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Currently, Cu-containing chalcopyrite-based solar cells provide the highest conversion efficiencies

among all thin-film photovoltaic (PV) technologies. They have reached efficiency values above 20%,

the same performance level as multi-crystalline silicon-wafer technology that dominates the commer-

cial PV market. Chalcopyrite thin-film heterostructures consist of a layer stack with a variety of inter-

faces between different materials. It is the chalcopyrite/buffer region (forming the p-n junction),

which is of crucial importance and therefore frequently investigated using surface and interface sci-

ence tools, such as photoelectron spectroscopy and scanning probe microscopy. To ensure compara-

bility and validity of the results, a general preparation guide for “realistic” surfaces of polycrystalline

chalcopyrite thin films is highly desirable. We present results on wet-chemical cleaning procedures

of polycrystalline Cu(In1-xGax)Se2 thin films with an average x¼ [Ga]/([In]þ [Ga])¼ 0.29, which

were exposed to ambient conditions for different times. The hence natively oxidized sample surfaces

were etched in KCN- or NH3-based aqueous solutions. By x-ray photoelectron spectroscopy, we

find that the KCN treatment results in a chemical surface structure which is – apart from a slight

change in surface composition – identical to a pristine as-received sample surface. Additionally, we

discover a different oxidation behavior of In and Ga, in agreement with thermodynamic reference

data, and we find indications for the segregation and removal of copper selenide surface phases from

the polycrystalline material. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4903976]

I. INTRODUCTION

Thin-film solar cells based on polycrystalline p-type

Cu(In1-xGax)Se2 absorbers show the highest power conversion

efficiencies (>21%)1 among all thin-film solar cell photovol-

taic materials. Typical chalcopyrite solar cells consist of a

stack of various semiconductors and metals, consecutively de-

posited onto glass substrates. In this multilayer architecture,

the chemical, structural, and electronic interface properties

play a crucial role for the overall performance of the final so-

lar cell device. In this respect, with the goal to improve under-

standing of the interface formation and properties, and to

ultimately improve solar cell efficiencies, a significant number

of surface and interface studies have been performed in the

past, many of those using photoemission spectroscopy2–9 or

scanning probe microscopy.10–14 The conclusions based on

the findings from these techniques mainly rely on the mea-

surement of clean sample surfaces under ultrahigh vacuum

(UHV) conditions. However, for such kind of studies, samples

are typically obtained from independent growth equipment

and are transferred through air into the UHV of the

experimental setup for characterization. Contamination and

oxidation can significantly influence the results of these char-

acterization techniques. Therefore, it is important to create re-

producible and well defined surfaces with respect to their

composition that are free of contamination.

In the past, results on the oxidation of Cu(In1-xGax)Se2

surfaces and their chemical etching have been presented. It

was found that etching in NH3- and KCN-based solutions

can remove undesired secondary phases and oxides from the

surface of Cu(In,Ga)(S,Se)2, as, i.e., Cu-selenides or

SeO2.3,15,16 Kazmerski et al. studied the oxidation of

CuInSe2 by controlled oxygen exposure under UHV condi-

tions and the subsequent cleaning using ion etching.15 An

oxidation study of CuGaSe2 was presented by W€urz et al.,6

who compared the oxidation after different exposure times to

air. X-ray photoelectron spectroscopy (XPS) was then used

to analyze the different oxide phases present at the surface.

However, so far, a systematic study of how good wet-

chemical surface cleaning procedures work for different

degrees of surface oxidation is still missing.

In this paper, we present a study of the native oxidation

of polycrystalline Cu(In1-xGax)Se2 thin films, which were

oxidized for different periods of time and subsequently

wet-chemically treated in basic solutions (KCN or NH3).
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The composition and the degree of oxidation were analyzed

using surface sensitive XPS and x-ray excited Auger electron

(XAES) spectroscopy. Mg Ka and Al Ka radiation were used

as complementary excitation sources to gain depth-resolved

information. The results of our study indicate that a KCN

etch provides a chemical surface structure almost identical to

a pristine sample surface.

II. EXPERIMENTAL

A. Sample growth

Polycrystalline CuIn0.71Ga0.29Se2 layers were deposited

onto Mo-coated soda-lime glass substrates by a well-

established multi-stage co-evaporation process.17,18 In the first

step, In, Ga, and Se are evaporated at a substrate temperature

of Tsub¼ 330 �C resulting in a nominal (In0.71Ga0.29)2Se3 layer

composition. During the second step, Cu and Se are deposited

at a higher temperature Tsub¼ 530 �C. Once the stoichiometric

point is just passed, i.e., [Cu]/([In]þ [Ga])> 1, the Cu flux is

turned off. In the third step, In, Ga, and Se are evaporated until

a slightly Cu-poor sample composition is reached with values

of about [Cu]/([In]þ [Ga])� 0.79.

B. Sample conditioning

To analyze the oxidation behavior of the

CuIn0.71Ga0.29Se2 thin films, the samples were exposed for

different durations (<3 min, 100 h, 1000 h) to ambient air

(19% oxygen, 81% nitrogen). The samples were stored in the

dark and kept under relatively constant ambient conditions

of 21–23 �C and 20–25% humidity. In the following, these

ambient conditions will be simply described as air-exposed.

