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The experimental interest and developments in quantum spin-1=2 chains has increased uninterruptedly
over the past decade. In many instances, the target quantum simulation belongs to the broader class of
noninteracting fermionic models, constituting an important benchmark. In spite of this class being
analytically efficiently tractable, no direct certification tool has yet been reported for it. In fact, in
experiments, certification has almost exclusively relied on notions of quantum state tomography scaling
very unfavorably with the system size. Here, we develop experimentally friendly fidelity witnesses for all
pure fermionic Gaussian target states. Their expectation value yields a tight lower bound to the fidelity and
can be measured efficiently. We derive witnesses in full generality in the Majorana-fermion representation
and apply them to experimentally relevant spin-1=2 chains. Among others, we show how to efficiently
certify strongly out-of-equilibrium dynamics in critical Ising chains. At the heart of the measurement
scheme is a variant of importance sampling specially tailored to overlaps between covariance matrices. The
method is shown to be robust against finite experimental-state infidelities.

DOI: 10.1103/PhysRevLett.120.190501

Quantum simulators are specific-purpose quantum devi-
ces that are able to efficiently simulate phenomena of
interest thought to be not directly accessible otherwise [1].
Already at scales of tens of particles they have the potential
to outperform today’s most powerful supercomputers and
help us explain unclear physical effects, as well as give
boosts in crucial technological areas [2]. In addition, they
constitute an intermediate milestone towards the ultimate
goal of realizing large-scale universal quantum computers.
This has fueled impressive experimental advances in
multiple quantum technologies [3–9]. A type of quantum
many-body systems to which experimental simulations
have devoted considerable efforts over the past decade is
given by one-dimensional lattices of interacting spin-1=2
particles, or spin-1=2 chains, for short. In particular, even
though they fall into the regime of efficient classical
simulatability, the well-known transverse-field (TF) Ising
and XY models have become important basic test beds for
the most advanced experimental simulations, e.g., with ion-
trap [10–13], superconducting-circuit [14], Rydberg-atom
[15], and circuit quantum electrodynamics [16] platforms,
including digitalized simulations [12,14,16].
At least two facts justify the significant interest in these

specific models. The first one is that they display a vast
physical richness: For instance, the TF Ising model—which
is, actually, a subclass of the TF XY model—features a
quantum phase transition [17–20] as well as topologically

and spectrally interesting effects [21–25], and is relevant
for quantum speed-ups in certain optimization problems
[26]. The second one is that, for nearest-neighbor inter-
actions, they can be analytically solved, e.g., by mapping
them into systems of free, i.e., noninteracting, fermions
[17]. This allows for in-depth theoretical studies of their
dynamics [27–32]. From a broader perspective, these
models belong to a more general class of exactly solvable
systems known as noninteracting quantum systems, also
referred to as fermionic linear optics [33–39]. This class is
the fermionic counterpart of the Gaussian formalism for
bosons [40,41], which plays a major role in quantum
information and quantum optics. It includes, e.g., tight-
binding models important in condensed-matter physics,
certain interacting bosonic chains that can be fermionized
[42–44], and spin-1=2 systems in two-dimensional lattices,
such as the celebrated Kitaev’s honeycomb model [37],
which exhibits non-Abelian excitations.
Unfortunately, the exact analytical solution of a model

does not imply that one can efficiently certify the correctness
of an uncharacterized experimental simulation of it.
Furthermore, even if the computational complexity of the
target simulation is low, the number of measurements
required for its certification can be exponentially high in
the lattice size without the adequate certification method.
This is the case, e.g., for full state tomography (FST).
Characterization tools not relying on FSTexist [45–54], each
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one efficient on a different subclass of simulations. However,
none of these can efficiently handle fermionic linear optics.
In fact, almost all [10–12,14,16] the abovementioned experi-
ments relied on FST. The simulation of Ref. [13], in contrast,
was certified with matrix-product state tomography [48].
This is a powerful method that covers a broad class of chains
but tolerates little long-range entanglement, so that nontrivial
evolutions are in practice tractable only over short times
[13,48]. Indeed, generic spin chains out of the equilibrium
[55], or even very natural, static free-fermionic states
[56,57], involve large amounts of entanglement along the
lattice. Today, a major roadblock for further experimental
progress in spin-chain simulations (and in many-body
quantum technologies in general) is their certification.
Here, we develop efficient fidelity witnesses for all pure

