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Abstract: A new strategy to improve osseointegration of implants is to stimulate adhesion of 

bone cells, bone matrix formation, and mineralization at the implant surface by modifying surface 

coating on the nanoscale level. Plant-derived pectins have been proposed as potential candidates 

for surface nanocoating of orthopedic and dental titanium implants due to 1) their osteogenic 

stimulation of osteoblasts to mineralize and 2) their ability to control pectin structural changes. 

The aim of this study was to evaluate in vitro the impact of the nanoscale plant-derived pectin 

Rhamnogalacturonan-I (RG-I) from potato on the osteogenic response of murine osteoblasts. RG-I 

from potato pulps was isolated, structurally modified, or left unmodified. Tissue culture plates 

were either coated with modified RG-I or unmodified RG-I or – as a control – left uncoated. The 

effect of nanocoating on mice osteoblast-like cells MC3T3-E1 and primary murine osteoblast 

with regard to proliferation, osteogenic response in terms of mineralization, and gene expression 

of Runt-related transcription factor 2 (Runx2), alkaline phosphate (Alpl), osteocalcin (Bglap), α-1 

type I collagen (Col1a1), and receptor activator of NF-κB ligand (Rankl) were analyzed after 

3, 7, 14, and 21 days, respectively. Nanocoating with pectin RG-Is increased proliferation and 

mineralization of MC3T3-E1 and primary osteoblast as compared to osteoblasts cultured without 

nanocoating. Moreover, osteogenic transcriptional response of osteoblasts was induced by nano-

coating in terms of gene induction of Runx2, Alpl, Bglap, and Col1a1 in a time-dependent man-

ner – of note – to the highest extent under the PA-coating condition. In contrast, Rankl expression 

was initially reduced by nanocoating in MC3T3-E1 or remained unaltered in primary osteoblast as 

compared to the uncoated controls. Our results showed that nanocoating of implants with modi-

fied RG-I beneficially 1) supports osteogenesis, 2) has the capacity to improve osseointegration 

of implants, and is therefore 3) a potential candidate for nanocoating of bone implants.

Keywords: nanocoatings, osseointegration, osteoblasts, mineralization, Rhamnogalacturonan-I

Introduction
Nanotechnology in dentistry has expanded over the last years, especially in implant 

dentistry. Surface modification at the nanolevel has been reported in a number of studies 

to play a crucial role in osseointegration.1–12 A new strategy to improve osseointegra-

tion is biochemical stimulation by developing surface nanocoating, which is able to 

increase adhesion of bone cells, bone matrix formation, and mineralization at the 

implant surface.

Nanocoating with organic molecules and human-, animal-, and plant-derived poly-

saccharides demonstrated that complementary lectins to cell-surface carbohydrates 

have the ability to bind polysaccharide present at the surface and mediate cell response 

(Figure 1).4 Plant-derived pectins have been proposed as potential candidates for surface 

nanocoating of medical devices due to their effect on bone cells and the possibility of 

controlling their structure.13–15 The effect on bone cells has been explained by a direct 
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adhesion of cells to pectins and indirectly through proteins 

binding to the pectins (Figure 1).4 The direct mechanism 

results in adhesion of bone cells directly to the surface. The 

indirect mechanism results in binding of a variety of proteins 

from the surrounding fluids to the surface, followed by selec-

tive binding to distinct receptors on the surface of invading 

cells.16,17 Binding to the receptors will elicit signals in the cells 

that result in enhanced adhesion, proliferation, and produc-

tion of extracellular matrix (ECM).17 Osteoblast differentia-

tion process is essential for development, maturation, and 

repair of the bone.18 A functional relationship between cell 

growth and the initiation and progression of events associated 

with cell differentiation is maintained and strictly regulated.19 

The sequentially regulated expression of cell growth genes 

has defined three distinct phases of osteoblast development: 

1) proliferation; 2) ECM synthesis, development, and matura-

tion; and 3) ECM mineralization.19–21

As the osseointegration depends on osteoblast activity, 

it is important to investigate and understand the interaction 

between cell and the nanocoating at the surface. Pectin 

nanocoating has been reported in a number of studies to 

modulate the osteoblast response because of their chemical 

and physical properties. Pectin’s chemical structure imitates 

the polysaccharides from the ECM of mammals, thus provid-

ing biospecific cell adhesion.22 It is possible to control the 

structure of pectin RG-I (Rhamnogalacturonan-I) by enzy-

matic modification. A variety of different pectin structures 

can be produced by changing the side chains (galactose and 

arabinose) or main chain (galacturonic acid and rhamnose) of 

the pectin molecule. Therefore, a screening of different RG-Is 

is important for identifying the regions of the RG-I molecule 

most important for bone cells and mineralized matrix forma-

tion. The hypothesis of our study is that galactose side chain 

will promote osteoblasts to produce mineralized matrix. 

The aim of this study was to evaluate in vitro the effect of 

nanocoating of polystyrene surfaces with unmodified and 

enzymatically modified (enrichment of galactose side chains) 

pectin RG-I from potato on osteoblasts with respect to their 

osteogenic response.

Experimental
Isolation, modification, and analysis 
of RG-I
Isolation and modification of RG-I
RG-I from potato pulps were isolated according to the pre-

viously published procedure.23 The enzymatic modification 

Figure 1 Schematic representation of specific cell recognition and adhesion to titanium surface nanocoated with analogs of cell-surface carbohydrates (1), osteoblasts with 
integrins recognize and adhere directly or indirectly through adhesive proteins to the surface (2), followed by migration, proliferation (3), differentiation and maturation (4), 
and transformation into osteocytes and lining cells (5).
Note: Reproduced with permission from Gurzawska KA. Nanocoating of Implant Surfaces with Pectin Rhamnogalacturonan-ls, Review and In Vitro Studies [PhD thesis]. Copenhagen, 
Denmark: Faculty of Health and Medical Sciences, University of Copenhagen; 2013.31

Abbreviation: ECM, extracellular matrix.
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of potato RG-I was done using polygalacturonase-I 

(Novozymes, Copenhagen, Denmark) and polygalacturonase-

III (Novozymes) together with pectin methylesterase 

(Novozymes). The side chains of potato RG-I were treated 

with α-l-arabinofuranosidase and endo-arabinanase to 

remove arabinan side chains and with β-galactosidase and 

endo-β-1,4-galactanase to remove galactan side chains. 