The samples with <3 min, 100 h, and 1000 h air exposure

will be referred to as “CIGSe 3 min,” “CIGSe 100 h,” and

“CIGSe 1000 h,” respectively.

Immediately after the defined air exposure, the surface

of each sample was wet-chemically treated using KCN- or

NH3-based aqueous solutions. The NH3 treatment consisted

of dipping the sample in 1.5 mol/l aqueous NH3 solution for

10 s, 100 s, or 1000 s at room temperature. This treatment

resembles cleaning processes similar to those occurring dur-

ing the standard wet-chemical CdS buffer deposition. For the

KCN treatment, the CuIn0.71Ga0.29Se2 layers were dipped

into 0.15 mol/l aqueous KCN solution for 2 min also at room

temperature. After the respective treatments, all samples

were rinsed with N2-purged de-ionized water and subse-

quently dried with N2. The surface treatment of all samples

was performed under inert gas atmosphere in a N2-filled glo-

vebox with an O2 concentration of �1 ppm attached to the

UHV chamber of the XPS setup. Therefore, post-cleaning

re-exposure of the samples to ambient conditions could be

minimized.

C. Measuring and analysis procedure

For the XPS/XAES measurements, Mg Ka and Al Ka

radiation as excitation sources and a CLAM 4 analyzer (VG-

Scienta) with a 9-channeltron detector were used, operated

in an analysis chamber at a base pressure of 10�10 mbar. The

calibration of the energy scale was carried out according to

reported methods and reference data.19 Characteristic photo-

emission and Auger lines of Ga, In, Cu, and Se were

recorded as a function of the sample’s air exposure time and

surface treatment for further qualitative data analysis.

To gain quantitative information, the different spectral

photoemission lines were fitted with Voigt functions and a

combination of a linear and Shirley background. Unless oth-

erwise noted, the following general constraints were applied:

the full width at half maximum (FWHM), determined for a

certain spectral line, was fixed for all fits of this line, which

were measured with the same excitation source. Exceptions

had to be made for all spectral lines of the “CIGSe 1000 h”

sample as the channeltrons of the XPS setup had to be

changed after the characterization of the “CIGSe 100 h” sam-

ples and prior to these measurements. As a result, the energy

resolution of the measurement setup was slightly changed.

Both peaks of a spin-orbit doublet were fitted with the identi-

cal FWHM and a fixed intensity ratio according to their mul-

tiplicity (2jþ 1).

The line-specific FWHM was determined as follows:

For the “CIGSe 3 min” and “CIGSe 100 h” sample, the

FWHM was determined from the fit of the KCN-treated

“CIGSe 3 min” sample. This procedure presumes that the

surface of this sample is most defined, i.e., significant oxide

and binary selenide phases are absent, as could be evaluated

from the analysis of respective Auger spectra. For the

“CIGSe 1000 h” sample, the FWHM was determined analo-

gously from the KCN treated “CIGSe 1000 h” sample. The

described procedure was performed for both Al Ka and Mg

Ka excitation. However, as we cannot exclude minor con-

taminations even after the KCN-treatment of the sample and

since the surface of the KCN treated sample does not neces-

sarily have to be completely identical to the initial pristine

state of the CuIn0.71Ga0.29Se2 layer directly after the deposi-

tion process, this approach is considered to be an approxima-

tion. In Sec. III, it will be discussed how good this approach

is.

III. RESULTS AND DISCUSSION

A. Qualitative analysis of the oxidation behavior
by examination of Auger lines

In the following, we present the qualitative analysis of

the element-specific oxidation behavior of the investigated

CuIn0.71Ga0.29Se2 films. The Auger lines of the correspond-

ing elements were evaluated in detail for that purpose. Fig. 1

shows the Ga L3M45M45 line taken for all samples and sur-

face treatments. The highest intensity feature observed for

all samples (except for the untreated “CIGSe 1000 h” sam-

ple) independent of exposure time and wet-chemical treat-

ment at Ekin¼ (1065.6 6 0.2) eV can be assigned to gallium

in a chalcopyrite environment.2,20 In particular, for the

untreated CuIn0.71Ga0.29Se2 samples that have been exposed

to air for 100 h and 1000 h a second feature emerging at

Ekin¼ (1062.2 6 0.2) eV can be clearly identified. This is in-

dicative for an air-exposure-induced formation of a Ga2O3

surface phase as concluded from the good agreement with re-

spective literature values,4,21 see corresponding black boxes

in Fig. 1. Note that the feature at around 1069 eV kinetic

233502-2 Lehmann et al. J. Appl. Phys. 116, 233502 (2014)
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energy, visible in most of the spectra, belongs to the Ga

L3M45M45 Auger spectrum of gallium in a chalcopyrite envi-

ronment and is not indicative for the presence of metallic

Ga. Increasing the air-exposure time results in an intensity

increase in the Ga L3M45M45 feature attributed to Ga2O3.

