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Interplay of Aharonov-Bohm and Berry phases in gate-defined graphene quantum dots
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We study the influence of a magnetic flux tube on the possibility to electrostatically confine electrons in a
graphene quantum dot. Without a magnetic flux tube, the graphene pseudospin is responsible for a quantization
of the total angular momentum to half-integer values. On the other hand, with a flux tube containing half
a flux quantum, the Aharonov-Bohm phase and Berry phase precisely cancel, and we find a state at zero
angular momentum that cannot be confined electrostatically. In this case, true bound states only exist in regular
geometries for which states without zero-angular-momentum component exist, while nonintegrable geometries
lack confinement. We support these arguments with a calculation of the two-terminal conductance of a gate-defined
graphene quantum dot, which shows resonances for a disk-shaped geometry and for a stadium-shaped geometry
without flux tube, but no resonances for a stadium-shaped quantum dot with a π -flux tube.
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I. INTRODUCTION

In recent years, graphene has emerged as a promising
material for future nanoelectronical devices.1–4 The possibility
to confine electrons is of particular relevance in this context.
Experimental activity concentrates on confinement in quantum
dots realized with etched graphene structures5–7 or graphene
nanoflakes.8 Electrostatic confinement with the help of metal
gates, which is standard in semiconductor heterostructures, is
problematic due to the absence of a band gap in monolayer
graphene. In particular, an electron that approaches a region of
graphene with zero carrier density—the closest approximation
to an “electrostatic barrier” in graphene—will penetrate this
region with unit probability if at normal incidence. This
phenomenon is known as “Klein tunneling”.9–11 Theoret-
ical proposals suggest using magnetic instead of electric
fields to shape quantum dots12 or induce a gap in the
spectrum.13

The statement that one cannot confine electrons in graphene
using gate potentials can be circumvented in certain special
cases.14 The reason is that Klein tunneling is effective only
at perpendicular incidence, while the reflection probability
sharply increases away from normal incidence. Certain inte-
grable geometries, such as a disk,13,15 allow states that exclude
perpendicular incidence, so that electrons can be effectively
confined in a disk-shaped region of graphene with finite carrier
density, surrounded by a carrier-free (i.e., undoped, intrinsic)
graphene sheet. On the other hand, for geometries with a
chaotic classical dynamics, no such exclusion of perpendicular
incidence is possible, and one may expect that no bound states
exist in this case. In Ref. 14, as well as in later studies,13,16,17

a circular and a stadium-shaped quantum dot, as prototypes
of integrable and chaotic geometries, were embedded in a
carrier-free graphene region and coupled to source and drain
contacts, as shown schematically in Fig. 1. Bound states
are then revealed as sharp resonances in the two-terminal
conductance.

Interestingly, the conductance of a carrier-free graphene
sheet with a stadium-shaped and disk-shaped quantum dot
showed resonant features that were quantitatively different, but
qualitatively similar.14,17 The quantitative difference concerns

the scaling of the resonance widths with the coupling to the
leads, which is determined by the ratio R/L of the quantum
dot size R and the distance L between the source and drain
contacts, see Fig. 1. Whereas for the stadium-shaped quantum
dot the width was proportional to R/L for all resonances,
the disk-shaped quantum dot also featured much narrower
resonances, with a width that scaled proportional to (R/L)n

with n � 3. The qualitative similarity was that in the limit
R/L → 0 both systems showed conductance resonances at
all. This contradicts the classical expectation that there should
be no resonances for a chaotic geometry, because in a chaotic
geometry each electron eventually hits the dot boundary at
perpendicular incidence, and an electron that hits the dot
boundary at perpendicular incidence exits the quantum dot
with unit probability. No resonant structures should exist if the
escape probability is unity after a finite time.

This deviation from the classical expectation can be
attributed to the Berry phase in graphene. In graphene,
electrons are assigned a pseudospin that corresponds to the
sublattice degree of freedom. The pseudospin is locked to
momentum. Upon completion of a full rotation the electron
collects a Berry phase of π . This Berry phase has the important
consequence that the lowest possible angular momentum is h̄

2 .
Perpendicular incidence on the boundary of the quantum dot
corresponds to zero angular momentum, so that no states with
perpendicular incidence on the surface exist. This then explains
why a stadium-shaped quantum dot still shows conductance
resonances, in spite of the naive classical expectation that
geometries with a chaotic classical dynamics cannot be used
to confine electrons.

