

EN (t̄th) = max {0,EN (t̄th)} (35)

and contains the function EN (t̄th) = − ln[2 ν̃−(t̄th)], which
depends on the smallest symplectic eigenvalue ν̃−(t̄th) of the
partial transpose of the covariance matrix �̄(t̄th), defined in
Eq. (26). The covariance matrix �̄(t̄th) describes the state of
the system for sufficiently long times, t̄ ∼ t̄th, after which the
c.m. motion has reached a stationary state independent of its
initial state. The smallest symplectic eigenvalue ν̃−(t̄th) follows
from the identity [44,45]

ν̃−(t̄th) = 1√
2

[�̃(t̄th) −
√

�̃2(t̄th) − 4 det �̄(t̄th) ]
1
2 , (36)

with the time-independent determinant

det �̄(t̄th) = 1
8 �X̄2

+ �P̄ 2
+[1 + cosh(2r̄1) cosh(2r̄2)

− cos(�φ̄) sinh(2r̄1) sinh(2r̄2)], (37)

and the oscillating auxiliary function

�̃(t̄th) = �̃0 + �̃2 cos(2t̄th + ϕ̄). (38)

In the last two expressions, we have introduced the relative
squeezing angle �φ̄ = φ̄2 − φ̄1, as well as the coefficients

�̃0 = 1
4 (�X̄2

+ + �P̄ 2
+)[cosh(2r̄1) + cosh(2r̄2)] (39)

and

�̃2 = 1
4 |�X̄2

+ − �P̄ 2
+|[sinh2(2r̄1) + sinh2(2r̄2)

+ 2 cos(�φ̄) sinh(2r̄1) sinh(2r̄2)]
1
2 . (40)

The constant phase ϕ̄ can be determined, but is of no
further interest to us. Due to the periodicity of the auxiliary
function (38) the quantity EN (t̄th) oscillates for t̄th < t̄rev

between a minimal and maximal value Emin
N and Emax

N . The
formulas (35)–(40) provide a generalization of previously
obtained expression for the logarithmic negativity [22,23].

Following the nomenclature of [22,23], we distinguish
three qualitatively different situations for the entanglement
of the two oscillators. (i) When Emax

N < 0, the logarithmic
negativity is zero and we find no entanglement between the
oscillators. We call this scenario the sudden death (SD) phase
because any transient entanglement disappears abruptly before
the thermalized state is reached. (ii) When Emin

N < 0 < Emax
N ,

we obtain an alternating sequence of periods with zero and
nonzero logarithmic negativity, the so-called sudden death
and revival (SDR) phase. (iii) Finally, when Emin

N > 0 the two
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FIG. 10. Time evolution of the logarithmic negativity EN (t̄)
for three different temperatures T̄ = 10−5,0.27,0.33 (from top to
bottom). The curves exemplify the different behaviors of the entan-
glement (NSD, SDR, SD). The dotted vertical line in (a) represents the
revival time t̄rev. (b) Detail of the behavior about the time t̄ ≈ 0.9 t̄rev.
The other parameters are m̄ = 0.5, κ̄ = 1, γ̄ = 0.1, φ̄1 = φ̄2 = 0, and
r̄1 = r̄2 = 1

4 ln(1 − γ̄ ). Here, t̄rev ≈ 1416.

oscillators are entangled after thermalization which we call
the no sudden death (NSD) phase. In Fig. 10 we exemplify
these different phases by showing the time evolution of
EN (t̄th) for three initial temperatures. Figure 10(a) displays
the long-time behavior of EN (t̄th), its evolution toward the
steady state. Here, the occurrence of revivals after t̄rev are
visible. Figure 10(b) zooms in the behavior at t̄th ≈ 0.9 t̄rev,
showing that the logarithmic negativity exhibits oscillations at
the frequency �γ . These oscillations have been also observed
in Refs. [22,23] and their physical origin simply lies in the
decoupling of the relative coordinate from the rest of the
dynamics. In fact, the squeezed variance of the relative motion
rotates with frequency 2�γ , and correspondingly the smallest
symplectic eigenvalue oscillates at the same frequency. We
also note that, by choosing the squeezing parameters according
to r̄1 = r̄2 = 0, we find by virtue of Eqs. (38) and (40) that
the logarithmic negativity (35) of the steady state becomes
time independent and displays no further oscillations. The
underlying reason is that for r̄1 = r̄2 = 0 the initial state of
the relative motion corresponds to the ground state of the
Hamiltonian (5).