fermionic Gaussian target states. These are experimentally
friendly observables whose expectation value (on an
arbitrary experimental state) yields a tight lower bound
to the fidelity with the target. Hence, they allow for
unconditional certification, i.e., without any a priori
knowledge of the experimental setup or imperfections.
We derive the witnesses in full generality in the Majorana-
fermion representation, and then apply them to experimen-
tally relevant spin-1=2 chains as examples. Among others,
we show how to efficiently certify any sudden quench (i.e.,
strongly out-of-equilibrium dynamics) in a critical TF Ising
chain with nearest-neighbor interactions. The measurement
scheme relies on importance sampling tailored to overlaps
between covariance matrices, which is potentially interest-
ing on its own. As a result, the number of measurements
required for the certification only has a modest scaling with
the lattice size, i.e., a small sample complexity, for which
we present upper bounds. Moreover, the method is robust
against finite experimental-state infidelities, in the sense of
there always existing a closed ball of valid states that are
correctly accepted by the certification test. Finally, we
provide also a totally general construction, not restricted to
fermions or Gaussian states, of (possibly nonefficient)
fidelity witnesses for arbitrary pure target states, which
may also be useful in other scenarios.
Preliminaries.—Consider a system of L spinless fer-

mionic atoms, from now on referred to as fermionic
modes. By f†j and fj we denote the creation and annihi-
lation operators, respectively, where j ¼ 1; 2;…; L. They
satisfy the canonical anticommutation relations ffj; f†kg ¼
fjf

†
k þ f†kfj ¼ δj;k and ffj; fkg ¼ ff†j ; f†kg ¼ 0, with δj;k

the Kronecker symbol. Let us next introduce the self-
adjoint Majorana mode operators,

m2j−1 ≔ fj þ f†j ; m2j ≔ −iðfj − f†jÞ; ð1Þ

with anticommutation relations fmj;mkg ¼ 2δj;k. We say
that the fermionic system is free, Gaussian, or linear optical
[33–39] if it is governed by a quadratic Hamiltonian,

H ¼ i
4

X2L
j;k¼1

Aj;kmjmk; ð2Þ

where A ¼ −A⊤ ∈ R2L×2L is called the coupling matrix.
The term “free” or “noninteracting” stems from the fact

that H is unitarily equivalent to a Hamiltonian of L
fermions not featuring any off-diagonal couplings. In the
bosonic realm, this is the defining property of Gaussian
systems [40,41], which justifies the term Gaussian. In turn,
what is linear about fermionic linear optics is the time
evolution of the mode operators in the Heisenberg picture,

mjðtÞ ≔ U†ðtÞmjUðtÞ ¼
X2L
k¼1

Qj;kðtÞmk; ð3Þ

where UðtÞ ≔ e−iHt, for t ∈ R, is a fermionic Gaussian
unitary andQðtÞ≔etA∈SOð2LÞ its representation in mode
space [58]; see Appendix A of Supplemental Material for a
simple derivation [59].
Finally, it is useful to introduce, for any state ϱ (Gaussian

or not), the real antisymmetric covariance matrix MðϱÞ
with elements

Mj;kðϱÞ ≔
i
2
trð½mj;mk�ϱÞ: ð4Þ

This matrix contains the expectation values of the single-
mode densities hnji ≔ hf†jfji as well as the two-mode

currents hf†jfk þ H:c:i and pairing terms hf†jf†k þ H:c:i.
Fidelity witnesses.—We consider throughout a (known)

pure target state ϱt and an arbitrary, unknown experimental
preparation ϱp. Their closeness is measured by their
fidelity,

F ≔ Fðϱt; ϱpÞ ≔ tr½ð ffiffiffiffi
ϱt

p
ϱ†p

ffiffiffiffi
ϱt

p Þ1=2�2 ¼ tr½ϱtϱp�; ð5Þ

where the last equality holds because ϱt is pure. With this,
the pivotal notion of our work can be defined as follows.
Definition 1 [Fidelity witnesses].—An observable W is

a fidelity witness for ϱt if, for FWðϱpÞ ≔ tr½Wϱp�, it
holds that (i) FWðϱpÞ ¼ 1 if, and only if, ϱp ¼ ϱt, and
(ii) FWðϱpÞ ≤ F for all states ϱp.
The term “witness” refers to the property that, for any