Note that close inspection of the untreated “CIGSe 3 min”

spectrum—in particular, in direct comparison with the re-

spective KCN etched sample in Fig. 1(a)—reveals that

Ga2O3 traces might even be present on that sample, i.e.,

3 min of air exposure is sufficient for the oxidation of gal-

lium. Thus, even the direct and fast transfer of the sample

and a minimized air-exposure could not prevent a partial oxi-

dation of the gallium present at the CuIn0.71Ga0.29Se2 sur-

face. However, it can be observed that all wet-chemical

treatments are well-suited to completely remove the Ga2O3

phase from the 3 min air-exposed sample surfaces. This is in

contrast to the situation for the 100 h and 1000 h air-exposed

samples. Here, only the 1000 s NH3 and the KCN treatment

resulted in a complete removal of the Ga2O3 phase.

Next, we focus on the analysis of the chemical environ-

ment of indium present at the surface of the CuIn0.71Ga0.29Se2

absorber and how it changes upon air exposure and subse-

quent wet-chemical treatments. Fig. 2 shows the spectral

region of the In M45N45N45 Auger and Na 1s photoemission

line of the CuIn0.71Ga0.29Se2 samples exposed to ambient con-

ditions and after different wet chemical surface treatments.

The In M4N45N45 Auger peak at Ekin¼ (408.0 6 0.2) eV is in-

dicative for indium being in a chemical chalcopyrite environ-

ment.2,20 Note that the shoulder at around 410 eV kinetic

energy belongs to the In M45N45N45 Auger spectrum of in-

dium in a chalcopyrite environment and is not indicative for

the presence of metallic In. However, similarly to gallium, we

also find evidence for the oxidation of the indium for the

CuIn0.71Ga0.29Se2 layers that have been exposed to air for 100

h and 1000 h. The first indication for the presence of a second

indium species is the increase in spectral intensity that fills the

dip in-between the In M4N45N45 and the In M5N45N45 Auger

features at Ekin� 405 eV and the formation of a shoulder at

Ekin� 397.5 eV. This results in an overall broadening of the

Auger spectrum. For the “CIGSe 1000 h” samples in Fig. 2(c),

even the appearance of an additional In M4N45N45Auger line

at a kinetic energy of Ekin¼ (406.5 6 0.2) eV can be observed,

which can be attributed to In2O3, concluded from the good

agreement with respective literature values22,23 (see corre-

sponding black boxes in Fig. 2). Note that the direct spectral

comparison of the KCN-etched with the untreated “CIGSe

3 min” sample does not indicate a significant presence of

In2O3 on the absorber surface. In contrast to the wet-chemical

removal of Ga2O3 from the CuIn0.71Ga0.29Se2 surface dis-

cussed above, the surface indium oxide can only be com-

pletely removed from the “CIGSe 100 h” sample by the 1000

s NH3 and the KCN treatments but not—by any treatment—

from the “CIGSe 1000 h” sample. This is clearly indicated by

the pronounced shoulder at Ekin� 397 eV and the additional

spectral intensity at Ekin� 406 eV when comparing the spectra

of the KCN etched “CIGSe 1000 h” (top spectrum in Fig.

2(c)) and the KCN-etched “CIGSe 3 min” (top spectrum in

Fig. 2(a)) samples. Reasons for why the 1000 s NH3 and the

KCN treatments are able to remove the oxidized indium from

the “CIGSe 100 h” but not from the “CIGSe 1000 h” sample

could be the formation of different indium oxides (that are

more or less soluble) and/or different oxide thicknesses.

Furthermore, Na 1s photoemission peaks can be

observed for all untreated CuIn0.71Ga0.29Se2 layers. The so-

dium stems from the employed soda-lime glass substrate. It

is well known that at the elevated temperatures, during

FIG. 1. Ga L3M45M45 Auger spectra of the CuIn0.71Ga0.29Se2 (CIGSe) samples exposed to ambient conditions for (a)<3 min, (b) 100 h, and (c) 1000 h and af-

ter different wet chemical surface treatments. The spectra are shifted along the y-axis and given as raw (gray) and smoothed (colored) lines for clarity. The

black boxes indicated at the top correspond to reference positions of related compounds taken from literature.2,4,20,21 The detailed spectrum of the respective

KCN-treated sample (black dotted line) is overlaid with selected individual spectra for direct comparison.

233502-3 Lehmann et al. J. Appl. Phys. 116, 233502 (2014)
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absorber formation, sodium diffuses through the Mo back

contact and the chalcopyrite layer and accumulates at the

surface.24 Apparently, the sodium is removed by all wet-

chemical treatments from the CuIn0.71Ga0.29Se2 surface, a

finding that was reported by several groups before.25,26

Next, we are addressing how the chemical environment

of the selenium at the surface of the CuIn0.71Ga0.29Se2 layer

changes upon air exposure and subsequent wet-chemical treat-

ments. The respective Se L3M45M45 Auger line of the

CuIn0.71Ga0.29Se2 samples exposed to ambient conditions and

after different wet chemical surface treatments is shown in

Fig. 3. The Se L3M45M45 Auger peak at Ekin¼ (1307.3 6 0.2)

eV is indicative for selenium being in a chemical chalcopyrite

environment.2,20 Selenium oxidation occurs on a larger time

FIG. 2. Spectral region of the In M45N45N45 Auger and Na 1s photoemission line of the CuIn0.71Ga0.29Se2 (CIGSe) samples exposed to ambient conditions for