In this context, we would like to point out that the NSD
phase can be characterized by the fulfillment of the inequality
[see also Eq. (C5) in Appendix C]

�̃0 − �̃2 − 4 det �̄(t̄th) − 1
4 > 0, (41)

which follows from EN (t̄th) = − ln[2 ν̃−(t̄th)] > 0 or equiva-
lently ν̃−(t̄th) < 1

2 evaluated for the minimal value of �̃(t̄th)
[Eq. (38)]. Thus, if inequality (41) is satisfied, the two defect
oscillators are entangled after the c.m. has reached a stationary
state (before the revival time t̄rev). This inequality in connection
with the identities (37)–(40) provides a general criterion for
the existence of steady-state entanglement for arbitrary initial
squeezed states of the defects.

B. Entanglement generation for different initial parameters
and coupling strengths

In this section we report the logarithmic negativity of the
defect oscillators after the c.m. defect oscillator has reached a
stationary state, for different values of the initial squeezing of
the defects and of the initial temperature of the ion chain.
The results are displayed using the type of contour plots

first introduced in Refs. [22,23], which highlight the different
entanglement regions (NSD, SD, and SDR) as a function of the
modulus of the initial squeezing parameter and the temperature
of the reservoir.

We first consider the case in which the initial states of
the defect oscillators are characterized by the same squeezing
parameters, r̄1 = r̄2 = r̄ and �φ̄ = 0. We use the inequality
�X̄2

+(T̄ ) > �P̄ 2
+(T̄ ), which we found numerically for the

considered parameter regime, and reduce the determinant (37)
to the form

det �̄(t̄th) = 1
4 �X̄2

+ �P̄ 2
+, (42)

while the coefficients (39) and (40) read

�̃0 = 1
2 (�X̄2

+ + �P̄ 2
+) cosh(2r̄), (43)

�̃2 = 1
2 (�X̄2

+ − �P̄ 2
+) sinh(2r̄). (44)

These expressions lead to the following simple form of the
entanglement condition (41) that characterizes the NSD phase:

1
2 (�P̄ 2

+ e2r̄ + �X̄2
+ e−2r̄ ) − �X̄2

+ �P̄ 2
+ − 1

4 > 0.

With the substitution y = e2r̄ , this relation reduces to a
quadratic inequality in y that yields two independent condi-
tions for the steady-state entanglement of the two oscillators.
The first of these conditions reads

�X̄2
+(T̄ ) < 1

2 e2r̄ (45)

and tells us that entanglement between the oscillators will
occur at any temperature T̄ as long as the initial squeezing
parameter r̄ is sufficiently large. The underlying mechanism
for this entanglement generation is based on the existence of a
decoherence free subspace, following from the decoupling of
the relative motion.

The second entanglement condition takes the form

�P̄ 2
+(T̄ ) < 1

2 e−2r̄ (46)

and is only satisfied for sufficiently small squeezing parameters
r̄ and temperatures T̄ . We call this second mechanism bath-
induced entanglement because it arises from the squeezing of
�P̄ 2

+(T̄ ) caused by the interaction of the oscillators with the
reservoir. It is clear that the two mechanisms are competing.

Figure 2 displays the different phases of entanglement for
varying r̄ and T̄ including the contour lines of the logarithmic
negativity within the NSD region. In Fig. 2(a) one can observe
the behavior at large squeezing and high temperatures. Here,
entanglement in the NSD region is due to the decoupling of the
relative motion and is determined by the condition (45). The
SDR region is not visible, but lies between the NSD and SD
phases. Figure 2(b) displays the behavior at small squeezing
and low temperatures. One can here observe the NSD island,
which occurs in the vicinity of r̄ = 0, T̄ = 0 and is separated
by the SDR phase from the main NSD region. This island stems
from the bath-induced entanglement according to Eq. (46).