The monosaccharide composition and linkage analysis of 

unmodified potato (PU) and potato dearabinanated (PA) has 

been presented in our previous work.24

Surface modification and characterization
Surface nanocoating
Adherent PU (unmodified) and PA (modified) RG-Is 

(128  µg/mL) were coated on the surface of 6-, 24-, and 

96-well tissue polystyrene culture plates (TCPS) (Techno 

Plastic Products, Trasadingen, Switzerland). The reaction 

was carried out at room temperature overnight under sterile 

conditions on a shaker (IKA-Werke GmbH & Co. KG, 

Staufen, Germany) at 100 rpm, and then the plates were 

extensively rinsed in sterile water and dried in a laminar flow 

hood before in vitro experiments.

Surface nanocoating detection
The recognition of PU and PA RG-Is nanocoating was per-

formed using enzyme-linked immunosorbent assay (ELISA) 

before and after in vitro tests on the 24-well plate (n=2) in 

four wells selected randomly (m=4) to detect the presence 

of the nanocoating. RG-Is (PU and PA)-coated wells and 

control wells without RG-Is were blocked for 15 minutes 

with 1 mL/well (24-well plate) 5% (solution of fat-free milk 

powder in phosphate-buffered saline [PBS], pH 7.2) skimmed 

milk from Applichem (Darmstadt, Germany). Skimmed 

milk was removed from all the wells, and 1 mL/well of anti-

(1→4)-β-galactan LM5 (Plant Probes, Leeds, UK) diluted 

1:10 in 5% skimmed milk was added. The 24-well plate was 

placed on a shaker for 2 hours. All wells were washed with 

5% skimmed milk three times (after adding the milk to the 

wells, the plate was placed on a shaker for 5 minutes). Sec-

ondary antibody, anti-rat IgG (whole molecule) from Sigma-

Aldrich (Munich, Germany), was diluted 1:5,000 in 5% of 

skimmed milk and 1 mL was added in each well. The plate 

was covered with aluminum foil and placed on the shaker 

for 2 hours. Subsequently, wells were washed three times 

with 1 M PBS. Approximately 500 µL of phosphate substrate 

was applied to each well, and the plate was placed on the 

shaker for 10 minutes. Colorimetric detection was performed 

with Microplate Reader 500 (Bio-Rad, Munich, Germany) 

at 450 nm.

In vitro studies
The TCPS with PU and PA nanocoating were the test 

samples, and TCPS without the RG-Is were control samples. 

The in vitro assays, proliferation, mineralization, gene 

expression, and cell cycle analysis, were repeated six times 

each (n=6). The osteogenic response was examined using 

mice osteoblast-like cells MC3T3-E1 and primary osteoblast 

isolated from calvariae of wild-type (WT) C57BL/6 mice. 

The primary osteoblasts were extracted from two samples 

of WT mice (WT1 and WT2), and all in vitro experiments 

were repeated twice.

Cell culture
MC3T3-E1 osteoblast-like cells were grown in cell culture 

medium consisting of minimum essential medium (Gibco, 

Darmstadt, Germany), 18% fetal bovine serum (FBS; 

Biochrom, Berlin, Germany), antibiotic (100 mg/L strepto-

mycin and 100 U/mL penicillin; Biochrom), and 10 mL/L 

l-Glutamine (Biochrom) and incubated at 37°C with 5% CO
2
 

(Heraeus, Hanau, Germany). Primary cells (WT) were isolated 

from mice calvariae (3 days old) using digestion medium 

containing 0.2% collagenase (Sigma-Aldrich), 0.25%/0.5% 

trypsin (Biochrom), and minimum essential medium (Gibco) 

and incubated at 37°C with 5% CO
2
 (Heraeus) with cell 

culture medium consisting of minimum essential medium 

(Gibco), 10% FBS (Biochrom), antibiotic (100 mg/L strep-

tomycin and 100 U/mL penicillin) (Biochrom), and 10 mL/L 

nonessential amino acids (Biochrom). For proliferation 

assays, 1×105 cells/mL were seeded on 96-well TCPS plates 

and cultured for 12, 24, 48, and 72 hours. Cell culture for cell 

cycle analysis with fluorescence-activated cell sorting (FACS) 

was performed on 24-well plates with 2×104 cells/mL for 12, 

24, 48, and 72 hours.

For real-time polymerase chain reaction (PCR), 5×104 

cells/mL were seeded on six-well TCPS plates and cultured 

for 3, 7, 14, and 21 days. For mineralization, 2×104 cells/mL 

were seeded on 24-well TCPS plates and cultured for 3, 7, 14, 

and 21 days. For mineralization assay, culture medium in all 

wells was replaced after 24 hours with mineralization medium 

additionally consisting of 50 µL/mL ascorbic acid (Sigma-

Aldrich, Seelze, Germany) and 10 mM glycerol 2-phosphate 

disodium salt hydrate (Sigma-Aldrich). The mineralization 

medium was changed every third day. The cells’ morphol-

ogy was observed daily by light microscopy (Leitz Labovert, 

Ernst Leitz Wetzlar GmbH, Wetzlar, Germany).