(a) <3 min, (b) 100 h, and (c) 1000 h and after different wet chemical surface treatments. The spectra are shifted along the y-axis and given as raw (gray) and

smoothed (colored) lines for clarity. The black boxes indicated at the top correspond to In M4N45N45 reference positions of related compounds taken from liter-

ature.2,20,22,23 The detailed spectrum of the respective KCN-treated sample (black dotted line) is overlaid with selected individual spectra for direct

comparison.

FIG. 3. Se L3M45M45 Auger line of the CuIn0.71Ga0.29Se2 (CIGSe) samples exposed to ambient conditions for (a) <3 min, (b) 100 h, and (c) 1000 h and after

different wet chemical surface treatments. The spectra are shifted along the y-axis for clarity. The black boxes indicated at the top correspond to reference posi-

tions of related compounds taken from literature.2,20,27,28 The detailed spectrum of the respective KCN-treated sample (black dotted line) is overlaid with

selected individual spectra for direct comparison.

233502-4 Lehmann et al. J. Appl. Phys. 116, 233502 (2014)

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

160.45.66.60 On: Mon, 26 Jan 2015 10:28:48



scale when compared to the previously discussed surface oxi-

dation of gallium and indium. A feature at a kinetic energy of

Ekin¼ (1300.4 6 0.2) eV, which is attributed to an oxidized

Se phase, is not observed in significant intensity until 1000 h

of air exposure (Fig. 3(c)). Note that the derived energy posi-

tions of the measured Se L3M45M45 Auger spectra slightly

deviate from the reported kinetic energies for selenium being

in a chalcopyrite environment (represented as black box in

Fig. 3), which is attributed to the limited Se L3M45M45 refer-

ence data available in literature resulting in significantly smaller

energy ranges, indicating the spread of literature positions for

selenium compounds. In consequence, the Se L3M45M45

energy ranges are much narrower compared to those given for

gallium and indium species (compare dimensions of black

boxes in Figs. 1–3) which might be the reason for the observed

slight deviation. Thus, the comparison of the experimentally

derived kinetic energy of the oxidized Se phase feature with

reference positions of potentially formed Se-Ox species from

Refs. 27 and 28 (indicated as “ox. Se” in Fig. 3) is not as

straightforward as the narrow reference positions might promise

and so an identification of the oxidized Se phase is not

attempted. However, for untreated samples (see also Fig. 2), the

presence/formation of a Na-Se-Ox species cannot be excluded.

In any case, all wet-chemical treatments remove the oxidized

Se phase from the “CIGSe 1000 h” sample (see Fig. 3(c)).

Comparing the Cu L3M45M45 Auger spectra (not shown)

of the CuIn0.71Ga0.29Se2 layers for different air exposure

times and wet-chemical treatments revealed no significant

spectral changes and thus no indications for a surface oxida-

tion of copper could be observed. Note that this conclusion

might be corrupted as the difference in the kinetic energies

of the Cu L3M45M45 Auger line for different copper com-

pounds is smaller than the FWHM of the Auger line itself.

See Cu 2p data discussion related to Fig. 7 for more insights

into the chemical environment of Cu.

B. Quantitative analysis of the surface composition

Quantitative analysis of the surface composition was

obtained from fits of specific photoemission lines of the

involved elements. In the following, we present the analysis

for each element in the sequence as presented for the qualita-

tive analysis above. The surface content of gallium was ana-

lyzed using the Ga 2p3/2 photoemission line (see Fig. 4). As a

result of the already discussed presence of Ga2O3 at the

CuIn0.71Ga0.29Se2 surface (see above), an asymmetric broad-

ening of the peak towards higher binding energies is expected

and can be observed—least prominent for the untreated sam-

ples and increasing with air exposure time. Hence, the Ga

2p3/2 line was fitted by two Voigt functions. Fig. 4 shows the

experimental data and the fits of the Ga 2p3/2 line as a func-

tion of the samples exposure time to air and chemical surface

treatment.

The difference in the binding energy between the chalco-

pyrite and Ga2O3 contribution to the Ga 2p3/2 line was derived

for the untreated “CIGSe 1000 h” sample, i.e., the sample with

the highest degree of surface oxidation, to be DE¼ 0.95 eV.

This binding energy difference was restrained for all fits.