Since the squeezing of the c.m. motion at low temperatures
is rather small, the NSD region due to bath-induced entan-
glement covers only a small region of Fig. 2(b). The size
of the region can be increased by increasing the squeezing
of the variance �P̄ 2

+(T̄ ). According to Fig. 7(b), this can be
achieved by increasing the parameter γ̄ . Figure 11 displays the
corresponding contour plots in the regime of small squeezing
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FIG. 11. Contour plots of the logarithmic negativity EN (r̄ ,T̄ ) for
m̄ = 0.5, κ̄ = 1, and (a) γ̄ = 0.15, (b) γ̄ = 0.2.

parameters and low temperatures for two values of the coupling
strength γ̄ : An increase of the NSD region of bath-induced
entanglement is observed for larger coupling strengths γ̄ . We
recall, however, that this behavior can saturate, when γ̄ takes
values at which the transient steady state is not reached before
t̄rev. The squeezing of the c.m. variance can also be increased by
decreasing the coupling strength κ̄ , as illustrated in Fig. 8(b).
Figure 12 depicts the change in the entanglement behavior for
varying κ̄ . Here one can see that the size of the region where
bath-induced entanglement is found is larger for smaller values
of κ .

When the two oscillators are instead prepared in squeezed
states with a relative squeezing angle �φ̄ �= 0, the entangle-
ment will be diminished. In fact, such initial states lead to
a smaller squeezing of the relative motion. A representative
situation is found for �φ̄ = π , namely, when the squeezed
quadratures of the defect oscillators are orthogonal. In this
case the relative motion is not squeezed and one obtains for
the determinant (37) and the coefficients (39) and (40) with
r̄1 = r̄2 = r̄ the expressions

det �̄(t̄th) = 1
4 �X̄2

+ �P̄ 2
+ cosh2(2r̄),

as well as

�̃0 = 1
2 (�X̄2

+ + �P̄ 2
+) cosh(2r̄) and �̃2 = 0.

In this case, the entanglement condition (41) reduces to

1
2 (�X̄2

+ + �P̄ 2
+) cosh(2r̄) − �X̄2

+ �P̄ 2
+ cosh2(2r̄) − 1

4 > 0.

FIG. 12. Contour plots of EN (r̄ ,T̄ ) for m̄ = 0.5, γ̄ = 0.1, and
(a) κ̄ = 0.5, (b) κ̄ = 1.5.

This inequality is fully equivalent to the new criterion

�P̄ 2
+(T̄ ) <

1

2 cosh(2r̄)
,

which is only satisfied for a squeezed c.m. momentum, in
analogy to Eq. (46). It shows that entanglement between the
defects can only be generated by the active coupling with the
bath. The existence of a decoherence free subspace does not
support entanglement generation in this case.

Thus, the relative squeezing angle �φ̄ can be used as a
control parameter to distinguish between the two mechanisms
that lead to steady-state entanglement. This observation makes
our model a favorable microscopic setting to study the
generation of bath-induced entanglement.

VI. CONCLUSIONS

We have numerically investigated the dynamics of two
defects coupled to one edge of a harmonic crystal and
identified the parameter regime for which the defect variables
reach a quasisteady state. This (quasi) equilibrium sets in
for time scales which are smaller than the revival time
scale characterized by finite size effects. From its features
and its scaling behavior for different system sizes, we can
conclude that it corresponds to the equilibrium reached in the
thermodynamic limit, when the number of ions of the chain
is infinitely large. The analysis of the correlations between
the defects shows that they can become entangled in the
steady state. Such entanglement emerges as a consequence
of the symmetries of the Hamiltonian, and it follows the
dynamics outlined in Refs. [22,23] where it was determined
by means of an effective master equation mimicking the effect
of the bath. Our work shows that a physical model, such
as the considered extension of Rubin’s model, establishes
a microscopic realization of this dynamics. It allows us to
determine the relevant time scales which emerge from the
spectral properties of the chain, the defects, and their mutual
coupling. Moreover, it gives us the possibility to analyze the
dynamics in regimes where a master equation approach is not
convenient (e.g., when finite size effects become relevant).