Proliferation
Cell proliferation was determined by bromodeoxyuridine 

(BrdU). The BrdU incorporated into newly synthesized 
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DNA was quantified after 12, 24, 48, and 72 hours. Briefly, 

the proliferation assay was performed following the pro-

cedure described by the manufacturer (Roche Diagnostics 

GmbH, Mannheim, Germany). BrdU was added to the 

culture medium and incubated (37°C, 5% CO
2
) for 2 hours. 

Afterward, the medium was removed and the cells were fixed 

in 70% ethanol for 30 minutes. Fixed cells were incubated 

with anti-BrdU antibody for 2 hours. The absorbance from 

each well was measured using the Microplate Reader 500 at 

450 nm. The wells without cells (ie, containing only culture 

medium) were used as a blank; wells with cells incubated 

with anti-BrdU antibody for unspecific binding were used as 

a background and were subtracted from all measurements.

Cell cycle analysis
Cell cycle analysis was based on DNA staining method using 

propidium iodide (PI, Sigma-Aldrich), which binds in propor-

tion to the amount of DNA present in the cell. In brief, cells 

after 12, 24, 48, and 72 hours were washed twice with 1 mL 

PBS, trypsinized, resuspended in 150 μL culture medium, and 

collected from three wells into one Eppendorf vial. Cells were 

harvested by centrifugation, 3,000 rpm for 10 minutes. The 

supernatant was discarded and the cells were washed with 500 

μL PBS containing 2% FBS and harvested by centrifugation, at 

3,000 rpm for 10 minutes. This procedure was repeated twice. 

Cells were fixed with 70% cold ethanol for 20 minutes at 4°C 

and centrifuged at 3,000 rpm for 10 minutes. Afterward, cells 

were washed twice with 1 mL cold PBS containing 2% FBS 

and centrifuged at 3,000 rpm for 10 minutes. Approximately 

300 μL PBS containing 2% FBS and 1.5 μL RNase were added. 

Subsequently, cells were stained with PI and resuspended 

before cell cycle analysis using FACSCalibur flow cytometer 

(Becton-Dickinson, Mansfield, MA, USA) and FlowJo soft-

ware (version 10; Tree Star Inc., Ashland, OR, USA).

Mineralization assay
In the mineralization assay, cells were fixed in ice-cold 70% 

ethanol (1 mL/well) for 1 hour at 4°C. The wells were washed 

with 1 mL distilled water, and the cell mineral matrix was 

stained with 500 μL, 40 mM Alizarin Red-S (AR-S; Sigma-

Aldrich) at pH 4.2 for 10 minutes at room temperature, with 

shaking rotation 100 rpm. The wells were washed three times 

with 1 mL distilled water and finally washed with 1  mL 

PBS with calcium and magnesium (PBS+, Biochrom AG) 

for 15 minutes at room temperature, with shaking rotation 

100 rpm to reduce nonspecific AR-S staining. Cell mineral 

matrix was destained in 500 μL 10% cetylpyridynium chloride 

(CPC; Sigma-Aldrich) for 15 minutes at room temperature, 

with rotation 100 rpm. Standard dilution and AR-S extracts 

were added (200 μL/well) into a 96-well ELISA plate and 

AR-S concentrations were determined at 562 nm using a 

Microplate Reader 500. Measurements were performed using 

650 nm as reference. Additionally, standards were applied, 

1.0 mM AR-S and 10% CPC (Sigma-Aldrich), to calculate 

the content of calcium in each well using analytical curve.

Gene expression, real-time PCR
RNA isolation using the RNeasy mini kit (Qiagen, Hilden, 

Germany) and the reverse-transcription PCR using one-

step high-capacity cDNA reverse-transcription kit (Applied 

Biosystem, Foster City, CA, USA) were performed as 

previously described.25 A comparative threshold cycle (C
t
) 

method was selected for gene expression analysis performed 

with CFX96 Real-Time PCR Detection System (Bio-Rad). 

SsoAdvanced™ Universal SYBR Green Supermix (Bio-Rad) 

was used for expression of target genes: Runt-related transcrip-

tion factor 2 (Runx2), alkaline phosphatase (Alpl), osteocalcin 

(Bglap), α-1 type I collagen (Col1a1), receptor activator of 

NF-κB Ligand (Rankl), and beta actin (Actb) as endogenous 

control gene. Manually prepared cDNA of 2 and 8 μL reaction 

mix were pipetted to each well of 96-well plate (Bio-Rad), 

according to manufacturer’s instructions. Results were shown 

using the comparative C
t
 method (ΔΔC

t
). As a C

t reference
 beta 

actin (Actb) has been used for each of sample.

Statistical analyses
Descriptive statistics were used and mean values were calcu-

lated. Results of surface analysis as well as results from the 

in vitro experiments were analyzed using one-way analysis 

of variance (ANOVA) tests and Bonferroni corrections for 

multiple comparisons to control using SPSS version 11.5 

software (SPSS Inc., Chicago, IL, USA). A significance level 

(a P-value) of 5% was used throughout.

Results
Detection of RG-I surface nanocoating
The RG-I PU and PA were detected before in vitro tests and 

after 21 days of cell culture. The results showed presence 

of the nanocoating with PU and PA with colorimetric stain-

ing, while on the control surface without the nanocoating, 

the absorbance was close to zero (Figure 2). After 21 days of 

cell culture, the results still showed presence of PU and PA, 

but with lower amount than before the in vitro test.

In vitro studies
The in vitro results will be presented only for one sample of 

WT cells as a significant difference was not found between 

WT1 and WT2.
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Cell morphology
The WT and MC3T3-E1 cell morphology investigated with 

light microscopy showed osteoblastic cells with spread-

out morphology when cultured on both noncoated and 

RG-Is-nanocoated surfaces after 24, 48, and 72 hours. No 

difference in cell morphology was observed between the 

control TCPS-, PA-, and PU-coated surfaces.