Furthermore, the derived binding energies of the Ga 2p3/2 com-

ponents for chalcopyrite [EB(CIGSe)¼ (1117.6 6 0.1) eV] and

Ga2O3 [EB(Ga2O3)¼ (1118.7 6 0.1) eV], respectively, are also

in good agreement with reported literature values.2,20,21 The

wet-chemical treatments result in a decrease in the Ga2O3 con-

tribution and thus a more symmetric Ga 2p3/2 line shape. In

agreement with the qualitative observations based on the Ga

L3M45M45 Auger spectra in Fig. 1, also the Ga 2p3/2 XPS data

indicate that the longer the air-exposure time and thus the

FIG. 4. Ga 2p3/2 photoemission spectra (Al Ka excitation) of the CuIn0.71Ga0.29Se2 (CIGSe) samples exposed to ambient conditions for (a) <3 min, (b) 100 h,

and (c) 1000 h and after different wet chemical surface treatments. Experimental data (open circles) are shown together with respective fits of the CIGSe com-

ponent (blue line), a Ga2O3 component (green line), and the sum of both (red line). Voigt profiles together with a combined Shirley and linear background

(black line below each detail spectrum) were used for the simultaneously performed fits. Below each spectrum, the magnified residual (�3) of the fit is shown.
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higher the resulting degree of surface gallium oxidation, the

longer the CuIn0.71Ga0.29Se2 sample needs to be treated in

NH3 to remove the Ga2O3 completely. In particular, for the

“CIGSe 3 min” sample 10 s and for the “CIGSe 1000 h” sam-

ples 1000 s of NH3 treatment is necessary. The KCN treatment

also completely removes the surface gallium oxides from the

CuIn0.71Ga0.29Se2 samples.

Next, we address the quantification of the formation of

surface indium oxide on the air-exposed CuIn0.71Ga0.29Se2

surface. The corresponding In 3d3/2 photoemission lines are

shown for all air-exposure times and wet-chemical treat-

ments in Fig. 5. Similarly to the Ga 2p3/2 photoemission line,

also for the In 3d3/2 peak, we find an increased asymmetry

towards higher binding energies with increased air exposure

time. Hence, also the In 3d3/2 line was fitted with two Voigt

functions. The main contribution was found to be at

EB¼ (452.2 6 0.1) eV and attributed to indium in a chalco-

pyrite environment. The component at higher binding energy

EB¼ (453.0 6 0.1) eV was ascribed to In2O3. Both, the

derived binding energy positions as well as the binding

energy difference DE¼ 0.8 eV are in agreement with litera-

ture values for chalcopyrites and In2O3.15 The derived

increasing In2O3 contribution to the In 3d3/2 photoemission

line with increasing air exposure time confirms the above

formulated observation of a more pronounced peak asymme-

try. Again in agreement with the more qualitative assessment

of the surface indium oxidation based on the In M45N45N45

Auger spectra shown in Fig. 2, the In 3d3/2 XPS data indicate

the complete removal of the surface oxide from the “CIGSe

100 h” sample by the 1000 s NH3 and KCN treatment but

not—by any treatment—from the “CIGSe 1000 h” sample.

The degree of surface selenium oxidation through air ex-

posure was quantified based on the corresponding Se 3d XPS

data shown in Fig. 6 for all exposure times and wet-chemical

treatments. For the “CIGSe 100 h” and “CIGSe 1000 h” sam-

ples, again an asymmetry of the photoemission line towards

higher binding energies can be observed. This is, however,

less pronounced than for the Ga 2p3/2 and In 3d3/2 peaks dis-

cussed above. Furthermore, this asymmetry does not increase

when comparing the 100 h to 1000 h air exposure samples.

This qualitative observation is confirmed by the fit of the Se

3d spectra using two doublets. The first (most prominent)

doublet is located at a binding energy of EB(3d5/2/

3d3/2)¼ (54.0/54.9 6 0.1) eV, which is characteristic for se-

lenium in a chalcopyrite chemical environment.2,6 Note that

for the fits of the 3d5/2/3d3/2 peak, the spin-orbit separation

of the doublet was derived from the KCN treated “CIGSe

3 min” sample to be DEB¼ (0.8 6 0.1) eV first and then

restrained for all fits. To account for the line asymmetry

observed for the “CIGSe 100 h” and “CIGSe 1000 h” sam-

ples, a second Se 3d doublet was fitted at EB(3d5/2/

3d3/2)¼ (54.9/55.8 6 0.1) eV. According to literature,15 this

second doublet could be attributed to selenium in a partially

oxidized environment or to a Cu2-xSe compound. However,

as this second doublet does not disappear upon (even

extended) treatment in aqueous NH3 solution but completely

vanishes after the KCN treatment,29 we tentatively ascribe it

to be indicative for the presence of Cu2-xSe at the “CIGSe

100 h” and “CIGSe 1000 h” samples surface.

In agreement with the qualitative assessment based on

the Se L3M45M45 in Fig. 3, which only revealed a significant

selenium oxidation for the untreated “CIGSe 1000 h” sam-

ple, we find a significant high-binding energy contribution to

the Se 3d line at a binding energy of EB(3d5/2/3d3/2)¼ (59.0/

59.9 6 0.1) eV—in agreement with the Se 3d (SeO2) binding

energy position reported in Refs. 15 and 28—only for the

FIG. 5. In 3d3/2 photoemission spectra (Al Ka excitation) of CuIn0.71Ga0.29Se2 (CIGSe) samples exposed to air for (a) <3 min, (b) 100 h, and (c) 1000 h and af-

ter different wet chemical surface treatments. Experimental data (open circles) are shown together with respective fits of the CIGSe component (blue line), an

In2O3 component (green line), and the sum of both (red line). Voigt profiles together with a combined Shirley and linear background (black line below each

detail spectrum) were used for the simultaneously performed fits. Below each spectrum the magnified residual (�5) of the fit is shown.
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untreated CuIn0.71Ga0.29Se2 that has been exposed to ambi-

ent air the longest duration investigated in this study (Fig.