This work provides a microscopic understanding of the
dynamics of bath induced entanglement, building upon the
general criterion given by Eqs. (35)–(41). Based on a realistic
model, it goes beyond the reach of idealized settings studied so
far that employ ideal bosonic heat baths with artificially chosen
spectral densities. An interesting next step will be the extension
of our model to non-Gaussian initial states and nonquadratic
Hamiltonians for the defects. As long as the symmetry is
preserved, we anticipate that the underlying mechanisms
will support the formation of steady-state entanglement.
Whether such an extension will lead to an enhancement in
the entanglement generated between the defects is, however,
an open question.

In a follow up to this article we will discuss the generation
of entanglement between two defects that couple to distant
sites of the chain, thereby extending and complementing the
findings reported in Ref. [26], which were not addressed in the
present article.
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APPENDIX A: TRANSFORMATION OF
THE SQUEEZING PARAMETERS

Based on the dimensionless description of Sec. III B and
the matrices S(z) and O(φ) [Eq. (22)], we find for the initial
covariance matrices of the defects σμ(0) [Eqs. (13)–(15)] the
dimensionless form

σ̄μ(0) = 1
2 S

(
�̄

1
2
)
OT (φμ) S(e2rμ ) O(φμ) S

(
�̄

1
2
)
. (A1)

Due to the outer symplectic matrices S(�̄), we would arrive
at much more complicated expressions for the logarithmic
negativity in Sec. V A when starting from Eq. (A1). These
expressions would conceal the class of squeezing parameters
that lead to the same steady-state entanglement between the
defects.

For this reason, it is advantageous to introduce new squeez-
ing parameters s̄μ = r̄μeiφ̄μ that overcome these difficulties by
transforming the covariance matrices (A1) to the simpler form
(21). The corresponding transformation equations r = r(r̄ ,φ̄)
and φ = φ(r̄ ,φ̄) follow directly from the diagonalization of
(A1) and a subsequent comparison of the resulting eigenvalues
and eigenvectors with Eq. (21).

In this way, we find that the one-to-one mapping between
the new squeezing parameters r̄μ � 0, φ̄μ ∈ (−π,π ] and the
original ones (rμ � 0, φμ ∈ (−π,π ]) depends on �̄ and splits
into three different domains of definition. Since we have
�̄ < 1, the mapping r = r(r̄ ,φ̄) and φ = φ(r̄ ,φ̄) reads for the
special case φ̄ = 0 (r̄ � 0)

r(r̄ ,0) = r̄ − 1
2 ln �̄, φ(r̄ ,0) = 0. (A2a)

For φ̄ = π (r̄ > 0) we find accordingly

r(r̄ ,π ) = (
r̄ + 1

2 ln �̄
)
sgn

(
r̄ + 1

2 ln �̄
)
,

(A2b)
φ(r̄ ,π ) = π�

(
r̄ + 1

2 ln �̄
)
,

where �(x) denotes the Heaviside step function. The mapping
of the remaining open domain r̄ > 0, φ̄ ∈ (−π,π ) \ {0} onto
r > 0, φ ∈ (−π,π ) \ {0} is finally given by the one-parameter
family of coordinate transformations,

r(r̄ ,φ̄) = 1

2
arcosh(R̄+),

(A2c)

φ(r̄ ,φ̄) = 2 arctan

⎛
⎝

√
R̄2+ − 1 − R̄− + sinh(2r̄) sin φ̄√
R̄2+ − 1 + R̄− + sinh(2r̄) sin φ̄

⎞
⎠ ,

with the auxiliary functions R̄± = R̄±(r̄ ,φ̄,�̄) defined by

R̄± =
(

1

�̄
± �̄

)
cosh(2r̄)

2
+

(
1

�̄
∓ �̄

)
sinh(2r̄)

2
cos φ̄.