Proliferation
RG-I coating did not influence the proliferation of 

MC3T3-E1 and primary osteoblasts as compared to the 

uncoated controls after 12, 24, 48, and 72 hours (Figure 3). 

The proliferation of WT and MC3T3-E1 cells increased 

over time from 12 to 72 hours, reaching the highest value 

at 72 hours. The proliferation of WT cells at PA was higher 

than at PU, and proliferation at PU was higher than at the 

control TCPS surface in each period of time, 12, 24, 48, and 

72 hours. The difference in proliferation rate over time was 

observed between the cell line MC3T3-E1 and WT cells. 

The highest amount of proliferating cells was detected in 

the MC3T3-E1 culture and the lowest in WT primary cell 

culture.

Cell cycle analysis (FACS)
Cell cycle analysis using flow cytometry did not show sig-

nificant differences in the percentages of MC3T3-E1 and WT 

cells in G
1
, S/M, and G

2
 phases on PU and PA compared to 

TCPS control after 72 hours. A significant increase in the 

cell frequencies (%) was found in G
1
 phase in MC3T3-E1 

cells cultured at PU-coated surface compared to PA-coated 

surfaces (P#0.05; Figure 4).

Mineralization
The mineralization assay showed no significant increase 

in matrix deposition for cells cultured on surfaces coated 

with PU and PA compared to control TCPS for MC3T3-E1 

and WT after 3, 7, 14, and 21 days. The mineralization 

results, for both WT and MC3T3-E1, showed increase 

of mineralized matrix over time, and the highest amount 

was observed after 21 days. The amount of mineralized 

matrix was higher in MC3T3-E1 compared to WT cells 

(Figure 5).

Gene expression
The real-time PCR results of gene expression measured 

at different end points (3, 7, 14, and 21 days) are shown 

Figure 2 Presence of the nanocoating with PU and PA with immunofluorescence 
staining using anti-(1→4)-β-galactan LM5 and Anti-rat IgG (whole molecule)–alkaline 
phosphatase antibody.
Note: The results represent absorbance values measured at 450 nm before in vitro 
test and after 21 days of WT cell culture.
Abbreviations: ANOVA, analysis of variance; IgG, immunoglobulin G; PA, potato 
dearabinanated; PU, potato unmodified; WT, wild-type mice primary osteoblast 
from calvariae; LM, lyphophilized rat monoclonal protein-G; C, control tissue 
culture polystyrene surface.

Figure 3 Proliferation activity of WT cells (A) and osteoblastic cells MC3T3-E1 (B) measured by the colorimetric method using BrdU after 12, 24, 48, and 72 hours 
(mean ± SEM, n=6).
Notes: The results represent absorbance values measured at 450 nm against the background control wells using 650 nm as a reference. ANOVA tests and Bonferroni 
corrections were performed for multiple comparisons. A significance level of 0.05 was used throughout the study. There was no significant difference between tested 
(PU and PA) and C samples.
Abbreviations: ANOVA, analysis of variance; BrdU, bromodeoxyuridine; C, control TCPS; h, hour; PA, potato dearabinanated; PU, potato unmodified; RG-I, 
rhamnogalacturonan-I; SEM, standard error of the mean; TCPS, tissue culture polystyrene surface; WT, wild-type mice primary osteoblast from calvariae.
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in Figure 6. Gene expression of Runx2, Col1a1, Alpl, Bglap, 

and Rankl was measured as they increased over time, from 

3 to 21 days.

Runx2 expression in MC3T3-E1 and WT cultured at 

PU- and PA-coated surfaces was significantly different 

compared to control TCPS at different time points, as 

illustrated in Figure 6. In MC3T3-E1 and WT cells cultured 

on surface coated with PA, Runx2 expression after 3, 7, 

14, and 21 days was significantly upregulated compared 

to control TCPS (WT: P#0.05 after 3 days, P#0.001 

after 7, 14, and 21 days; MC3T3-E1: P#0.05 after 3 days, 

P#0.01 after 7, 14, and 21 days). On the surface coated with 

Figure 4 Cell cycle analysis of MC3T3-E1 and WT cells cultured on PU, PA, and uncoated TCPS (control) after 72 hours.
Notes: (A) Representative diagrams of osteoblastic MC3T3-E1 and WT cells. (B) Frequencies (%) of MC3T3-E1 and WT cells in G1, S/M, and G2 phases (mean ± SEM, n=6). 
ANOVA tests and Bonferroni corrections were performed for multiple comparisons. A significance level of 0.05 was used throughout the study. There was no significant 
difference between tested (PU and PA) and C samples. Significant difference between PU and PA: *P,0.05.
Abbreviations: ANOVA, analysis of variance; C, control TCPS; PU, potato unmodified RG-I; PA, potato dearabinanated RG-I; RG-I, rhamnogalacturonan-I; SEM, standard 
error of the mean; TCPS, tissue culture polystyrene surface; WT, wild-type mice primary osteoblast from calvariae; SSC, side scatter; FSC, forward scatter; FL, fluorescence; 
PI, propidium iodide.
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Figure 5 Relative mineralization of ECM, measured by an AR-S staining assay after 7 days (mean ± SEM, n=6).
Notes: Results in nmol Ca2+ AR-S correspond to amount of AR-S bound to 2 mol Ca2+/mol of dye in solution. ANOVA tests and Bonferroni corrections were performed 
for multiple comparisons. A significance level of 0.05 was used throughout the study. There was no significant difference between tested (PU and PA) and C samples in WT 
cells (A) and MC3T3-E1 osteoblastic cells (B) cultured on plates coated with PU, PA, and C.
Abbreviations: ANOVA, analysis of variance; AR-S, Alizarin Red-S; C, control TCPS; ECM, extracellular matrix; PU, potato unmodified RG-I; PA, potato dearabinanated 
RG-I; RG-I, rhamnogalacturonan-I; SEM, standard error of the mean; TCPS, tissue culture polystyrene surface; WT, wild-type mice primary osteoblast from calvariae.