6(c)). Furthermore, we observe a Na 2s signal for the

untreated “CIGSe 100 h” and “CIGSe 1000 h” sample. The

seeming contradiction that no Na 2s line can be identified for

the untreated “CIGSe 3 min” sample, while according to the

Na 1s peak in Fig. 2, sodium present on all the untreated

CuIn0.71Ga0.29Se2 layer surfaces can be explained by the

combination of low Na 1s intensity for the “CIGSe 3 min”

sample and the significantly lower photoionization cross sec-

tion (r) for the Na 2s line (rNa 1s / rNa 2s� 20 (Ref. 30)) and/

or by the higher surface-sensitivity of the Na 1s measure-

ment (the ratio of the inelastic mean free path of Na 1s pho-

toelectrons to that of Na 2s photoelectrons is approximately
1=4

31). Both the sodium as well as the oxidized Se phase

(and/or a Na-Se-Ox phase for the “CIGSe 1000 h” sample)

are completely removed by all applied wet-chemical surface

treatments.

It has been reported previously6 that copper at the

surface of chalcopyrite layers does not significantly oxi-

dize unless the sample is exposed to air for an extended

period of time. An oxidized copper phase can in princi-

ple be indicated by an asymmetric broadening towards

higher binding energies of related photoemission peak—

as discussed above for the Ga 2p3/2 and In 3d3/2 lines.

However, the comparatively small energy separation of

copper-related XPS peaks complicates the unambiguous

identification of different copper species. Fig. 7 shows

the Cu 2p3/2 photoelectron spectra for the studied

CuIn0.71Ga0.29Se2 layers as a function of air exposure

and wet-chemical surface treatment. Close inspection of

the data indeed reveals that the photoemission line is

asymmetrically broadened towards higher binding

energies for the “CIGSe 100 h” and “CIGSe 1000 h” sam-

ples, most easily noticed for the untreated “CIGSe

1000 h” sample in Fig. 7(c). Therefore, the Cu 2p3/2 lines

are fitted by (at least) two Voigt functions. The main Cu

2p3/2 contribution at EB¼ (932.2 6 0.1) eV can be attrib-

uted to copper in a chemical chalcopyrite environ-

ment.2,20 For the samples after 100 h and 1000 h of air

exposure, a second contribution needs to be considered

to derive a reasonable fit. This Cu 2p3/2 contribution is

located at EB¼ (932.9 6 0.1) eV and assigned to be in-

dicative for the presence of Cu2-xSe (Ref. 7) in agree-

ment with the attribution of the second Se 3d

contribution (see above discussion related to Fig. 6).

According to thermodynamic reference data,2 a Cu2-xSe

phase can easily form in case of Cu-rich grown chalcopyr-

ites. Cahen et al.,7 however, also found Cu2-xSe phases at the

surface of Cu-poor grown CuInSe2 layers. They proposed

that oxygen primarily reacts with In and therefore even at

Cu-poor grown chalcopyrites, a surplus of Cu and Se forms

at the surface which lead to the formation of Cu2-xSe com-

pounds. The formation of such a Cu2-xSe phase is very typi-

cal for the interface between chalcopyrites and their native

oxide layers and could be verified by several groups.2,6,7

Consequently, it seems legitimate to attribute the broadening

of the Cu 2p3/2 and the Se 3d towards higher binding ener-

gies to the presence of Cu2-xSe. Another confirmation for

this interpretation is the fact that the second Cu 2p3/2 contri-

bution can only be completely removed by the wet-chemical

KCN treatment and not by any NH3 treatment.29

Note that for a reasonable fit of the Cu 2p3/2 spectrum of

the CuIn0.71Ga0.29Se2 layer that has been exposed to air for

1000 h, an additional (third) contribution needs to be consid-

ered. This third contribution is located at EB¼ (934.1 6 0.1)

FIG. 6. Region of the Se 3d and Na 2s photoemission lines (Al Ka excitation) of CuIn0.71Ga0.29Se2 (CIGSe) samples exposed to ambient conditions for (a)

<3 min, (b) 100 h, and (c) 1000 h and after different wet chemical surface treatments. Experimental data (open circles) are shown together with respective fits

of the CIGSe component (blue line), a Cu2-xSe component (green line), and the sum of both (red line). For the untreated “CIGSe 1000 h” sample an additional

SeO2 contribution is fitted. Voigt profiles together with a combined Shirley and linear background (black line below each detail spectrum) were used for the

simultaneously performed fits. Below each spectrum the magnified residual (�3) of the fit is shown.
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eV and can be assigned to a copper oxide (CuOx) phase.32

As indicated in Fig. 7(c), all wet-chemical surface treatments

are able to remove the CuOx surface phase.