Substitution of the transformation Eqs. (A2) into the orig-
inal covariance matrix (A1) yields directly the convenient
form (21).

The inverse transformation equations r̄ = r̄(r,φ) and φ̄ =
φ̄(r,φ) follow in analogy to Eqs. (A2) by simply replacing
the role of �̄ < 1 in the derivation with its inverse �̄−1 > 1.
Again, the domain of definition splits into three different parts.
For the special case φ = 0 (r � 0) the inverse mapping is
given by

r̄(r,0) = (
r + 1

2 ln �̄
)

sgn
(
r + 1

2 ln �̄
)
,

(A3a)
φ̄(r,0) = π

[
1 − �

(
r + 1

2 ln �̄
)]

.

For φ = π (r > 0) it reads accordingly

r̄(r,π ) = r − 1
2 ln �̄, φ̄(r,π ) = π. (A3b)

As above, we find for the mapping of the open domain r > 0,
φ ∈ (−π,π ) \ {0} onto r̄ > 0, φ̄ ∈ (−π,π ) \ {0} a slightly
more complicated expression,

r̄(r,φ) = 1

2
arcosh (R+) ,

(A3c)

φ̄(r,φ) = −2 arctan

⎛
⎝

√
R2+ − 1 − R− − sinh(2r) sin φ√
R2+ − 1 + R− − sinh(2r) sin φ

⎞
⎠ ,

with the auxiliary functions R± = R̄±(r,φ,�̄−1) given by

R± =
(

�̄ ± 1

�̄

)
cosh(2r)

2
+

(
�̄ ∓ 1

�̄

)
sinh(2r)

2
cos φ.

Using these inverse transformations, one can determine the
values of the new squeezing parameters r̄μ and φ̄μ for a given
set of initial squeezing parameters rμ and φμ.

The effect of the transformation Eqs. (A2) is illustrated
in Fig. 13 by showing the coordinate lines r = r(r̄ ,φ̄) and
φ = φ(r̄ ,φ̄) for �̄ = 1

3 and constant values of r̄ and φ̄.
The rather small value for �̄ was only chosen to highlight
the effect of the transformation Eqs. (A2) and does not
correspond to any of the parameter values used throughout the
paper.

We conclude this Appendix by pointing out that the
transformation Eqs. (A2) are only valid for �̄ < 1. In the
case of �̄ > 1, one obtains the corresponding transformation
equations by simply interchanging Eqs. (A2) and its inverse
(A3) and replacing r ↔ r̄ and φ ↔ φ̄.

APPENDIX B: SPECTRAL DENSITY FOR DIFFERENT
TRAP FREQUENCIES ω̄B

The purpose of this Appendix is to show that the shape
of the spectral density depends crucially on the choice of
the edge frequency ω̄B . In the main part of the paper, we
restrict ourselves to the fixed value ω̄B = √

κ̄/m̄. In this way,
we compensate for the missing frequency shift of the ions
at the end of the chain (they couple only to one neighboring
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FIG. 13. (Color online) Illustration of the curvilinear coordinates
defined by Eqs. (A2) for �̄ = 1

3 . The red curves indicate the coordi-
nate lines r = r(r̄,φ̄) and φ = φ(r̄ ,φ̄) for constant r̄ > 0 and varying
φ̄ ∈ (−π,π ) \ {0}. The blue curves are obtained for constant φ̄ and
varying r̄ .

ion). This choice yields a suitable tridiagonal form for the
potential matrix (9) whose eigenvalues and eigenvectors can
be analytically determined using the methods outlined in
Ref. [46]. As a result, we find the spectrum in Eq. (33) for
the specific trap frequency ω̄B = √

κ̄/m̄.
Since the two defect oscillators couple to the edge particle

of the harmonic chain, the trap frequency ω̄B has an immediate
influence on the behavior of the reservoir. In order to illustrate
this fact, we show in Fig. 14(a) the spectral density for
the standard parameters γ̄ = 0.1, κ̄ = 1, m̄ = 0.5 and the three
different trap frequencies ω̄B = 0.1 (dashed curve), ω̄B = √

2
(solid curve), and ω̄B = 2 (dotted curve). Whereas J̄+(ω̄)
exhibits a pronounced non-Ohmic behavior for small trap
frequencies ω̄B � √

2, it still displays a linear growth in the
neighborhood of ω̄ = 1 for ω̄B >

√
2.