In order to support these arguments, in this article we study
gate-defined graphene quantum dots in which the Berry phase
is compensated by the Aharonov-Bohm phase from a magnetic
flux tube through the quantum dot. (The interplay of the two
phase shifts is also used experimentally to identify Berry phase
effects; see, e.g., Refs. 18 and 19.) If the magnetic flux tube
carries half a flux quantum (“π flux”), the Aharonov-Bohm
phase and the Berry phase collected along a closed trajectory
around the flux tube precisely cancel. We find that with a
π flux the system can reach a state with zero kinematic
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FIG. 1. (Color online) The geometry under consideration: A
quantum dot (here with circular shape), consisting of a region of
graphene with a nonzero spatially uniform carrier density surrounded
by a carrier-free graphene layer, which is coupled to leads in a
two-terminal geometry. The total system has a rectangular shape
of dimension L × W ; the size of the quantum dot is denoted R. In
this paper we consider the effect of a magnetic flux tube through
the quantum dot (indicated in red). If the flux tube carries half a
flux quantum, the Aharonov-Bohm phase precisely cancels the Berry
phase that is accumulated in a cyclic orbit inside the quantum dot.

angular momentum that cannot be confined by means of gate
potentials.

The π -flux tube has qualitatively different consequences
for disk-shaped and stadium-shaped geometries. For the
disk-shaped geometry, states have a well-defined kinematic
angular momentum. While the states with zero kinematic
angular momentum are no longer confined, states with nonzero
kinematic angular momentum remain confined to the quantum
dot. Hence, for the disk-shaped quantum dot the inclusion of
the π -flux tube eliminates some of the resonances, but not all.
On the other hand, for the stadium-shaped geometry, all states
have a component in the zero-angular-momentum channel, so
that inclusion of the π -flux tube leads to the suppression of all
resonances.20

The remaining part of the paper is organized as follows: In
Sec. II we calculate the bound states of a disk-shaped quantum
dot in the presence of a magnetic flux tube. We find that the
asymptotic behavior of the zero-angular-momentum state is
the same as for a free circular wave. Hence, no bound state
can exist in this channel. In Sec. III we present a numerical
calculation of the two-terminal conductance setup of Fig. 1, for
a circular and a stadium-shaped quantum dot. Upon inclusion
of the π -flux tube, we find that sharp resonances persist for the
circular dot, while the conductance becomes featureless for the
stadium dot in the limit R/L → 0. We conclude in Sec. IV.

II. DISC-SHAPED QUANTUM DOT

The electrostatically-defined graphene quantum dot is
described by the Hamiltonian

H0 = vF(p + eA) · σ + V (r), (1)

where vF is the Fermi velocity vF and σ = (σx,σy) are the
Pauli matrices. The gate potential V (r) is nonzero and constant
inside the quantum dot, and zero elsewhere:

V (r) =
{−h̄vFV0, r < R

0, r > R,
(2)

where R is the radius of the disk-shaped dot. The constant
V0 has the dimension of inverse length. We choose V0 > 0,
so that the quantum dot is electron doped. The potential V (r)
is smooth on the scale of the lattice constant, justifying our
description in terms of a single Dirac point. The choice of
a spatially uniform potential inside the dot makes a closed-
form solution of the wave functions possible and allows for
a straightforward comparison to the classical dynamics in the
quantum dot, but it is not essential for the existence of bound
states.21,22 The structure of quasibound states in the inverted
setup (zero potential inside, nonzero outside) was considered
in Refs. 23 and 24.