C. Oxide content

To allow for a more quantitative discussion, we calcu-

lated the partial oxide content Cox
X of element X from the

integrated intensities of the fitted photoemission lines as fol-

lows: Cox
X ¼

IXðoxideÞ
IXðoxideÞþIXðCIGSeÞ

, where IXðoxideÞ (IXðCIGSeÞ) is the

area of the fitted Voigt profile assigned to element X in the

oxidized phase (CIGSe phase). Fig. 8 shows the calculated

Cox
X for X¼Ga, In, Se, and Cu for the three air-exposure

stages (“CIGSe 3 min,” “CIGSe 100 h,” “CIGSe 1000 h”)

and as a function of the different chemical surface treat-

ments, providing a direct comparison of the element-specific

oxidation behavior. Note, however, that for this comparison,

the impact of the different information depths of the ana-

lyzed photoemission lines was not taken into account.33

Apparently, Ga is the element which is most susceptible

to native oxidation. As a function of air exposure, Cox
Ga

rises from (10 6 1) % for the “CIGSe 3 min” sample to

(49 6 24) % for the “CIGSe 1000 h” sample. The removal of

the oxide layer by wet-chemical means crucially depends on

the duration of the treatment; the longer the

CuIn0.71Ga0.29Se2 layer is dipped into NH3 solution the more

Ga oxide is being removed from the surface. A complete re-

moval of the Ga2O3 phase can only be achieved by 1000 s in

NH3 or the KCN treatment.

For indium, a detectable oxidation can only be identified

for the “CIGSe 100 h” and “CIGSe 1000 h” samples. The

fluctuation in Cox
In of the “CIGSe 3 min” sample is within the

error of the analysis procedure. For the “CIGSe 100 h,” it

can be observed that the degree of surface oxidation is

reduced with increasing wet-chemical surface treatment

time. In contrast, the degree of oxidation of the “CIGSe

1000 h” sample is nearly unaffected by the wet-chemical

treatment time. In this case, the In-oxide content remains

constant with values between 20 and 25%, even after KCN

treatment. This incomplete removal is likely due to the fact

that In-oxides do not dissolve very well in the etching solu-

tions34 (in particular, compared to the other oxides found on

an air-exposed chalcopyrite). The relatively low Cox
In of the

untreated “CIGSe 1000 h” sample has to be viewed critically,

in particular, since the untreated “CIGSe 100 h” and the 10 s

NH3 treated “CIGSe 1000 h” sample surfaces show a similar

and a larger In-oxide content, respectively. We speculate

that this disagreement is due to the formation of a passivat-

ing (gallium oxide) layer on the chalcopyrite surface pre-

venting further indium oxidation and competing processes in

the wet-chemical treatment solutions that lead to a preferred

dissolution of the Ga-, Se-, and Cu-related oxides.

In agreement with the Auger and photoemission lines

discussed above, for selenium and copper, the formation of

a SeOx-like [Cox
Se¼ (33 6 7) %] and a Cu-oxide [Cox

Cu

¼ (14 6 3) %] phase is only observed for the 1000 h air-

exposed CuIn0.71Ga0.29Se2 samples. Both the Se- and Cu-

based oxides can completely be removed by any of the

treatments in aqueous NH3 and KCN solutions.

Table I shows the standard formation enthalpies, DH0
f ,

given for oxides that might be found on an air-exposed

CuIn0.71Ga0.29Se2 absorber. In general, the oxidation tenden-

cies indicated by the standard formation enthalpies are in

very good agreement with the oxidation behavior derived

FIG. 7. Cu 2p3/2 photoemission spectra (Al Ka excitation) of CuIn0.71Ga0.29Se2 (CIGSe) samples exposed to ambient conditions for (a) <3 min, (b) 100 h, and

(c) 1000 h and after different wet chemical surface treatments. Experimental data (open circles) are shown together with respective fits of the CIGSe compo-

nent (blue line), a Cu2-xSe component (green line), a CuOx component (magenta line), and the sum of all three fits (red line). Voigt profiles together with a

combined Shirley and linear background (black line below each detail spectrum) were used for the simultaneously performed fits. Below each spectrum, the

magnified residual (�3) of the fit is shown.
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from the photoelectron spectra presented in our study and

summarized in Fig. 8. Thus, from a purely thermodynamic

point of view (under equilibrium conditions) and based on

surface-sensitive XPS/XAES measurements, we tentatively

find the prevalence of oxides formed on an air-exposed

CuIn0.71Ga0.29Se2 surface33 to be in the order of Ga2O3,

In2O3, SeOx, and Cu2O/CuO.

D. Influence of KCN treatment on oxide layer

Based on the presented analysis of the photoemission

spectra, we find that the KCN treatment most effectively

(and up to 100 h of air exposure also most reliably) removes

natively formed surface oxides from CuIn0.71Ga0.29Se2 surfa-

ces and thus is the recommended first choice to clean chalco-

pyrites—even more so as it also removes Cu selenides.