Figure 14(b) depicts the corresponding memory-friction
kernel �̄+(t̄). For ω̄B = 0.1 we find a nonoscillatory, slowly
decaying function �̄+(t̄) which indicates large memory effects
in the GQLE (28). For ω̄B = 2 we obtain an oscillatory behav-
ior of the memory-friction kernel; however, the oscillations do
not decay for large times. The reason for this behavior is the
existence of an isolated frequency in the spectrum of W̄+ which
prevents the c.m. motion from thermalization (see Sec. IV).

FIG. 14. Spectral density (a) and the memory-friction kernel
(b) for the parameters γ̄ = 0.1, κ̄ = 1, m̄ = 0.5 and the three different
trap frequencies ω̄B = 0.1 (dashed line), ω̄B = √

2 (solid line), and
ω̄B = 2 (dotted line).

APPENDIX C: ANALYTIC EXPRESSIONS FOR THE
LOGARITHMIC NEGATIVITY OF THE STEADY STATE

In this Appendix we derive the analytic expressions used
in Sec. V for the evaluation of the logarithmic negativity. We
first recall how to find the logarithmic negativity for a given
covariance matrix in general [28,29,44]. We then rewrite this
formalism in c.m. and relative coordinates and apply it to the
specific covariance matrix of the defects after they reached the
steady state. Finally, we sketch the derivation of the simple
expressions (37)–(40) that provide the logarithmic negativity
for arbitrary initial squeezing parameters s̄μ and steady-state
variances �X̄2

+(T̄ ) and �P̄ 2
+(T̄ ).

1. Logarithmic negativity and covariance matrix in c.m.
and relative coordinates

We start by recalling the definition of the combined
vector of the position and momentum operators for the
two defect oscillators ξ = (X̄1,P̄1; X̄2,P̄2)T . The corre-
sponding covariance matrix is given by the expression
�̄αβ = 1

2 〈ξα ξβ + ξβ ξα〉 − 〈ξα〉〈ξβ〉 with α,β ∈ {1, . . . ,4}. It
can be rewritten in the block form,

�̄ =
(

A C

CT B

)
, (C1)

where A,B ∈ R2, denote the covariance matrices of the first
and second defects, respectively, and C ∈ R2 characterizes
the correlations between them. Next, we define the partially
transposed covariance matrix �̃ = ��̄ � with the help of
the diagonal matrix � = diag(1,1,1,−1). The logarithmic
negativity [28,29] can then be determined from the smallest
symplectic eigenvalue ν̃− of �̃ and reads

EN = max {0,− ln (2 ν̃−)} . (C2)

We note that the symplectic eigenvalues of �̃ coincide with
the common, positive eigenvalues of the matrix −iJ2�̃, where
J2 is given by Eq. (23).

It is possible to write down an explicit expression for the
smallest symplectic eigenvalue [44,45] and for this purpose,
we introduce the function

�(�̄) = det A + det B + 2 det C,

which is invariant under symplectic transformations. By
applying this function to the partially transposed covariance
matrix �̃, we obtain the auxiliary function

�̃ = �(��̄ �) = det A + det B − 2 det C. (C3)

With this quantity at hand, the smallest symplectic eigenvalue
of �̃ follows from the identity

ν̃− =
√

1
2 (�̃ −

√
�̃2 − 4 det �̄). (C4)

Given the covariance matrix in block form (C1), we thus
determine the logarithmic negativity (C2) by evaluating the
smallest symplectic eigenvalue (C4) with the help of the
auxiliary function (C3).