Figure 6 (Continued)
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PU, Runx2 expression was significantly upregulated after  

7 and 14 days in WT cell culture compared to control TCPS 

(P#0.05 after 3 days, P#0.001 after 14 days). The expres-

sion of Runx2 was the highest in MC3T3-E1 and WT cell 

cultures at the surface coated with PA and was the lowest 

on the control TCPS.

In general, Col1a1, Alpl, and Bglap expressions at dif-

ferent time points (3, 7, 14, and 21 days) were the highest 

at PA-coated surface in MC3T3-E1 and WT cell cultures. 

Expression of Col1a1, Alpl, and Bglap in MC3T3-E1 and 

WT cells cultured at PU was lower than those cultured at 

PA, but higher than at control TCPS surface.

The Col1a1 in WT cell culture was found to be expressed 

significantly higher (P#0.01 after 3 days, P#0.001 after 

7, 14 and 21 days) at PA compared to control TCPS. The 

Col1a1 in MC3T3-E1 cell culture was found to be expressed 

significantly higher (P#0.01 after 3 days, P#0.001 after 

7  days, P#0.05 after 14 and 21 days) at PA compared 

to control TCPS. For PU-coated surface, the Col1a1 

expression was significantly higher (P#0.001) after 7 days 

in the WT cell culture. In MC3T3-E1, the gene expression 

was significantly higher after 3, 7, and 14 days (P#0.05).

The Alpl in WT cell culture was significantly higher 

(P#0.001) at PA compared to control TCPS at each time 

end point. Alpl expression in MC3T3-E1 cell culture was 

significantly higher (P#0.01 after 3 and 14 days, P#0.001 

after 7 days, P#0.05 after 21 days) at PA compared to control 

TCPS. For PU-coated surface, the Alpl expression in WT 

cell culture was significantly higher (P#0.05 after 3 days, 

P#0.001 after 7 and 21 days, and P#0.01 after 14 days) 

compared to control TCPS. In MC3T3-E1 cell culture at 

PU-coated surface, the Alpl expression was significantly 

higher (P#0.01 after 7 days and P#0.05 after 14 days) 

compared to control TCPS.

Bglap expression in WT cell culture at PA was signifi-

cantly higher (P#0.001 after 3, 14, and 21 days and P#0.05 

after 7 days) compared to control TCPS. In MC3T3-E1, 

Bglap expression at PA-coated surface was significantly 

Figure 6 Real-time PCR measurements of the gene expression of Runx2, Col1a1, Alpl, Bglap, and Rankl in WT cells (A) and MC3T3-E1 osteoblastic cells (B) cultured on 
plates coated with PU, PA, and C.
Notes: Values on the y-axis represent amplification efficiency (∆∆Ct). Results are mean ± SEM of six independent. ANOVA tests and Bonferroni corrections were performed 
for multiple comparisons. A significance level of 0.05 was used throughout the study. Significant difference between C and tested samples (PU and PA): *P,0.05; **P,0.01; 
***P,0.001.
Abbreviations: ANOVA, analysis of variance; Alpl, alkaline phosphate; Bglap, osteocalcin; Col1a1, collagen type-1; C, control TCPS; PCR, polymerase chain reaction; PA, 
potato dearabinanated RG-I; PU, potato unmodified RG-I; RG-I, rhamnogalacturonan-I; Rankl, receptor activator for nuclear factor; Runx2, osteoblast transcription factor 
(runt-related gene 2); SEM, standard error of the mean; TCPS, tissue culture polystyrene surface; WT, wild-type mice primary osteoblast from calvariae.
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higher (P#0.01 after 3 and 7 days and P#0.001 after 14 and 

21 days). The expression of Bglap in WT cell culture at PU-

coated surface was significantly higher after 3 (P#0.001) and 

21 days (P#0.05) compared to control TCPS. The expression 

of Bglap in MC3T3-E1 cell culture at PU-coated surface was 

significantly higher after 3 and 7 days (P#0.01) compared 

to control TCPS.

Rankl expression in WT cell culture was found to be 

significantly lower (P#0.001 after 3 days and P#0.01 after 

14 days) at PA compared to control TCPS. The expression of 

Rankl in MC3T3-E1 cells was not found to be significantly 

lower at PA compared to control TCPS. For PU-coated sur-

face, the Rankl expression was significant lower (P#0.01) 

after 3 days in WT cell culture. In MC3T3-E1, no significant 

difference in gene expression was observed between PU and 

control TCPS.

Discussion
The aim of this study was to evaluate in vitro the effect 

of nanocoating of polystyrene surfaces with pectin RG-I 

from potato on osteoblasts with respect to their osteogenic 

response. To test the hypothesis of our studies that galac-

tose side chain of RG-I will promote osteoblasts to produce 

mineralized matrix, analysis of enzymatically modified RG-I 

was included.

Our results demonstrate that osteoblasts are sensitive to 

surface modification of RG-Is coating. The cells cultured 

on surfaces coated with RG-Is containing higher amount 

of galactose produced higher level of mineralized matrix 

compared with controls. Furthermore, increased level of gene 

expression of Runx2, Col1a1, Alpl, and Bglap and decreased 

level of Rankl were detected in cells cultured on surfaces 

coated with RG-Is, PU, and PA.

