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Abstract

Let �X�R� be a set system on an n�point set X	 We investigate colorings � 
 X �
f�����g such that the sum of colors in each set R � R does not deviate too much
from �	 The largest value j

P
x�R

��x�j over all R � R is the discrepancy of � on
R	 We also consider ��approximations
 For � � � � � a subset A of X is an
��approximation for �X�R� if j jA �Rj�jAj � jRj�n j � � for all R � R	
Let d be a �xed integer such that for any Y � X the number of distinct sets of the
form R � Y  R � R is bounded by O�jY jd� �i	e	 �X�R� is an n�point range space
with the primal shatter function �R�m� bounded by O�md��	 Then we prove that
there is always a coloring with discrepancy bounded by O�n�������d�log n������d�	
We show that this implies that for any r there exists a ���r��approximation for
�X�R� of size O�r�����d����log r������d����	 This improves on a previous bound of
O�r� log r� due to Vapnik and Chervonenkis	
If any subcollection of m sets of R partitions the points into at most O�md� classes
�i	e	 the dual shatter function is bounded by O�md�� then we get a bound of
O�n�������d log n� for discrepancy and of O�r�����d����log r������d���� for ���r��
approximations	 These bounds via the dual shatter function can be realized by
deterministic polynomial time algorithms	
All the bounds are tight upto polylogarithmic factors in the worst case	 Our results
allow to generalize several results of Beck bounding the discrepancy in certain geo�
metric settings to the case when the discrepancy is taken relative to an arbitrary
measure	

�Work of J�M� and E�W� was partially supported by the ESPRIT II Basic Research Actions Program
of the EC under contract No� ���� �project ALCOM�� L�W� acknowledges support from the Deutsche
Forschungsgemeinschaft under grant We 	
���	�� Schwerpunktprogramm �Datenstrukturen und e�ziente
Algorithmen��
�Department of Applied Mathematics� Charles University� Malostransk�e n�am� 
�� 		� �� Praha 	�
Czechoslovakia� and School of Mathematics� Georgia Institute of Technology� Atlanta� GA �� ��
� USA
�Institut f�ur Informatik� Freie Universit�at Berlin� Arnimallee 
�� W 	��� Berlin ��� Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Repository of the Freie Universität Berlin

https://core.ac.uk/display/199426855?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


�

� Introduction and statement of results

In this section we �rst review basics about discrepancy	 �
approximations	 and range spaces
of �nite VC
dimension	 and then we state our results� Section � will contain the proofs of
our main results� The proofs are based on a combination of tools from discrepancy theory
and computational geometry� Finally	 in Section �	 we conclude with some implications
and algorithmic aspects of our results�

Discrepancy� Let X�R� be a set system and let � � X � f�����g be a mapping� we
will call such a mapping a coloring of X � For a set Y � X 	 let �Y � �

P
x�Y �x�� We

de�ne the discrepancy of � on R by

discR� �� � max
R�R

j�R�j�

and the discrepancy of R by

discR� � minfdiscR� ��� � � X � f�����gg�
The concept of discrepancy originated in the theory of uniform distribution see e�g�

the book �Hla��	 and the original problem how well can a discrete point set in the unit
cube approximate the Lebesgue measure on aligned boxes contained in the unit cube�
was then extended also to approximating the measure of other geometric �gures� The
book �BC��� gives a number of results in this direction and further references� We will
also say a little more about the geometric discrepancy and its connection to the above
de�ned combinatorial notion in Section ��

For the discrepancy of general set systems	 various bounds are known see �Spe�����
For example	 for a set system X�R� with polynomially many ranges	 the following bound
is of interest�

discR� � O
p
s log jRj �� s � max

R�R
jRj�

To see this one considers a random coloring �� For any �xed set Y � X 	 we know that