fixed threshold FT , finding FWðϱpÞ ≥ FT witnesses that
F ≥ FT , but if FWðϱpÞ < FT is found, then nothing can be
said about F (see Fig. 1). This is the least information about
ϱp needed to certify its fidelity with ϱt. The situation is
reminiscent of entanglement witnesses [62], which detect
some entangled states and discard all nonentangled ones.
The difference is that fidelity witnesses explicitly realize
the extremality-based intuition of “corralling valid states
against the boundary.” Specific witnesses have been built
for ground states of local Hamiltonians [48,54,63] and
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Gaussian as well as non-Gaussian output states of bosonic
linear-optical circuits [52]. In Appendix B of Supplemental
Material we present (possibly nonefficient) fidelity wit-
nesses of arbitrary target states with no assumption other
than being pure [59]. A special case of such generic
construction is the following (efficient) witnesses for the
free-fermionic setting.
Any L-mode pure fermionic Gaussian target state ϱt can

be written as

ϱt ≔ jψ tihψ tj with jψ ti ≔ Ujωi; ð6Þ
for a fermionic Gaussian unitary U, as defined below
Eq. (3), where ω ≔ ðω1;…;ωLÞ is an L-bit string. The ket
jωi represents the Fock-basis state vector with ωj ∈ f0; 1g
excitations in mode j, i.e., njjωi ¼ ωjjωi, for j ¼ 1;…; L,
and nj ≔ f†jfj. It is also convenient to introduce

nðωÞ ≔
P

L
j¼1 ½ð1 − ωjÞnj þ ωjð1 − njÞ�, the total fer-

mion-number operator in the locally flipped basis in which
ω is the null string, i.e., nðωÞjωi ¼ 0. In other words, jψ ti
represents the so-called Fermi-sea state and the eigenstates
of nðωÞ its excitations. In Appendix B [59], we show that the
observable

W ¼ Uð1 − nðωÞÞU† ð7Þ

is a fidelity witness for ϱt. Expression (7) is the fermionic
analogue of the bosonic Gausssian-state witnesses of

Ref. [52], with a crucial difference: While for bosons only
the Fock-basis state vector j0i is Gaussian, for fermions all
2L Fock-basis vectors jνi are Gaussian as they satisfy
Wick’s theorem [36]. In fact, for mixed states, all single-
mode states are Gaussian, in sharp contrast to the
bosonic case.
Measurement scheme.—Taking the expectation value of

Eq. (7) with state ϱp yields (see Appendix C [59])

FWðϱpÞ ¼ 1þ 1

4
tr½(MðϱpÞ −MðϱtÞ)⊤MðϱtÞ�; ð8Þ

where MðϱpÞ and MðϱtÞ are the covariance matrices of
ϱt and ϱp, respectively. This expression holds also for
bosonic Gaussian witnesses [52] and turns out to be very
useful for the measurement of FWðϱpÞ. We call Ω ≔
fðj; kÞ∶Mj;kðϱtÞ ≠ 0; for 1 ≤ j < k ≤ 2Lg the set of
nonzero entries of MðϱtÞ. Then Eqs. (4) and (8) imply
that if one measures on ϱp all jΩj ≤ 2L2 þ L observables
imjmk with indices in Ω, then one can estimate FWðϱpÞ.
However, this is not the most efficient procedure (see
Appendixes D and E [59]).
A more efficient approach is to exploit importance

sampling techniques, where a subset of the jΩj observables
is randomly selected for measurement according to its
importance for W. These techniques have been applied in
Hilbert space to the estimation of state overlaps, where they
yield efficient schemes only for a specific type of target
states [49,50]. Here we apply them in mode space to
efficiently estimate overlaps between fully general covari-
ance matrices. The starting point is to identify a random
variable X and an importance distribution P ≔ fPμgμ, with
X taking the value Xμ with probability Pμ, such that
tr½MðϱpÞ⊤MðϱtÞ� is expressed as the mean value of X, i.e.,

E½X� ¼
X
μ

PμXμ ¼ tr½MðϱpÞ⊤MðϱtÞ�: ð9Þ

Then, if one can experimentally sample X from P, E½X�
can be approximated by the finite-sample average
X� ≔

PN
m¼1 XμðmÞ=N , where XμðmÞ is the value of X at

the mth experimental run and N is the total sample size
(number of runs). Next, we present a choice of X and P
particularly suited to estimate FWðϱpÞ.
To this end, let us first define m̂ðβÞ

j;k as the projector onto
the eigenstate of the observable imjmk with eigenvalue
β ¼ �1, for ðj; kÞ ∈ Ω. Then, identifying μ with the triple
ðβ; j; kÞ and using the short-hand notation