In general, the difference between PU and modified 

RG-I, PA was reflected by the sugar composition.24 Chemical 

components of the RG-I structure influenced osteoblast activ-

ity, which is in agreement with other studies.13–15,22,25,26 Our 

findings support results from earlier studies, indicating that 

surfaces coated with RG-I containing short arabinan side 

chains and high amount of galactose enhance fibroblast and 

osteoblast cells spreading and growth, in contrast to the RG-I 

with high amount of arabinose, which led to aggregation 

and decreased proliferation.15 In this study, we proved that 

high content of galactose, present in PA and PU, promoted 

osteoblasts to produce mineralized matrix. Our finding is also 

in agreement with previous studies performed at polystyrene 

and titanium surfaces showing that RG-Is with higher amount 

of galactose side chains activated human osteoblast-like cells, 

SaOS-2, to mineralize.24,25,27 In this study, osteoblast-like cells, 

MC3T3-E1, and primary WT osteoblasts from mice were 

used to confirm the hypothesis that galactose stimulates the 

mineralization process at different end points.

The highest proliferation (BrdU) of MC3T3-E1 and 

WT cells at different end points was reported on PA-coated 

surface with high content of galactose. However, the results 

of FACS analysis showed that PU and PA did not signifi-

cantly influence MC3T3-E1 and WT cell cycle progression 

compared to cells cultured on TCPS control. Proliferation 

(BrdU) of MC3T3-E1 and WT cells at different end points 

was reported to be the highest on PA with high content of 

galactose. These results are the first to show the RG-Is effect 

on osteoblast proliferation measured with BrdU assay and cell 

cycle analysis (FACS analysis). Kokkonen et al14 investigated 

the effect of RG-Is from apple on MC3T3-E1 cell number 

and morphology. The findings showed an increase in the 

number of cells and more spread morphology at surfaces 

coated with the RG-Is with shorter side chains of arabinose 

compared to the surface coated with RG-I with longer side 

chains of arabinose.26

The direct contact between RG-I side chains and the 

cells might affect cell behavior.25 Adhesion of the cells 

promotes proliferation and further differentiation.8,14 Our 

findings indicate that RG-Is coating might promote adhe-

sion of the cells, resulting in an increase in proliferation 

and differentiation. Adhesion of the cells to the surface is 

the first step in osseointegration, which initiates cell growth 

and differentiation.19 A mutual relationship between cell 

growth and progression of events associated with osteoblast 

differentiation and matrix formation and maturation can be 

observed by measuring gene expression levels in real-time 

PCR. The gene expression has been supplemented in our 

study with colorimetric assay (AR-S) to analyze mineraliza-

tion process by measuring mineralized matrix formation. 

Gene expression and mineralization were examined at dif-

ferent time points (3, 7, 14, and 21 days) to identify behav-

ior of osteoblasts during the whole osteoblast lineage. The 

selection of time points was based on our own experience 

and other studies.28 The results of mineralization showed an 

increase in matrix deposition for cells cultured on surfaces 

coated with PA and PU compared to control after 3, 7, 14, 

and 21 days, but a significant difference was not found. The 

AR-S assay, based on our experience, is rather suitable for 

quality than for quantity evaluation. Cells cultured on PU- 

and PA-coated surface created hard and condensed calcium 

deposits, which were difficult to access and penetrate for 

AR-S to stain. Therefore, other methods to quantify the 
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mineralized matrix deposition should be included in the 

study. Gene expression is one of the most reliable methods to 

identify and characterize activity during the whole osteoblast 

lineage.19 The selection of genes for monitoring should be 

well-defined based on the aims of the study. Therefore, we 

selected genes related to matrix formation (Col1a1), matrix 

maturation (Alpl), and matrix mineralization (Bglap).29 

Furthermore, we selected Runx2 expressed during the whole 

osteoblast lineage, from pluripotent stem cells to a stage of 

immature osteoblasts. Rankl produced by osteoblast in late 

stage of mineralization activating osteoclast was selected to 

investigate if the nanocoating is inhibiting the bone resorp-

tion by osteoclast.30,31 We found Runx2 to be upregulated 

after 3, 7, 14, and 21 days at the surface coated with both PU 

and PA, which leads to the conclusion that RG-Is influenced 

cell activity in the early stage itself, shortly after adhesion to 

the coated surface. This finding is important as Runx2 is able 

to upregulate expression of genes involved in matrix forma-

tion, maturation, and mineralization, such as Col1a1, Alpl, 

osteopontin, bone sialoprotein, and Bglap.30 In our studies, 

expression of Col1a1, Alpl, and Bglap have been increased 

at the surface coated with PU and PA compared to control 

after 3, 7, 14, and 21 days. This is in agreement with results 

from a study by Gurzawska et al,25 which showed higher 

expression of Col1a1, Alpl, and Bglap at the surface coated 

with RG-I from lupin unmodified, characterized with high 

content of galactose after 3 days. However, these genes have 

been measured only at one time point, while in this study 

four time points (3, 7, 14, and 21 days) were investigated, 

confirming that RG-Is coating activates osteoblast differen-

tiation at different stages. This is the first study which ana-

lyzed the influence of RG-Is coating at different time points 

using two types of osteoblasts, MC3T3-E1 and primary 

osteoblast from mice. Our findings showed that PU and PA 

coating improved osteoblast proliferation, matrix formation, 

maturation, and mineralization, which may influence bone 

healing and osseointegration of the implants. In addition, our 

studies showed that the PU and PA coating downregulated 

Rankl compared to control at different time points, which is a 

crucial finding in relation to bone-resorbing osteoclasts. The 

Rankl expression results have revealed that RG-Is decreased 

receptor activator Rankl secretion in osteoblasts, suggest-

ing a role in the osteoblast-induced inhibition of osteoclast 

differentiation. The inhibition of Rankl might prolong the 

osteoblast activity; however, it should be expressed to keep 

the bone remodeling in balance.32

The in vitro results revealed that RG-Is coating stimu-

lated the osteoblast activity and suggested that the chemical 

structure of the molecule might modulate the cell response. 