Entanglement between the two oscillators is only found
when EN = − ln(2 ν̃−) > 0, which is equivalent to ν̃− < 1

2 .
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Using Eq. (C4), one can show that this entanglement condition
coincides with the Simon criterion [47]

�̃ − 4 det �̄ − 1
4 > 0. (C5)

Now, due to the decoupling of the relative coordinate
of the two defect oscillators in our microscopic model, we
seek for an expression of ν̃− that is based on the covariance
matrix in c.m. and relative coordinates. For this reason,
we define in analogy to above the combined vector for
the c.m. and relative coordinates ξ (±) = (X̄+,P̄+; X̄−,P̄−)T

and write �̄
(±)

αβ = 1
2 〈ξ (±)

α ξ
(±)

β + ξ
(±)

β ξ (±)
α 〉 − 〈ξ (±)

α 〉〈ξ (±)

β 〉 for the
corresponding covariance matrix with block form,

�̄ (±) =
(

A(±) C (±)

(C (±))T B (±)

)
. (C6)

With the transformation matrix

R = 1√
2

(
12 12

12 −12

)
= RT = R−1,

the connection between the c.m. and relative coordinates and
their corresponding covariance matrices reads

ξ (±) = R ξ and �̄ (±) = RT �̄ R. (C7)

In order to rewrite the quantities that appear in the smallest
symplectic eigenvalue (C4) in terms of the block matrices
A(±), B (±) and C (±), we take advantage of the fact that
the transformation matrix R is symplectic. An immediate
consequence of this observation is the validity of the identities

det �̄ = det �̄ (±) (C8)

and

�(�̄) = �(R �̄ (±) RT ) = �(�̄ (±)). (C9)

With the help of Eq. (C9), we easily find the relation

�̃=�(�̄ (±)) − det [A(±)−B (±) + (C (±))T −C (±)]. (C10)

In conclusion, the smallest symplectic eigenvalue (C4), as well
as the entanglement condition (C5) can be directly determined
from the covariance matrix in c.m. and relative coordinates
(C6) by means of the identities (C8) and (C10).

2. The covariance matrix after thermalization of
the c.m. motion

The manifestation of correlations between the defects
is a direct consequence of the decoupling of the relative
coordinates and the thermalization of the c.m. motion. This
statement can be well illustrated my means of the covariance
matrix of the defect oscillators. Initially, the covariance matrix
of the two defects reads

�̄(0) =
(

σ̄1(0) 0

0 σ̄2(0)

)
,

where the σ̄μ(0) are given by Eq. (21). The transformation to
c.m. and relative coordinates via Eq. (C7) yields the covariance
matrix

�̄ (±)(0) = 1

2

(
σ̄1(0) + σ̄2(0) σ̄1(0) − σ̄2(0)

σ̄1(0) − σ̄2(0) σ̄1(0) + σ̄2(0)

)
,

which displays correlations between the c.m. and relative
coordinates as long as the initial squeezing parameters of the
two defect oscillators differ.

After turning on the coupling to the reservoir, the c.m.
motion of the two defects thermalizes after a transient time
t̄th < t̄rev, which gives rise to the covariance matrix

�̄ (±)(t̄th) =
(

σ̄+(T̄ ) 0

0 σ̄−(t̄th)

)
. (C11)

Here, the time-independent submatrix of the c.m. reads

σ̄+(T̄ ) =
(

�X̄2
+ 0

0 �P̄ 2
+

)
(C12)

and contains the variances �X̄2
+ = �X̄2

+(T̄ ) and
�P̄ 2

+ = �P̄ 2
+(T̄ ) on the diagonal. The actual values of

�X̄2
+ and �P̄ 2

+ are numerically determined and depend on
the initial temperature T̄ of the reservoir. The time-dependent
covariance matrix of the relative coordinate

σ̄−(t̄th) = T−(t̄th) σ̄−(0) T T
− (t̄th) (C13)

describes the free time evolution of the initial covariance
matrix

σ̄−(0) = 1
2 [σ̄1(0) + σ̄2(0)] (C14)

with the help of the orthogonal matrix

T−(t̄) =
(

cos t̄ sin t̄

− sin t̄ cos t̄

)
(C15)

that follows from the solution (27). By transforming the
covariance matrix (C11) back to the original coordinates, we
finally obtain the covariance matrix of the steady state,

�̄(t̄th) = 1

2

(
σ̄+(T̄ ) + σ̄−(t̄th) σ̄+(T̄ ) − σ̄−(t̄th)

σ̄+(T̄ ) − σ̄−(t̄th) σ̄+(T̄ ) + σ̄−(t̄th)

)
,

which now exhibits correlations between the first and second
defect oscillator.