The vector potential corresponding to the magnetic flux
line is

A(r) = h

e

�

2πr
êθ , (3)

where êθ is the unit vector for the azimuthal angle, and �

is the magnetic flux measured in units of the flux quantum
h/e. Here we assume that the spatial extension of the flux
line is large in comparison to the lattice constant, such that it
does not couple the two valleys. On the other hand, the flux
line is required to be much smaller than the dot size, hence
Eq. (3) is the appropriate description for the vector potential.
In polar coordinates, the kinetic part of the Hamiltonian then
reads

vF(p + eA) · σ = −ih̄vF

(
0 D−

D+ 0

)
, (4)

where we defined the operators

D± = e±iθ

(
∂r ± i

r
∂θ ∓ �

r

)
. (5)

With our choice of the vector potential, the Hamiltonian
is invariant under rotation, hence we can look for eigenstates
of the total angular momentum jz = lz + h̄

2σz. They have the
form

ψm(r) = eimθ

(
e−i θ

2 ϕm,+(r)

ei θ
2 ϕm,−(r)

)
, (6)

where m = ±1/2, ±3/2, . . . . Inside the dot, for r < R, the
radial wave functions ϕm,± are determined by the coupled
equations[

∂r −
(

m − 1

2

)
1

r
− 1

r
�

]
ϕm,+(r) = iV0ϕm,−(r),

(7)[
∂r +

(
m + 1

2

)
1

r
+ 1

r
�

]
ϕm,−(r) = iV0ϕm,+(r).

Outside the dot the equations decouple, and the radial wave
functions show a power law behavior

ϕm,+(r) = a+rm−1/2+�, ϕm,−(r) = a−r−m−1/2−�, (8)

with coefficients a±.

A. Without flux tube

We first review the solutions without flux tube, for � = 0.14

With the requirement that the wave function is regular for
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r → 0, we find for the solution inside the dot:

ϕm,+(r) = J|m−1/2|(V0r),
(9)

ϕm,−(r) = isgn(m)J|m+1/2|(V0r),

where Jn(x) is the Bessel function. Outside the dot, the wave
function must not diverge, which gives the constraints a+ = 0
(m > 0) and a− = 0 (m < 0). From continuity of the wave
function at r = R, we find the resonance condition

J|m|−1/2(V0R) = 0. (10)

The wave function outside the dot is decaying as ∝r−(|m|+1/2).
In Sec. III we connect the quantum dots and the surrounding

undoped graphene layer to source and drain contacts. The
distance between the contacts is denoted L and the quantum
dot is placed halfway between the contacts, see Fig. 1. In the
limit L � R, the bound states are then revealed as resonances
in the two-terminal conductance as a function of the gate
potential V0. These resonances have a finite width 	, which can
be estimated as14 	R ∼ |ψ(L)|2L/|ψ(R)|2R. We conclude
that the width of the resonances without flux tube scales as

	R ∝
(

R

L

)2|m|
. (11)

For |m| = 1/2 the wave function decays proportional to 1/r ,
which is marginally non-normalizable. Despite the absence of
a bound state in the strict sense, the conductance nevertheless
shows a resonance, with a width 	R ∝ (R/L).14,16,17

B. With flux tube

We now consider a disk-shaped quantum dot with a flux
tube carrying half a flux quantum (� = 1/2)—a “π flux”—at
its center. The results take a form similar to those without flux
tube if we consider the kinematical orbital angular momentum,

lz,kin = [r × (p + eA)]z, (12)

instead of the canonical angular momentum. With the inclusion
of a π flux, we then find lz,kin = lz + h̄

2 . The wave functions
from Eq. (6) are then eigenstates of jz,kin with eigenvalue μh̄,
where μ = m + 1/2, i.e., the kinematical angular momentum
takes on integer values. For μ �= 0 the calculation for the bound
states proceeds in the same way as without flux, and we find
that the resonance condition is given by

J|μ|−1/2(V0R) = 0. (13)

Outside the dot, the wave function decays proportional to
r−(|μ|+1/2). We conclude that if the dot and the surrounding
undoped graphene layer are contacted to source and drain
reservoirs, the width 	 of the resonances in the two-terminal
conductance scales as

	R ∝
(

R

L

)2|μ|
. (14)

The state with zero kinematical angular momentum (μ = 0)
however is special: First of all, inside the dot, the wave function
is of the form

ψ(r) = b1

(
e−iθ J1/2(V0r)

iY1/2(V0r)

)
+ b2

(
e−iθY1/2(V0r)

−iJ1/2(V0r)

)
. (15)

Recalling that the half-integer Bessel functions take the simple
form J1/2(x) = √