Nanocoating with PA with a higher content of galactose 

influenced higher proliferation (BrdU), mineralized matrix 

formation (AR-S), and Runx2, Col1a1, Alpl, and Bglap 

expression compared to PU nanocoating.24 It has previously 

been indicated that RG-I with high amounts of galactose 

enhanced cell spreading and growth, in contrast to the RG-I 

with high amounts of arabinan, which lead to aggregation 

and decreased proliferation.13–15,22,26 Our findings support 

our hypothesis that linear 1.4-linked galactans might be 

important for osteoblast differentiation, which has also been 

proposed in previous studies.24 Galectin-3 is present in the 

membrane of osteoblastic cells, which specifically binds 

to galactose residues, and it can therefore be speculated 

that the interaction with the RG-I galactans is mediated 

through galectin-3.33,34 However, the hypothesis of linear 

1.4-linked galactans influencing osteoblast behavior should 

be confirmed using other in vitro assays (protein expres-

sion) and microscopic investigations (immunofluorescence 

staining).

In summary, our in vitro results showed an increase in 

proliferation, mineralization, and gene expression in osteo-

blasts cultures on surfaces coated with RG-Is, particularly 

modified RG-I with high content of galactose.

Conclusion
The nanocoating with unmodified and enzymatically modi-

fied pectin RG-I from potato influenced osteoblast prolif-

eration, mineralization, and gene expression. The results 

enriched the knowledge about RG-Is effect on osteoblast 

behavior at different time points. The structural properties 

of RG-Is have an influence on different cell responses, and 

further investigations about linear 1.4-linked galactans should 

be performed.

Our results showed that the RG-Is nanocoating might 

have the potential for further improvement of bone healing 

and osseointegration.

Acknowledgments
The project has been supported by Marie Skłodowska-

Curie grant (FP-7 # 290246). The authors thank RAPID 

(Rheumatoid Arthritis and Periodontal Inflammatory 

Disease) research group for providing support in performing 

experiments, and Bodil Jørgensen and Pete Ulvskov from 

University of Copenhagen for providing RG-Is.

Disclosure
The authors report no conflicts of interest in this work.

 
In

te
rn

at
io

na
l J

ou
rn

al
 o

f N
an

om
ed

ic
in

e 
do

w
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.d

ov
ep

re
ss

.c
om

/ b
y 

87
.7

7.
11

8.
21

2 
on

 1
7-

F
eb

-2
01

7
F

or
 p

er
so

na
l u

se
 o

nl
y.

Powered by TCPDF (www.tcpdf.org)

                               1 / 1

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine

Publish your work in this journal

Submit your manuscript here: http://www.dovepress.com/international-journal-of-nanomedicine-journal

The International Journal of Nanomedicine is an international, peer-
reviewed journal focusing on the application of nanotechnology  
in diagnostics, therapeutics, and drug delivery systems throughout  
the biomedical field. This journal is indexed on PubMed Central, 
MedLine, CAS, SciSearch®, Current Contents®/Clinical Medicine, 

Journal Citation Reports/Science Edition, EMBase, Scopus and the 
Elsevier Bibliographic databases. The manuscript management system 
is completely online and includes a very quick and fair peer-review 
system, which is all easy to use. Visit http://www.dovepress.com/
testimonials.php to read real quotes from published authors.

International Journal of Nanomedicine 2017:12 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

Dovepress

249

Nanocoating with plant-derived pectins

References
	 1.	 Morra M. Biochemical modification of titanium surfaces: peptides and 

ECM proteins. Eur Cell Mater. 2006;12:1–15.
	 2.	 Albrektsson T, Wennerberg A. Oral implant surfaces: part 1 – review 

focusing on topographic and chemical properties of different surfaces 
and in vivo responses to them. Int J Prosthodont. 2004;17(5):536–543.

	 3.	 de Jonge LT, Leeuwenburgh SC, Wolke JG, Jansen JA. Organic–
inorganic surface modifications for titanium implant surfaces. Pharm 
Res. 2008;25(10):2357–2369.

	 4.	 Gurzawska K, Svava R, Jørgensen NR, Gotfredsen K. Nanocoating 
of titanium implant surfaces with organic molecules. Polysaccharides 
including glycosaminoglycans. J Biomed Nanotechnol. 2012;8(6): 
1012–1024.

	 5.	 Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treat-
ments of titanium dental implants for rapid osseointegration. Dent 
Mater. 2007;23(7):844–854.

	 6.	 Meirelles L, Currie F, Jacobsson M, Albrektsson T, Wennerberg A. 
The effect of chemical and nanotopographical modifications on the 
early stages of osseointegration. Int J Oral Maxillofac Implants. 2008; 
23(4):641–647.

	 7.	 Meirelles L, Melin L, Peltola T, et al. Effect of hydroxyapatite and 
titania nanostructures on early in vivo bone response. Clin Implant 
Dent Relat Res. 2008;10(4):245–254.

	 8.	 Mendonca G, Mendonca DB, Aragao FJ, Cooper LF. Advancing 
dental implant surface technology – from micron- to nanotopography. 
Biomaterials. 2008;29(28):3822–3835.

	 9.	 Wennerberg A, Albrektsson T. Effects of titanium surface topography 
on bone integration: a systematic review. Clin Oral Implants Res. 2009; 
20(Suppl 4):172–184.

	10.	 Wennerberg A, Albrektsson T. On implant surfaces: a review of cur-
rent knowledge and opinions. Int J Oral Maxillofac Implants. 2010; 
25(1):63–74.

	11.	 Wennerberg A, Albrektsson T, Andersson B. An animal study of c.p. 
titanium screws with different surface topographies. J Mater Sci Mater 
Med. 1995;6(5):302–309.

	12.	 Wennerberg A, Jimbo R, Stubinger S, Obrecht M, Dard M, 
Berner S. Nanostructures and hydrophilicity influence osseointegra-
tion: a biomechanical study in the rabbit tibia. Clin Oral Implants Res. 
2013;25(9):1041–1050.