jMðϱtÞj ≔
X

ðj;kÞ∈Ω
jMj;kðϱtÞj ≤ 2L2; ð10Þ

we choose

FIG. 1. Geometrical representation of a fidelity witness. A pure
target state ϱt lies at the boundary of state space. For any fixed
fidelity threshold FT , the valid experimental states are defined by
F ≥ FT (green). The states with F < FT are invalid (red). A
fidelity witness W defines a hyperplane (straight line), to the left
of which only valid states are found and to the right of which both
valid as well as invalid ones are found. The certification test
consists of accepting all states on the left and rejecting all those
on the right. Hence, a significant subset of valid states is
sacrificed, as in weak-membership problems. However, in return,
the experimental estimation is considerably more efficient than in
schemes attempting to separate the valid from the invalid states
(strong-membership problems).
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Xβ;j;k ≔ 2jMðϱtÞjβsgn½Mj;kðϱtÞ� ð11Þ

and

Pβ;j;k ≔
tr½m̂ðβÞ

j;kϱp�jMj;kðϱtÞj
jMðϱtÞj

: ð12Þ

This choice satisfies Eq. (9), as explicitly shown in
Appendix D [59]. In the experiment, in turn, for each
run one chooses ðj; kÞ according to Pj;k ≔ jMj;kðϱtÞj=
jMðϱtÞj and measures imjmk on ϱp, which outputs β with

probability Pβjj;k≔ tr½m̂ðβÞ
j;kϱp�. Substituting the obtained

ðj; kÞ and β in Eq. (11), one samples Xβ;j;k with probability
Pβ;j;k, as desired. As for the experimental accessibility of
the observables, for the relevant case of spin-1=2 chains,
each imjmk corresponds to a product of Pauli matrices, as
discussed below.
This single-shot importance sampling approach does not

necessarily yield a good estimate of each individual entry
of MðϱpÞ, as unlikely observables according to Pj;k are
measured seldomly. The method is specially tailored to
directly obtain FWðϱpÞ. In fact, the resulting estimate X�

yields an excellent approximation of tr½MðϱpÞ⊤MðϱtÞ� (in a
formal sense given by Theorem 2 below), with which the
right-hand side of Eq. (8) can be immediately evaluated.
This gives our final finite-sample estimate F�

WðϱpÞ
of FWðϱpÞ.
Sample complexity.—Let N ϵ;δðWÞ be the minimum

number (over all estimation strategies) of single measure-
ments required to estimate FWðϱpÞ, up to maximal stat-
istical error ϵ and with maximal failure probability δ, i.e.,
such that

PðjFWðϱpÞ − F�
WðϱpÞj ≤ ϵÞ ≥ 1 − δ; ð13Þ

for all ϱp. Then the scaling ofN ϵ;δðWÞ with L is called the
sample complexity [51,52,64] of estimating FWðϱpÞ. In
Appendix D we compute the number of single measure-
ments required with the measurement scheme described
above [59], which sets the following upper bound on
N ϵ;δðWÞ.
Theorem 2 [Sample complexity of FW].—Let ϵ > 0,

δ ∈ ð0; 1Þ, ϱt given by Eq. (6), and W by Eq. (7). Then,

N ϵ;δðWÞ ≤
�
lnð2=δÞjMðϱtÞj2

2ϵ2

�
: ð14Þ

Equation (10) implies that the right-hand side of Eq. (14)
is never larger than d2 lnð2=δÞL4=ϵ2e. The scaling is thus
polynomial in L for all ϱt, which means that the scheme is
efficient in the lattice size. Furthermore, for the physically
relevant case of ϱt being the unique ground state of a local
gapped Hamiltonian, the correlations trð½mj;mk�ϱtÞ decay

exponentially with jj − kj [65]. Then, jMðϱtÞj ∼ L logðLÞ,
which leads to N ϵ;δðWÞ ≤ O(L2 log2ðLÞ).
Finally, in Appendix E, we study also a measurement

scheme without importance sampling (where all jΩj
observables are measured) but exploiting the fact that all
commuting observables with indices in Ω can be measured
simultaneously in each measurement run [59]. This gives
the boundN ϵ;δðWÞ ≤ O(2 lnð2jΩj=δÞL4=ϵ2), which, since
jΩj ≤ 2L2 þ L, scales logarithmically worse in L than in
Eq. (14). We suspect that the bound in Eq. (14) is close to
being tight.
Spin-1=2 chains.—We denote a local spin operator

acting at site k by σαk ¼ 1⊗ðk−1Þ
2 ⊗ σα ⊗ 1⊗ðL−kÞ

2 , where
σα for α ¼ x, y, z are the Pauli matrices and 12 is the single-
qubit identity. Via the Jordan-Wigner transformation [66,67]

m2k−1 ¼
�Y

j<k

σzj

�
σxk; m2k ¼

�Y
j<k

σzj

�
σyk; ð15Þ

the Hamiltonian in Eq. (2) is equivalent [17] to the
experimentally relevant [10–16] spin-1=2 Hamiltonian