Probj�Y �j � �
p
jY j � � �e����
� ��

Hence	 if we set � �
p
� ln�jRj�	 then the above bound becomes ���jRj�	 and	 with

probability at least 	

 	 a random coloring satis�es j�R�j �p�s ln�jRj� for all R � R�

If jRj � OnO�	��	 this gives discR� � O
p
n logn �� A probabilistic construction

shows that	 in general	 this bound cannot be pushed below O
p
n logn �� However	 as

we will see	 a substantial improvement is possible if the set system has bounded VC

dimension�

Range spaces of �nite Vapnik�Chervonenkis dimension and ��approximations�

A signi�cant part of new results in computational geometry over the last few years use
probabilistic methods and algorithms� Di�erent approaches  �Cla���	 �HW���� introduce
abstract frameworks for their considerations� Our results will be based on the concept
used in �HW���	 so
called range spaces of bounded VC
dimension�

A range space is a set system	 i�e� a pair � � X�R�	 where X is a set and R is a set of
subsets of X � We will usually call the elements of X the points of � and the elements of R
the ranges of �� If Y is a subset of X 	 we denote by RjY the set system fR�Y � R � Rg	
and we call Y�RjY � the subspace induced by Y �
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Let us say that a subset Y � X is shattered by R�	 if every possible subset in the
subspace induced by Y is a range	 i�e� if RjY � �Y � We de�ne the Vapnik�Chervonenkis
dimension	 VC�dimension for short	 of the range space � � X�R� as the maximum size
of a shattered subset of X if there are shattered subsets of any size	 then we say that the
VC
dimension is in�nite��

This notion has been introduced by Vapnik and Chervonenkis �VC���� Range spaces of
VC
dimension bounded by a constant occur naturally in geometry	 but also e�g� in learning
theory see �BEHW����� A simple geometric example is the following� X is a �nite point
set in the plane	 and every set de�ned as the intersection of X with a halfplane is a range�
This example can of course be generalized in many ways�

An important notion in applications and also for our proofs� is that of an �
net� A
subset S � X is called an ��net for � provided that S�R �� 	 for every range R � R with
jRj�jX j� ��

Bounded VC
dimension guarantees the existence of small �
nets as stated in the fol

lowing theorem�

Theorem ��� �HW��� Let d be �xed and let X�R� be a range space of VC�dimension
d� Then for every r � �� there exists a ��r��net for X�R� of size Or log r��

The bound on the �
net size has been improved several times concerning the de

pendency of the constant on d�	 the best result being due to Koml�os	 Pach and W�ogin

ger �KPW���� But for a �xed d	 the dependency on � cannot be improved in general� this
was shown in �PW��� by a probabilistic construction� a big open problem is whether an
improvement is possible in geometric settings�

Another related concept � implicitly contained in �VC��� � is that of an �
approxima

tion� A subset A � X is an ��approximation for a range space X�R�	 provided that

���� jA �Rj
jAj � jRj

jX j
���� � �

for every range R � R� Again	 one can show the existence of small �
approximations�

Theorem ��� �VC��� Let d be �xed and let X�R� be a range space of VC�dimension d�
Then for every r � �� there exists a ��r��approximation for X�R� of size Or
 log r��

While �
nets have been applied in computational geometry since their introduction	
�
approximations have lived somehow in their shadow� However	 �
approximations have
some nice properties not shared by �
nets	 which were applied for designing an e�cient
deterministic algorithm for computing �
approximations for range spaces of bounded VC

dimension	 see �Mat��a�� The only known way for e�cient deterministic computation of
�
nets is via �
approximations�

Results� In this paper we prove two bounds on discrepancy of �nite range spaces of
bounded VC
dimension	 and these bounds will imply bounds on the size of �
approxima

tions�

The results will not be stated in terms of the VC
dimension of the range space	 be

cause the exact value of the VC
dimension is often di�cult to determine even for natural
geometric examples e�g�	 the reader can try to determine the VC
dimension of the space
with a point set in the plane and with ranges determined by all triangles�� Other related
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parameters of a range space	 which are also easier to estimate	 turn out to be essential for
the discrepancy bound� the primal shatter function and the dual shatter function�

The primal shatter function 	R of a range space X�R� is de�ned by

	Rm� � max
A�X� jAj�m

jfR� A� R � Rgj�

The dual shatter function 	�R is the primal shatter function of the dual range space arising
by exchanging the role of points and ranges� thus 	�Rm� is the maximum number of
equivalence classes into which the points of X can be partitioned by a collection A of m
ranges in R	 where x� y � X are equivalent relative to A if fR � A� x � Rg � fR � A� y �
Rg�� For example	 consider P�B�	 where P is a �nite set of points in Ed	 and B is the set
of intersections of P with balls� Then the primal shatter function is of order Omd�	�	
while the dual shatter function is of the order Omd�� the VC
dimension is d� ��

A result obtained independently by several authors  �VC���	 �Sau���� says that the
primal shatter function 	Rn� of a range space of VC
dimension d is bounded by

�
n
�

�
��n

	

�
� 
 
 
� �nd� � �nd�	 and the bound is tight in the worst case � take all subsets of X

with at most d elements as ranges� But in geometric examples	 the bound on the primal
shatter function is usually better than implied by their VC
dimension� One bound for
discrepancy will be expressed in terms of the primal shatter function	 and the other one
in terms of the dual shatter function� Both bounds come out almost identical	 but their
area of application di�ers� a range space can have a much larger primal shatter function
than the dual shatter function or vice versa�

Our results are�

Theorem ��� Let X�R� be an n�point range space and d� C constants� such that 	Rm� �
Cmd for all m � n� Then the discrepancy discR� of R is bounded by

On
�
��

�
�d logn�	�

�
�d �� if d � �� and Olog

�
� n�� if d � ��

and for every r � n� there exists a ��r��approximation for X�R� of size

Or
�
�

d�� log r�
�
�

d�� �� if d � �� and Or log
�
� r�� if d � ��

Theorem ��� Let X�R� be an n�point range space and d� C constants� such that 	�Rm� �
Cmd for all m � n� Then the discrepancy discR� of R is bounded by

On
�
��

�
�d log n�� if d � �� and Olog

�
� n�� if d � ��

and for every r � n� there exists a ��r��approximation for X�R� of size

Or
�
�

d�� log r�
�
�

d�� �� if d � �� and Or log
�
� r�� if d � ��

Section � will contain some remarks to what extent these bounds are best possible	
and we discuss the implications for concrete examples like balls in Ed�
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� Proofs

We �rst show how the result for discrepancy implies the bounds for �
approximations�
Then we prove the results for primal and dual shatter functions�

Discrepancy versus ��approximations� We begin with a simple lemma�

Lemma ��� Let X�R� be a set system on an n�point set with X � R and let 
 � discR��
Then there exists a �
�n��approximation A for X�R� with jAj � dn
 e�

Proof� For a coloring � of X with discrepancy 
 let A� be the larger one of the two sets
fx � X ��x� � ��g and fx � X ��x� � ��g� so jA�j � dn
 e� From X � R and j�X�j � 


we get jA�j � jX nA�j � 
	 or jA�j � n

 � �


 � Remove jA�j � dn
 e arbitrary elements from A�

to obtain the approximation A�
We have j �jA�Rj � jRj j � j �jA� �Rj � jRj j� �jA�j � jAj� � �
� Thus	 for n even	

���� jA � Rj
jAj � jRj

jX j
���� � �

n
j �jA�Rj � jRj j � �


n
�

similarly	 one derives the bound for n odd	 where one uses that actually j �jA�Rj� jRj j �
�
 � � in this case�

Now we show how to obtain small �
approximations from colorings with small discrep

ancy�

Let X�R� be a set system with X � R	 and let 
m� be a function bounding the dis

crepancy of any m
point subspace of our set system� We construct sets A�� A	� � � � � Ai� � � �
as follows� A� � X 	 and	 for i � �	 write ai short for jAij and let Ai�	 be a �
ai��ai�

approximation for Ai�RjAi

� with jAi�	j � dai��e� We conclude that jAkj � dn��ke and
Ak is an �
approximation for X�R� where

� � �
�

a��

a�
�

a	�

a	
� 
 
 
� 
ak�	�

ak�	

�
� with ai � d n

�i
e�

Lemma ��� Let X�R� be a set system on an n�point set with X � R� and let 
 be
a function with discRjY � � 
jY j� for all Y � X� Then� for every k� there exists an
��approximation A for X�R� with jAj � a � d n


k
e and

� � �

n

�

n� � �
dn

�
e� � � � �� �k�	
d n

�k�	
e�
�
�

In particular� if there exists a constant c � � such that 
m� � c


�m� for m � a� then

� � O ��a�a ��

Since adding X as a range to R increases the primal shatter function by � at most	 and
leaves the dual shatter function unchanged	 the bounds for approximations in Theorems
��� and ��� readily follow from those for discrepancy�

Discrepancy bounds via primal shatter functions� Our proof uses the following
lemma	 which follows from the proof of Lemma ���� in �BC���	 due to Beck� For the
reader�s convenience	 we recall the proof�
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Lemma ��� Let L� S be set systems on an n�point set X� jSj � �� such that jSj � s for
every S � S and Y

L�L

jLj� �� � ��n�	���� ��

Then there exists a mapping � � X � f��� ����g� such that the value of � is nonzero for
at least n��� elements of X� �L� � � for every L � L and j�S�j � p

�s ln�jSj� for
every S � S�

Proof� Let C� be the set of all colorings � � X � f�����g	 and let C	 be the subcollection
of mappings � with j�S�j � p�s ln�jSj� for all S � S� We have seen in Section � that
jC	j � 	


 jC�j � �n�	�
Now let us de�ne a mapping v � C	 � Z

jLj	 assigning to a coloring � the jLj
component
integer vector v�� � �L�� L � L�� Since j�L�j � jLj and �L�� jLj is even for every
L	 the image of v contains at most

Y
L�L

jLj� �� � ��n�	���

integer vectors� Hence there is a vector v� � v��� such that v maps at least ���n�	���

elements of C	 to v�� Let C
 be the collection of all � � C	 with v�� � v�� Let us pick
one �� � C
 and for every � � C
	 we de�ne a new mapping �� � X � f��� �� �g by
��x� � �x�� ��x����� Then �

�L� � � for every L � L	 and also ��S� �p�s ln�jSj�
for every S � S� Let C�
 be the collection of �� for all � � C
�

To prove the lemma	 it remains to show that there is a mapping �� � C �
 whose value
is nonzero in at least n��� points of X � The number of mappings X � f��� ����g with
at most n��� nonzero elements is bounded by

bn�	�cX
q��

�
n

q

�
�q�

and standard estimates show that this number is smaller than ���n�	��� � jC�
j see �BC�����
Hence there exists a mapping �� � C�
 with at least n��� nonzero values�

For the proof of Theorem ��� we �rst describe a construction of a partial coloring
for a range space using the previous lemma	 which will then be applied iteratively�

Let X�R� be a range space with 	Rm� � Omd�� Let us de�ne another range
space X�R�� by R� � fR	 n R
� R	� R
 � Rg� The range space X�R� has bounded
VC
dimension	 and hence also X�R�� has a bounded VC
dimension see �HW����� Let
N � X be a ��r�
net for X�R�� of size Or log r�	 where r is a parameter to be �xed
later the existence of such N is guaranteed by Theorem �����

Let us call two ranges R	� R
 � R equivalent if R	 �N � R
 �N � Since the ranges of
R have at most Or log r�d� distinct intersections with N 	 this equivalence has at most
Or log r�d� classes� Let a collection L contain exactly one range of each equivalence class�
For a range R � R	 let LR be the member of L equivalent to R�

Let us put
S � fR nLR� R � Rg � fLR nR� R � Rg�
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For every R	 LR nR and RnLR contain no points of N 	 and thus by the ��r�
net property
ofN 	 the cardinality of any set of S is at most n�r� Also we have jSj � �jRj
jLj � On
d��

We want to apply Lemma ��� on the set systems L and S	 so we need an estimate onQ
L�LjLj � ��� This is bounded by n � ��jLj � n � ���Kr log r�d for some constant K�

Thus if we set r � cn	�d�logn�	�	�d for a small enough positive constant c	 we get that
the product is bounded by ��n�	��� as required� Then the size of sets of S is bounded by
s � n�r � On	�	�dlogn�	�	�d�	 and Lemma ��� guarantees the existence of a mapping
� � X � f��� �� �g	 such that �L� � � for all L � L	

j�S�j �
p
�s ln�jSj� � On	�
�	�
dlogn�	�	�
d��

and the set Y	 � fx � X � �x� �� �g has at least n��� elements�
If R is any range	 we can write

R � LR � S	� n S
�

where S	 � R n LR � S	 S
 � LR nR � S	 S	 and LR are disjoint and S
 is contained in
LR� Hence

j�R�j � j�R � Y	�j � j�LR�j� j�S	�j� j�S
�j � On	�
�	�
dlogn�	�	�
d��

To prove Theorem ���	 we apply the construction described above inductively� We
set X	 � X 	 and we obtain a partial coloring �	 nonzero on a set Y	 as above� We set
X
 � X	nY		 and we obtain a partial coloring �
 ofX
 by applying the above construction
on the range space X
�RjX


�	 etc� We repeat this construction until the size of the setXk

becomes trivially small e�g�	 smaller than a suitable constant�� Then we de�ne Yk � Xk

and we let �k be the constant mapping with value � on Yk�
Let R � R be a range� We have

j�R�j � j�	R � Y	�j� j�
R � Y
�j� 
 
 
� j�kR � Yk�j� ��

For every i	 j�iR�j is bounded byOn	�
�	�
di logni�	�	�
d�	 where ni � jXij � �����i�	n�
Thus	 for d � � the summands on the right hand side of �� decrease geometrically	
and we obtain discR� � On	�
�	�
dlogn�	�	�
d� as claimed� For d � �	 we get
discR� � Olog��
 n��

Discrepancy bounds via dual shatter functions� The proof of Theorem ��� uses re

sults on spanning paths with a low crossing number by Chazelle andWelzl �Wel���	 �CW����
Let us give the necessary de�nitions�

Let X�R� be a range space� If fx� yg is a two
point subset of X and R a range	
we say that R crosses fx� yg if jfx� yg � Rj � �� A spanning path P on X is a linear
ordering x	� � � � � xn� of the points of X � its edges are fx	� x
g	 fx
� x�g	 � � � 	 fxn�	� xng�
The crossing number of P is the maximum number of edges of P crossed by a single range
of R	 over all ranges R � R� A spanning path with a low crossing number will help us to
establish Theorem ����

Theorem ��� �CW��� Let X�R� be a range space whose dual shatter function 	�Rm�
is bounded by Cmd for some constants C� d� Then there exists a spanning path on X with
crossing number On	�	�d log n�� if d � � and Olog
 n�� if d � ��



�

Hence for a proof of Theorem ���	 it is enough to show the following�

Lemma ��	 Let X�R� be a range space with a spanning path with crossing number ��
Then discR� � O

p
� log jRj��

Proof� What we actually need is a matching on X with a small crossing number� Let
us suppose that the number of points of X is even if not	 we may ignore one point tem

porarily� the discrepancy grows at most by one by adding it back�� Let P � x	� � � � � xn�
be a spanning path with crossing number �	 and consider the set