	13.	 Bussy C, Verhoef R, Haeger A, et al. Modulating in vitro bone cell and 
macrophage behavior by immobilized enzymatically tailored pectins. 
J Biomed Mater Res A. 2008;86(3):597–606.

	14.	 Kokkonen HE, Ilvesaro JM, Morra M, Schols HA, Tuukkanen J. Effect 
of modified pectin molecules on the growth of bone cells. Biomacro-
molecules. 2007;8(2):509–515.

	15.	 Nagel MD, Verhoef R, Schols H, et al. Enzymatically-tailored pec-
tins differentially influence the morphology, adhesion, cell cycle 
progression and survival of fibroblasts. Biochim Biophys Acta. 
2008;1780(7–8):995–1003.

	16.	 Brandley BK, Schnaar RL. Cell-surface carbohydrates in cell recogni-
tion and response. J Leukoc Biol. 1986;40(1):97–111.

	17.	 Heinegård D. Connective tissue as the environment receiving tissue 
implants. In: Branemark P-I, Chien S, Gröndahl HG, Robinson K, 
editors. The Osseointegration Book. Berlin, Germany: Quintessence 
Publishing Co. Inc.; 2005:143–147.

	18.	 Huh JE, Yang HR, Park DS, et al. Puerariae radix promotes differ-
entiation and mineralization in human osteoblast-like SaOS-2 cells. 
J Ethnopharmacol. 2006;104(3):345–350.

	19.	 Stein GS, Lian JB. Molecular mechanisms mediating proliferation/
differentiation interrelationships during progressive development of 
the osteoblast phenotype. Endocr Rev. 1993;14(4):424–442.

	20.	 Franceschi RT. The developmental control of osteoblast-specific gene 
expression: role of specific transcription factors and the extracellular 
matrix environment. Crit Rev Oral Biol Med. 1999;10(1):40–57.

	21.	 Krause C, de Gorter DJJ, Karperien M, Dijke P. Signal transduction 
casacades controlling osteoblasts differentiation. In: Clifford JR, editor. 
Primer on the Metabolic Bone Diseases and Disorders of Mineral 
Metabolism. Vol 7. Washinghton, DC: American Society of Bone and 
Mineral Research; 2008:10–16.

	22.	 Morra M, Cassinelli C, Cascardo G, et al. Effects on interfacial proper-
ties and cell adhesion of surface modification by pectic hairy regions. 
Biomacromolecules. 2004;5(6):2094–2104.

	23.	 Byg I, Diaz J, Øgendal LH, et al. Large-scale extraction of rham-
nogalacturonan I from industrial potato waste. Food Chem. 2012; 
131(4):1207–1216.

	24.	 Gurzawska K, Svava R, Yihua Y, et al. Osteoblastic response to pectin 
nanocoating on titanium surfaces. Mater Sci Eng C Mater Biol Appl. 
2014;43:117–125.

	25.	 Gurzawska K, Svava R, Syberg S, et al. Effect of nanocoating with 
rhamnogalacturonan-I on surface properties and osteoblasts response. 
J Biomed Mater Res A. 2012;100(3):654–664.

	26.	 Kokkonen H, Cassinelli C, Verhoef R, Morra M, Schols HA, 
Tuukkanen J. Differentiation of osteoblasts on pectin-coated titanium. 
Biomacromolecules. 2008;9(9):2369–2376.

	27.	 Svava R, Gurzawska K, Yihau Y, et al. The structurally effect of surface 
coated rhamnogalacturonan I on response of the osteoblast-like cell line 
SaOS-2. J Biomed Mater Res A. 2014;102(6):1961–1971.

	28.	 Byers BA, Pavlath GK, Murphy TJ, Karsenty G, Garcia AJ. Cell-type-
dependent up-regulation of in vitro mineralization after overexpression 
of the osteoblast-specific transcription factor Runx2/Cbfal. J Bone 
Miner Res. 2002;17(11):1931–1944.

	29.	 Jonason JH, O’Keefe RJ. Isolation and culture of neonatal mouse 
calvarial osteoblasts. Methods Mol Biol. 2014;1130:295–305.

	30.	 Neve A, Corrado A, Cantatore FP. Osteoblast physiology in normal 
and pathological conditions. Cell Tissue Res. 2011;343(2):289–302.

	31.	 Gurzawska KA. Nanocoating of Implant Surfaces with Pectin 
Rhamnogalacturonan-ls, Review and In Vitro Studies [PhD thesis]. 
Copenhagen, Denmark: Faculty of Health and Medical Sciences, 
University of Copenhagen; 2013.

	32.	 Rucci N. Molecular biology of bone remodelling. Clin Cases Miner 
Bone Metab. 2008;5(1):49–56.

	33.	 Gao X, Zhi Y, Sun L, et al. The inhibitory effects of a rhamnogalactur-
onan I (RG-I) domain from ginseng pectin on galectin-3 and its structure-
activity relationship. J Biol Chem. 2013;288(47):33953–33965.

	34.	 Gunning AP, Bongaerts RJ, Morris VJ. Recognition of galactan com-
ponents of pectin by galectin-3. FASEB J. 2009;23(2):415–424.

 
In

te
rn

at
io

na
l J

ou
rn

al
 o

f N
an

om
ed

ic
in

e 
do

w
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.d

ov
ep

re
ss

.c
om

/ b
y 

87
.7

7.
11

8.
21

2 
on

 1
7-

F
eb

-2
01

7
F

or
 p

er
so

na
l u

se
 o

nl
y.

Powered by TCPDF (www.tcpdf.org)

                               1 / 1

http://www.dovepress.com/international-journal-of-nanomedicine-journal
http://www.dovepress.com/testimonials.php
http://www.dovepress.com/testimonials.php
www.dovepress.com
www.dovepress.com
www.dovepress.com
www.dovepress.com

	Publication Info 4: 
	Nimber of times reviewed 2: 