Hspin ¼ −
XL−1
k¼1

�
Jxkσ

x
jσ

x
kþ1 þ Jykσ

y
kσ

y
kþ1

�
−
XL
k¼1

Bkσ
z
k; ð16Þ

where Jxk; J
y
k ∈ R and Bk ∈ R are, respectively, constant

coupling and transverse-field strengths. Since these chains
are equivalent to free-fermionic systems for all parameter
regimes, certifying simulations of, e.g., both adiabatic
ground state preparations and sudden quenches amounts
to certifying pure fermionic Gaussian states, as described
above. Finally, note that Eqs. (15) map each imjmk to a
product of Pauli matrices, as anticipated in the measurement
scheme above.
Sudden quenches in critical Ising chains.—The 1D near-

est-neighbor TF Ising Hamiltonian is given by Eq. (16) with
Jxk¼J, Jy ¼ 0, and Bk ¼ B, for all k ¼ 1;…; L, where
J; B > 0. In a typical quench, the initial ground state
jψð0Þi ≔ j↑i⊗L at a noncritical regime J ¼ 0 < B, where
j↑i is an eigenvector of σz, is evolved under the critical
regime J ¼ B, so as to generate a strong out-of-equilibrium
evolution. These quenches are particularly challenging to
certify [13,48] because the time-evolved state vector jψðtÞi
rapidly acquires large amounts of entanglement. Let us
consider the simulation of such a quench by a digital
quantum simulator, which approximates the continuous-
time evolution with a Trotter-Suzuki pulse sequence
UðtÞ¼e−itðHBþHJÞ≈UT ≔ ðe−iΔtHBe−iΔtHJÞT , where t ¼
TΔt and HB and HJ are the Ising Hamiltonians for J ¼ 0
and B ¼ 0, respectively. The target covariance matrix is then
MðϱtÞ ¼ QðtÞMðj↑ih↑j⊗LÞQðtÞ⊤, where QðtÞ ¼ etAðJ;BÞ,
with AðJ; BÞ the coupling matrix of HB þHJ, is the mode
representation of the target time propagator UðtÞ and
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Mðj↑ih↑j⊗LÞ ≔ ⊕L
j¼1

�
0 −1
1 0

�
: ð17Þ

In turn, the preparation’s covariance matrix is given
by MðϱpÞ ¼ QTMðj↑ih↑j⊗LÞQ⊤

T , where QT ¼ ðeΔtAðJÞ
eΔtAðBÞÞT , with AðJÞ [AðBÞ] the coupling matrix of HB
[HJ], corresponds to the discrete-time experimental evolution
UT . See Fig. 2 for numerical results and Appendix A of
Supplemental Material [59] for details.
Discussion.—We have shown how to certify experimen-

tal states of dimension 22L with at most OðL4Þ measure-
ments, with no assumption whatsoever on the experimental
imperfections, for all pure fermionic Gaussian target states.
Moreover, for targets given by ground states of gapped
free-fermionic Hamiltonians, the number of experimental

repetitions reduces to O(L2 log2ðLÞ). In addition, in
Appendix F we prove that there always exists a closed
ball of valid states that are correctly accepted by the
certification test, so that the test is robust against finite
experimental deviations [59].
Our results are directly relevant to recent experiments

with spin chains [7,10–16,68] as well as potential imple-
mentations of Kitaev’s honeycomb model [69,70]. For
instance, concerning the certification of sudden quenches
as in Ref. [13], our technique is not limited by the generated
long-range entanglement and therefore applies to long-time
dynamics, for nearest-neighbor interactions. In turn, as for
certifying adiabatic passages of the type of Ref. [15], again
for nearest-neighbor interactions, our technique may be
useful even for evolutions stopping close to criticality.
Additionally, in real-life digital simulations [12,14,16],
apart from the Trotterization errors, also heating and noise
will of course be present. The fidelity witnesses offer an
excellent tool for experimentally quantifying, in an in-
expensive way, the detrimental effects of such imperfec-
tions on the simulation’s performance.
Free-fermionic models are classically tractable, but the

importance of their quantum simulations comes from the
fact that they constitute a test bed for experimental many-
body quantum technologies, with certified simulations of
classically intractable models as the ultimate goal. In this
respect, the direct certification tools developed here may
help bridge the gap between the experimental certification
of proof-of-principle simulations and classically intrac-
table ones.
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