M � f fx	� x
g� fx�� x�g� � � � � fxn�	� xngg
of n�� edges of P � We let C be the set of all colorings � � X � f�����g with �fx� yg� � �
for any pair fx� yg � M � We show that a random element of C satis�es discR� �� �p
�� ln�jRj�� Indeed	 let R � R be a range	 and let MR be the union over the set of

edges of M crossed by R� we know that jMR � Rj � � and �R� � �MR � R� for every
� � C� For a random � � C	 we thus have

Probj�R�j � �
p
� � � Probj�MR �R�j � �

p
jMR � Rj � � �e��

��
 �
�

�jRj
for � �

p
� ln�jRj� according to ���	 and hence some mapping � � C gives the claimed

discrepancy�

� Discussion

We discuss some implications of our results and their proofs�

Discrepancy of balls in E
d� We consider the case when X is a set of points in E

d	
and the ranges are those subsets which can be obtained as an intersection of X with a
ball� It was shown in �CW���	 that every set of n points in E

d allows a spanning path
with crossing number � � On	�	�d� for balls which is better by a log
factor compared
to the general bound in Theorem ���	 using the fact that the dual shatter function is of
the order Omd��� We get

Corollary ��� Let P be a set of n points in Ed� and let B � fP �B�B a ball inEdg� Then
discB� � On	�
�	�
d

p
logn��

As we mentioned in the introduction	 the notion of discrepancy originated in geometric
settings and many results in this direction are known� One type of a geometric discrepancy
discussed in �BC��� is de�ned as follows�

Let � be the probabilistic measure in Ed� Let F be a family of �
measurable subsets of
E
d usually of simple geometric objects	 as e�g� balls or boxes�� e�g� take � as the Lebesgue
measure in the unit cube� For an n
point set P � E

d	 one de�nes the �
discrepancy of F
on P by

D�P�F� � sup
F�F

jn�F �� jP � F j j�

and the �
discrepancy function of F is then

D�n�F� � inf
P�Ed� jP j�n

D�P�F��
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also other variations of discrepancy are treated in �BC���	 as e�g� the toroidal discrepancy
of a point set	 but we will not go into details here��

The book �BC��� contains many upper and lower bounds on the discrepancy functions
for various families	 as e�g� aligned boxes with sides parallel to coordinate axes�	 boxes	
balls	 convex sets� General bounds are given for the case when A is a �xed compact convex
body and F is the family of all its copies under rotations	 translations and contracting
homotheties or only translations and homotheties��

It is not di�cult to show that the investigation of discrepancy with respect to the
Lebesgue measure restricted to the unit cube� can be reduced to the investigation of
discrepancy with respect to a measure concentrated on the points of a su�ciently �ne grid�
In fact	 some of the Beck�s upper bounds were gained via theorems about discrepancy of
set systems	 and a detailed discussion of the transformation from discrete to continuous
setting and back can be found in �BC����

The general results in this paper allow to re
derive many of the upper bounds	 and all
the bounds gained in this way hold for arbitrary probabilistic measures ��

Corollary ��� Let B be the set of balls in E
d� Then D�n�B� � On	�
�	�
d

p
log n� for

every probabilistic measure �� with the constant depending on d only �and not on ���

Proof� For a given n	 we construct a set P of n points with jn�B� � jP � Bj j �
On	�
�	�
d

p
logn� for all B � B as follows�

Let �	 � n	�
�	�
d
p
log n�n� We �rst take a �nite set Q of N points in E

d	 such that
j�B� � jB � Qj�N j � �	 for all balls B � B� it is shown in �VC��� that a random �
according to � � set of N � Od��	�
 logd��	�� points will have the desired property�
however	 the size of Q is not crucial in our argument	 as long as it is �nite�� Next we
choose an �

approximation P of Q with jP j � n and �
 � O�	�� The existence of P
follows from Lemma ���� We obtain

j�B�� jB � P j
n

j � j�B�� jB � Qj
N

j� j jB � P j
n

� jB � Qj
N

j � �	 � �
�

and the claimed bound follows�
The corollary improves on results in �Bec���	 where the bounds hold only under certain

assumptions on the measure	 and the constant in the asymptotic bound depends also on
this measure�

The bound can be readily generalized to the case where F is the set of k
fold boolean
combination of balls	 since the crossing number of a spanning path increases by a factor
at most k with respect to such a family compared to balls alone��

For other families	 we can easily guarantee the bound Omd� for the dual shatter
function� This is for instance if the sets of F are bounded by algebraic surfaces of a �xed
degree� m such surfaces give rise to Omd� d
wise intersections ignoring degeneracies�	
and the number of cells in the arrangement of m surfaces is not greater than the number of
vertices� For these cases we obtain a slightly worse discrepancy bound On	�
�	�
d log n��
This result translated to the Lebesgue measure case is not directly implied by Beck�s
results	 since he considers convex bodies only�

The primal shatter function bound does not seem to be so useful in geometric settings	
since it depends on the complexity of the �gures determining ranges rather than the space
dimension e�g�	 for disks in the plane	 the shatter function is �n��	 while the dual shatter



��

function only On
���

Lower bounds� The results of Beck �BC��� also imply almost matching lower bounds
upto logarithmic factors� for both discrepancy bounds in this paper� First of all	 one of
Beck�s results gives a lower bound of  n	�
�	�
d� for the discrepancy function of a family
F 	 where each member of F is a union of at most �d balls in Ed this follows from a bound
on toroidal discrepancy for balls�� Since it is easy to see that the dual shatter function
	�F m� is of order Om

d�	 we get that the discrepancy bound in Theorem ��� cannot be
improved below On	�
�	�
d��

For the primal shatter function	 the lower bound question is more delicate� Let F be the
family of all halfspaces in E

d� Then it is easy to see that 	F m� � Omd�� In dimension
d � �	 Beck proves a lower bound  n	��logn����
� for the discrepancy function of
F where the measure � is the Lebesgue measure restricted to the unit disk instead of
the unit square�� His proof works in any dimension	 giving a lower bound of the form
 n	�
�	�
dlogn�cd� cd a constant� for discrepancy under the assumptions of Theorem
����

Other geometric lower bound results were given by Alexander �Ale��� using di�erent
methods than Beck� However	 it would be nice to �nd a more direct lower bound proof
for our combinatorial setting�

Algorithmic aspects� The proof of Theorem ��� can be easily turned into a polynomial
algorithm for computing good colorings or �
approximations with the claimed bounds�
Note that such an algorithm will go through two stages� First	 it has to compute a
spanning path	 or actually a matching with small crossing number� Second	 it has to
decide which of every two matched points gets sign !�� and !���

The �rst stage can be solved in polynomial time by the "iterative reweighting algo

rithm# in �Wel���	 �CW���� The second phase can either be solved by choosing the signs
randomly as suggested by the proof�	 or by the "hyperbolic cosine algorithm# in �Spe���	
if one prefers a determinisitic algorithm with guaranteed performance�

Corollary ��� Given a range space X�R� with dual shatter function 	�m� � Omd�� a
coloring with discrepancy On	�
�	�
d logn� can be constructed in time polynomial in jX j
and jRj�

It would be interesting to give more speci�c bounds for deterministic computing of
good colorings and �
approximations particularly in speci�c geometric settings�� When
��� is much smaller than n	 one can use a method of �Mat��a� for a faster computation
of an �
approximation� For computing a spanning path with low crossing number	 the
methods of �Mat��b� can be applied in some geometric settings to get an e�cient algorithm�
However	 the actual complexity of such algorithms is a matter of further research�

Unfortunately	 the proof for the bound via the primal shatter function uses the pigeon
hole principle	 and thus it is not clear how it can be turned into an e�cient algorithm�
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