2/πx sin x, and Y1/2(x) = −√
2/πx cos x,

we see that ψ(r) diverges as 1/
√

V0r at the origin, and that
there is no nontrivial choice of coefficients b1 and b2 which
removes this divergence. The root of this singular behavior lies
in the vector potential, which is singular upon approaching
the origin. The problem can be cured by regularizing the
vector potential. One possibility is to let the flux � have an
r dependence, such that � = 0 for r < ρ and � = 1/2 for
r > ρ, i.e., the flux is not located at the origin, but on a circle
of radius ρ. Obviously, the problem is now well defined at the
origin, and we can take the solution from the case without flux
tube,

ψ(r) = c

(
e−iθ J1(V0r)

−iJ0(V0r)

)
, (16)

where c is a complex constant. We then match the wave
functions from Eqs. (15) and (16) at r = ρ. Upon taking
ρ → 0, we get b2 = 0 as a condition for Eq. (15). The
boundary condition at the origin ensures that there is precisely
one solution for zero angular momentum.

The μ = 0 state is also special outside the dot, where the
wave function is proportional to 1√

r
in both components. Thus

it has the same decay as a free circular wave in two dimensions
and, hence, it does not allow for the formation of a bound
state. This conclusion is independent of the choice of the
regularization of the wave function near r = 0.

Summarizing: Without flux tube, the bound states are
labeled by the angular momentum quantum number m, which
takes half-integer values. For |m| = 1/2 one has a “quasibound
state,” because the corresponding wave function is marginally
non-normalizable. With a π flux tube, the bound states
are labeled by the kinematic angular momentum quantum
number μ, which takes integer values. There is no bound state
for μ = 0.

III. TWO-TERMINAL CONDUCTANCE

Following Refs. 14, 16, and 17 we now attach metallic
source and drain contacts to the undoped graphene layer that
surrounds the quantum dot. Schematically, this setup is shown
in Fig. 1. We then calculate the two-terminal conductance,
where bound states of the dot show up as resonant features as
a function of the gate voltage V0.

The contacts are included by the addition of an additional
potential Uleads with25

Uleads =
{

0 if −L/2 < x < L/2,

∞ if x < −L/2 or x > L/2.
(17)

We apply periodic boundary conditions in the y direction, with
period W . For the vector potential A we take a different gauge
than in Sec. II,

A(r) = h�

e
δ(x)ex ×

{
0 if 0 < y < W/2,

1 if −W/2 < y < 0,
(18)

where ex is the unit vector in the x direction. With this choice
of the vector potential there are two flux tubes: one, at y = 0,
located in the quantum dot, and one, at y = W/2, located
outside the quantum dot. The second flux tube is necessary
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to implement the periodic boundary conditions. It does not
affect the conductance resonances in the limit that the sample
width W is much larger than the distance L between source
and drain contacts.

The numerical calculation of the two-terminal conductance
follows the method of Ref. 26. Details specific to the
presence of the flux tube are discussed in the Appendix. The
conductance can be written as

G = G0 + δG, G0 = 4e2

πh

W

L
, (19)

where G0 refers to the conductance of an undoped graphene
sheet in the absence of a quantum dot.25 We now compare
results for the conductance change δG for quantum dots with
and without flux tube. We give results for a disk-shaped
quantum dot, as a prototype of a quantum dot with integrable
dynamics, and a stadium-shaped quantum dot, the prototype
of a dot with chaotic dynamics.

A. Disc-shaped dot

The two-terminal conductance for the case of a disk-shaped
quantum dot without and with flux tube is shown in Fig. 2. The
figure shows pronounced resonances as a function of the gate
voltage V0, with positions that agree with the ones calculated
in Sec. II. Without flux tube, the resonances are labeled by the

FIG. 2. (Color online) Two-terminal conductance of a graphene
sheet containing a disk-shaped quantum dot without (top) and with
(bottom) π -flux tube. Model parameters are R/L = 0.2 and W/L =
6. Without flux tube, resonances have definite angular momentum,
with quantum number |m| indicated at each resonance (data taken
from Ref. 14). Without flux tube, resonances are labeled by the
kinematic angular momentum quantum number |μ|. No resonance
is found for μ = 0.