However, whether or not the KCN treatment additionally

changes the chemical CuIn0.71Ga0.29Se2 surface structure

will be analyzed in the following. For a qualitative assess-

ment, the photoelectron core-level spectra of Ga, In, Se, and

Cu of the untreated “CIGSe 3 min” sample are directly com-

pared to the corresponding spectra of the KCN treated

“CIGSe 100 h” sample in Fig. 9. For better illustration, the

spectra were normalized. The normalization factor was cho-

sen in such a way that the background on both sides of the

peak is identical. Any difference in spectral shape indicating

a varying presence of oxide or selenide phases will manifest

itself in the respective difference spectra. From this, we find

no indication for the presence of additional species on the

surface of the 100 h air-exposed CuIn0.71Ga0.29Se2 absorber

after KCN treatment. In contrast, the only significant devia-

tion from statistical noise can be seen in the difference spec-

tra of the Ga 2p3/2 photoemission line that can be attributed

to the presence of a Ga2O3 phase on the surface of the

untreated CuIn0.71Ga0.29Se2 sample that has been exposed to

air for less than 3 min and that had been removed by the

KCN treatment (see discussion related to Figs. 1 and 4).

To test whether the KCN treatment quantitatively

impacts the chemical surface structure of the chalcopyrite

absorber, the surface composition of the “CIGSe 3 min” and

FIG. 8. XPS-derived elemental oxidation for different air-exposure times (<3 min, 100 h, and 1000 h) and their removal by wet-chemical treatments for (a)

Ga, (b) In, (c) Se, and (d) Cu.

TABLE I. Standard formation enthalpy DH0
f (at T¼ 289 K, 1 bar, in kJ/mol) of different Ga, In, Se, and Cu species that might form at the surface of a

CuIn0.71Ga0.29Se2 absorber.

Component Ga2O3 In2O3 SeO2 Cu(OH)2 Cu2O CuO Cu2Se CuSe

DH0
f (Ref. 6) �1089.1 / �225.4 �449.8 �168.6 �157.3 �65.26 �39.5

DH0
f (Ref. 35) �1089.1 �925.9 �225.1 / �170.7 �156.1 �65.27 �41.8
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the KCN-treated “CIGSe 100 h” sample has been derived

from the core level (Ga 2p3/2, In 3d3/2, and Cu 2p3/2) XPS

data.36 In addition, we used the XPS data collected using

the two excitation sources (Mg Ka and Al Ka) to get some

“depth-resolved” insights. Table II shows the calculated

[InþGa]/[Cu] ratio for (a) the untreated and (b) the KCN

treated CuIn0.71Ga0.29Se2 layers that had been exposed to

air for <3 min, 100 h, and 1000 h. The determined

ðIntInnorm þ IntGa
normÞ=IntCu

norm ratio varies between 2.3 and 3.4,

indicating a Cu depletion of the CuIn0.71Ga0.29Se2 surface,

which is characteristic for Cu-poor grown high-efficiency

chalcopyrites.2,8,37–41 The differences and uncertainties in

the derived [InþGa]/[Cu] ratios cloak potential trends.

However, the fact that we generally find that the [InþGa]/

[Cu] ratio after KCN treatment is lower compared to the

chemical surface structure of the untreated CuIn0.71Ga0.29Se2

layers might indicate some KCN-induced modification of the

chalcopyrite surface composition in general and of the

degree of Cu surface deficiency in particular.

As a result, we find that the KCN treatment removes

native oxides creating a chemical CuIn0.71Ga0.29Se2 surface

structure that is almost identical to the surface of the

untreated “CIGSe 3 min” sample, if the air-exposure time is

limited to below 100 h.

IV. CONCLUSIONS

We systematically analyzed the oxidation behavior and

the influence of wet chemical surface treatments on poly-

crystalline CuIn0.71Ga0.29Se2 layers under defined ambient

conditions. For this purpose, CuIn0.71Ga0.29Se2 layers were

exposed to air for <3 min, 100 h, or 1000 h, treated with

KCN- or NH3-based aqueous solutions, and analyzed using

surface sensitive x-ray photoelectron and x-ray excited

Auger electron spectroscopy. Quantitative analysis of the

photoemission spectra revealed that oxygen primarily reacts

with Ga and In. This behavior is well reflected by the ther-

modynamic reference data (standard formation enthalpies)

of related oxide compounds. Furthermore, the segregation of

Cu selenides at the surface of the chalcopyrite could be veri-

fied in agreement with literature.2,7,15 This selenide phase

can be removed by KCN solution which was confirmed to be

the best surface treatment to produce defined and reproduci-

ble chemical surface conditions. We could show that the

KCN treated surface of air-exposed CuIn0.71Ga0.29Se2 layers

is in its chemical surface structure – apart from a slight

change in surface composition (i.e., Cu deficiency) – identi-

cal to a (nearly) non air-exposed surface if exposure is lim-

ited to 100 h. This finding is not only crucial for the reliable/

reproducible employment of surface science tools to study

chalcopyrite surfaces but also needs to be considered for so-

lar cell production in the laboratory and in an industrial

mass-production environment.
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