3. Derivation of the auxiliary functions for
the logarithmic negativity

In this section, we present the main steps of the derivation
of the analytic expressions (37) and (38), which are used for
the evaluation of the logarithmic negativity in Sec. V A. We
thereby take advantage of the determinant identity

det(A ± B) = det A + det B (C16)

± det

(
a11 a12

b21 b22

)
± det

(
b11 b12

a21 a22

)
.

which holds true for any two matrices A = (aik) ∈ C2×2 and
B = (bik) ∈ C2×2.

In order to find the expression for the determinant (37), we
first recall Eqs. (C8) and (C11)–(C13) to obtain

det �̄(t̄th) = �X̄2
+ �P̄ 2

+ det σ̄−(0). (C17)

Using the definition of σ̄−(0) [Eq. (C14)] and inserting the
initial covariance matrices of the two oscillators (21), we find
with �φ̄ = φ̄2 − φ̄1

det σ̄−(0) = 1
16 det[S(e2r̄1 ) + OT (�φ̄) S(e2r̄2 ) O(�φ̄)].

042318-14



STATISTICAL MECHANICS OF ENTANGLEMENT . . . PHYSICAL REVIEW A 85, 042318 (2012)

The last expression can be easily evaluated with the help of
identity (C16), which yields after some minor algebra

det σ̄−(0) = 1
8 [1 + cosh(2r̄1) cosh(2r̄2)

− cos(�φ̄) sinh(2r̄1) sinh(2r̄2)]. (C18)

Substitution of the last expression into Eq. (C17) provides the
expression (37) for the determinant of �̄(t̄th).

To derive the time-dependent auxiliary function (38), we
start from Eqs. (C10), (C11), and (C13) and obtain with the
orthogonality of T−(t̄)

�̃(t̄th) = det σ̄+(t̄th; T̄ ) + det σ̄−(0)

− det[σ̄+(t̄th; T̄ ) − σ̄−(0)], (C19)

where

σ̄+(t̄th; T ) = T T
− (t̄th) σ̄+(T̄ ) T−(t̄th).

By applying the identity (C16) to Eq. (C19), we find after a
straightforward calculation

�̃(t̄th) = 1
2 (�X̄2

+ + �P̄ 2
+)[σ̄−

11(0) + σ̄−
22(0)]

+ 1
2 (�X̄2

+ − �P̄ 2
+){[σ̄−

11(0) − σ̄−
22(0)] cos(2t̄th)

+ 2 σ̄−
12(0) sin(2t̄th)}.

When we combine the two terms in the bracket of the last
equation in a single cosine, we obtain the general form (38)
of the auxiliary function. The resulting coefficients �̃0 and �̃2

can be rewritten in terms of the determinant and trace of σ̄−(0)
according to

�̃0 = 1
2 (�X̄2

+ + �P̄ 2
+)Tr{σ̄−(0)} (C20)

and

�̃2 = 1
2 |�X̄2

+ − �P̄ 2
+|

√
{Tr[σ̄−(0)]}2 − 4 det σ̄−(0). (C21)

From the initial covariance matrices (21) and the definition
(C14), we obtain for the trace

Tr{σ̄−(0)} = 1
2 [cosh(2r̄1) + cosh(2r̄2)],

which together with the determinant (C18) finally yields

{Tr[σ̄−(0)]}2−4 det σ̄−(0)

= 1
4 [sinh2(2r̄1) + sinh2(2r̄2) + 2 cos(�φ̄)

× sinh(2r̄1) sinh(2r̄2)].

Substitution of the last two expressions into Eqs. (C20) and
(C21) finally concludes our derivation of the coefficients (39)
and (40).
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