FIG. 3. (Color online) First two resonances for a disk-shaped
quantum dot with π -flux tube, for different coupling strengths to the
leads. Calculations are performed for W/L = 8 and various R/L, as
indicated in the figure. The second resonance is shown enlarged in
the inset.

quantum number |m| = 1/2, 3/2, 5/2, . . . . Their width scales
∝(R/L)2|m| as the coupling to the leads is decreased (data not
shown), consistent with Eq. (11) and Refs. 14, 16, and 17.
With flux tube, the resonances are labeled by the kinematic
angular momentum quantum number |μ| = 1, 2, 3, . . . . There
are no resonances for μ = 0. Upon decreasing the coupling
to the leads, the resonances become narrower but retain their
height, see Fig. 3, and the scaling of the resonance width with
the ratio R/L is consistent with Eq. (14) (data not shown).

FIG. 4. (Color online) Two-terminal conductance of a graphene
sheet containing a stadium-shaped quantum dot without (top) and
with (bottom) a π flux. Parameters for the calculation are R/L =
0.2, W/L = 12, a/R = √

3/2, d = 2a/3. Without flux tube, the
calculation for the conductance was done with the method of Ref. 17.
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B. Stadium-shaped dot

As a prototypical example of a chaotic quantum dot, we
consider a stadium-shaped quantum dot. Here the poten-
tial V (r) = −h̄vFV0 for positions r inside the stadium and
V (r) = 0 otherwise. Without magnetic flux, the two-terminal
conductance shows resonances, which, in the limit of small
R/L, all behave as the |m| = 1/2-type resonances of the
disk-shaped dot, i.e., their height remains finite, whereas the
resonance width scales proportional to R/L.17 The numerical
data shown in the top panels of Figs. 4 and 5 clearly reveal
these resonances, although the asymptotic scaling of the
resonance width and resonance height with R/L is somewhat
obscured by transient contributions for moderate R/L that
originate from higher-angular-momentum contributions to the
resonances.17

The conductance trace for a stadium-shaped quantum dot
with a flux tube carrying half a flux quantum is shown in the
bottom panels of Figs. 4 and 5. In order to break inversion
symmetry, the stadium is placed asymmetrically with respect
to the flux tube, see the inset of Fig. 4. The differences with
the case of the disk-shaped quantum dot and with the case
without a flux tube are significant. We find that the conductance
depends on the gate voltage V0 for finite R/L, but the widths
of the “resonances” is independent of the coupling to the leads,
which is set by the ratio R/L, whereas the height decreases
upon decreasing R/L. This agrees with the expectation that,
since all states in the stadium have a μ = 0 component,
a stadium dot should not support any (quasi)bound states.

FIG. 5. (Color online) Behavior of the first three quasiresonances
of the stadium-shaped quantum dot without (top) and with (bottom)
π flux upon changing the coupling to the leads R/L. The other
parameters are the same as in Fig. 4.

While for intermediate values of R/L contributions from
higher angular momentum channels still give rise to broad
“quasiresonances,” in the limit R/L → 0, only the μ = 0
channel is relevant, and the conductance becomes featureless
as a function of V0.

We remark that if the flux tube would be placed exactly
in the middle of the stadium, inversion symmetry would
split the resonances into two groups, resulting from even and
odd μ. The “even” resonances have a finite μ = 0 component
and disappear upon taking the limit R/L → 0. The “odd”
resonances survive in this limit, with a finite resonance height
and a resonance width 	 ∝ (R/L)2 (data not shown). We
also note that for a disk-shaped dot with a flux tube located
away from the center, integrability is broken, and the resulting
conductance has features that are characteristic for a chaotic
dot (data not shown).

IV. CONCLUSION

In this paper we investigated the observation of Refs. 14, 16,
and 17, that the two-terminal conductance of a generic gate-
defined graphene quantum dot shows resonances in the limit of
a weak coupling to the leads, in spite of the naive expectation
that electrons cannot be confined in such a quantum dot
because of Klein tunneling. We attribute this observation to the
Berry phase in graphene, which quantizes angular momenta to
half-integer values. With half-integer angular momenta, strict
perpendicular incidence—the condition for Klein tunneling
with unit probability—does not occur. As a consequence,
conductance resonances exist in both integrable and chaotic
geometries. The only difference between the two cases is
a quantitative one: It concerns the scaling of the resonance
widths with the coupling to the leads.17

The Berry phase can be canceled against an Aharonov-
Bohm phase, when a flux tube containing half a flux quantum is
introduced to the system. With a magnetic flux tube, we showed
that the relevant angular momentum, the kinematical angular
momentum, is quantized to integer values. In this case a state
with zero angular momentum is possible. Such a state cannot
form a bound state or give rise to a conductance resonance.
We showed this by an explicit calculation for the disk-shaped
quantum dot in Sec. II, and using numerical calculations for
disk-shaped and stadium-shaped quantum dots in Sec. III.
Once the Aharonov-Bohm phase from the π -flux tube cancels
the Berry phase, the results of the full quantum theory are
consistent with the simple classical expectations. With a π flux,
there is a stark qualitative difference between conductance
resonance for integrable and nonintegrable quantum dots:
Whereas sharp conductance resonances for the case of an
integrable quantum dot continue to exist, in the limit of weak
lead-dot coupling the conductance becomes featureless for a
generic nonintegrable quantum dot.

In closing, we make two remarks concerning the possible
realization of the scenario we investigated here. First, a flux
tube for graphene does not necessarily have to be created by
a real magnetic field; it can also be engineered via strain as a
pseudomagnetic field.27,28 The pseudomagnetic field would
have opposite signs for the two valleys, which is of no
consequence for our conclusions, because the two valleys are
decoupled for the smooth confining potentials we consider
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here. Second, the application of a well-defined Aharonov-
Bohm phase is more controlled in ring-shaped structures.18,19

In this case, we expect that our main finding, the strong
qualitative difference between integrable and nonintegrable
geometries in the case of a π flux, persists.
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APPENDIX: NUMERICAL APPROACH

The numerical approach follows Ref. 26. The potential V (r)
is replaced by a potential

∑
n Vn(y)δ(x − xn) that is nonzero

at N discrete values −L/2 = x0 < x1 < x2 < · · · < xN−1 <

xN = L/2 of the x coordinate, with

Vn(y) =
∫ (xn+xn+1)/2

(xn−1+xn)/2
dxV (x,y), n = 1,2, . . . ,N − 1.

Between the discrete points the wave function is solved
from the free Dirac equation. This solution takes its simplest
form after Fourier transform with respect to the transverse
coordinate y, because the free Dirac equation does not couple
different transverse modes. These solutions are then matched
by applying the appropriate boundary conditions at the discrete
points x = xj , j = 1,2, . . . ,N . A numerically stable method
to implement this program is to express both the solution of
the free Dirac equation and the matching conditions at the
discrete points x = xj in terms of scattering matrices. The
scattering matrix of the entire sample is then obtained from
convolution of the scattering matrices of the 2N − 1 individual
components. The result of the calculation is the transmission

matrix t , which is related to the two-terminal conductance via
the Landauer formula,

G = 4e2

h
tr t t†, (A1)

where the trace is taken of the transverse Fourier modes. The
number of “slices” N and the number of transverse modes M

must be chosen large enough that the conductance G no longer
depends on N and M .

The vector potential (18) corresponds to the boundary
condition

lim
x↑0

ψ(x,y) = − lim
x↓0

ψ(x,y) for − W/2 < y < 0, (A2)

whereas ψ(x,y) is continuous at x = 0 for 0 < y < W/2.
In the approach described above, this boundary condition is
expressed in terms of a scattering matrix relating incoming
and outgoing waves at x↑0 and x↓0. This scattering matrix
has no reflective part, whereas the transmission matrix is

tmn =
{

0 if m − n even,

−4i/[(km − kn)W ] if m − n odd,
(A3)

where the integers m and n label the transverse modes and kn =
2πn/W . This transmission matrix has the special properties
that t = t† and t2 = 1.

In order to ensure numerical stability, unitarity must
be preserved while restricting to a finite number of trans-
verse modes M . For the transmission matrix (A3) this can
be achieved using the following trick: One first builds the
Hermitian matrix h = i(eiφ − t)/(t + eiφ) = cot φ − t/ sin φ

out of the transmission matrix, where φ is a phase that can
be chosen arbitrarily, then truncates h, which can be done
straightforwardly without compromising Hermiticity, and then
uses the inverse relation t = eiφ(1 + ih)/(1 − ih) to obtain
a finite-dimensional transmission matrix. In our numerical
calculation we set φ = π/2. We verified that the elements of
the resulting finite-dimensional transmission matrix approach
the elements of the exact transmission matrix (A3) in the limit
that the number of transverse mode M → ∞.
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