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Distinct roles of exogenous opioid 
agonists and endogenous opioid 
peptides in the peripheral control of 
neuropathy-triggered heat pain
Dominika Labuz1, Melih Ö. Celik1, Andreas Zimmer2 & Halina Machelska1

Neuropathic pain often results from peripheral nerve damage, which can involve immune response. 
Local leukocyte-derived opioid peptides or exogenous opioid agonists inhibit neuropathy-induced 
mechanical hypersensitivity in animal models. Since neuropathic pain can also be augmented by 
heat, in this study we investigated the role of opioids in the modulation of neuropathy-evoked heat 
hypersensitivity. We used a chronic constriction injury of the sciatic nerve in wild-type and opioid 
peptide-knockout mice, and tested opioid effects in heat and mechanical hypersensitivity using 
Hargreaves and von Frey tests, respectively. We found that although perineural exogenous opioid 
agonists, including peptidergic ligands, were effective, the endogenous opioid peptides β-endorphin, 
Met-enkephalin and dynorphin A did not alleviate heat hypersensitivity. Specifically, corticotropin-
releasing factor, an agent triggering opioid peptide secretion from leukocytes, applied perineurally did 
not attenuate heat hypersensitivity in wild-type mice. Exogenous opioids, also shown to release opioid 
peptides via activation of leukocyte opioid receptors, were equally analgesic in wild-type and opioid 
peptide-knockout mice, indicating that endogenous opioids do not contribute to exogenous opioid 
analgesia in heat hypersensitivity. Furthermore, exogenously applied opioid peptides were ineffective 
as well. Conversely, opioid peptides relieved mechanical hypersensitivity. Thus, both opioid type and 
sensory modality may determine the outcome of neuropathic pain treatment.

Pain is the most common reason for medical visits. It is a health problem of the high socio-economic relevance, 
with approximately 20% of adults suffering chronic pain globally1. Neuropathic pain can develop following 
peripheral nerve lesions (e.g., surgery, compression, entrapment), it decreases the quality of life and is difficult 
to treat1,2. Nonsteroidal anti-inflammatory drugs are usually ineffective, while the use of antidepressants and 
anticonvulsants is limited by nausea, gait disturbance and risk of cardiovascular complications. Opioids such as 
morphine were reported efficacious in some neuropathic conditions; however, adverse effects such as nausea, 
apnoea, sedation and addiction resulting from the actions in the central nervous system (CNS), often hinder the 
therapy2,3.

Apart from the CNS, opioid receptors (μ , δ  and κ ) are also expressed in peripheral sensory neurones. 
Peripheral opioid receptors considerably contribute to the analgesic effects of opioid drugs applied systemically 
in animal inflammatory and neuropathic pain models, and in postoperative pain in humans4–8. There is also 
substantial evidence that selective activation of peripheral opioid receptors by injections of exogenous opioids 
into injured tissue results in attenuation of neuropathy-induced mechanical and heat hypersensitivity in animal 
models9–14.

Additionally, opioid receptor endogenous ligands, i.e., opioid peptides such as β -endorphin (END), 
Met-enkephalin (ENK) and dynorphin A 1–17 (DYN) are synthesized and secreted by immune cells in response 
to stressful stimuli (e.g., experimental swim stress, surgery) or stimulation by corticotropin-releasing factor 
(CRF), formyl peptides and chemokines (CXCL2/3). The released opioid peptides activate peripheral neu-
ronal opioid receptors resulting in amelioration of experimental and clinical inflammatory pain5,15–17. Majority 
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of studies reported improvement of mechanical hypersensitivity by leukocyte-derived opioids18–26, while few 
showed attenuation of heat hypersensitivity in inflammatory pain23,24.

Interestingly, many studies revealed that not only somatic inflammatory pain but also neuropathy can be asso-
ciated with immune reactions. Nerve injuries lead to the activation of resident cells (e.g., macrophages, Schwann 
cells, fibroblasts) and influx of blood-born leukocytes, including neutrophils, monocytes/macrophages and T 
lymphocytes. By secreting inflammatory cytokines (e.g., interleukin-1β , tumor necrosis factor-α ) these cells can 
contribute to the generation of neuropathic pain5,27,28. On the other hand, immune cells accumulating at the dam-
aged nerves also contain opioid peptides29–33, and can ameliorate neuropathy-induced tactile hypersensitivity. 
Hence, selective stimulation of opioid-cells by CRF29,30 or activation of opioid receptors in leukocytes by exoge-
nous opioid agonists33, which leads to the secretion of opioid peptides20,33, abolished mechanical hypersensitivity 
in a chronic constriction injury (CCI) neuropathic pain model29,30,33.

Neuropathic pain can also be amplified by heat stimuli2,34. Therefore, in this study we aimed to evaluate the role 
of endogenous opioid peptides in the peripheral regulation of neuropathy-evoked heat hypersensitivity following 
CCI of the sciatic nerve in mice. Intriguingly, we found that although exogenous opioid agonists applied peri-
neurally at the injured nerves ameliorated heat hypersensitivity, the opioid peptides did not. This is in contrast to 
mechanical hypersensitivity, which was improved by opioid peptides. These findings suggest that opioid therapy  
may require careful tailoring according to the opioid type and modality of pain resulting from neuropathy.

Results
Effects in response to CRF. CRF is an agent releasing opioid peptides from leukocytes and thereby elicits 
analgesia in peripheral inflamed tissue16,20,35. Previously we have shown in a mouse CCI neuropathic pain model 
that in response to CRF perineural application at the injured nerve (CCI site), the opioid peptides derived from 
locally accumulating immune cells attenuate mechanical hypersensitivity evaluated using von Frey filaments. This 
conclusion was based on the findings that CRF-induced analgesia was abolished by both leukocyte depletion and 
co-application of opioid receptor antagonists or antibodies to opioid peptides29.

In this study, to verify the effect of CRF on mechanical hypersensitivity, we used mice lacking opioid peptides. 
These were mice with a point mutation in the proopiomelanocortin (POMC) gene selectively lacking the region 
encoding END, here referred to as END-knockout (KO)36, and mice lacking the ENK precursor proenkephalin  
(PENK-KO)37 or the DYN precursor prodynorphin (PDYN-KO)38. Following CCI, wild-type, END-KO and 
PENK-KO mice developed comparable mechanical hypersensitivity, which was demonstrated by significantly 
lower von Frey thresholds in paws innervated by injured nerves as compared to the thresholds before surgery 
and to the thresholds of sham-operated mice. This hypersensitivity appeared on day 1 or 2 and lasted until day 21 
following CCI (Fig. 1). In PDYN-KO mice the mechanical thresholds were slightly, but significantly higher than 
in wild-type mice on days 6–14 after CCI (Fig. 1). There were no significant alterations in the thresholds of paws 
innervated by sham-operated nerves (Fig. 1) and in the thresholds of paws contralateral to CCI or sham surgery 
(P >  0.05; data not shown).

CRF applied at the CCI site in the most effective doses (20 ng at 2 days or 100 ng at 14 days) found earlier29,30, 
significantly elevated von Frey thresholds, completely reversing mechanical hypersensitivity (to the thresholds 
before CCI) measured 30 min after injection, on days 2 and 14 following CCI in wild-type mice. In contrast, these 
CRF analgesic effects were virtually absent in END-KO, PENK-KO and PDYN-KO mice (Fig. 2). Vehicle had 
no effect (Fig. 2) and there were no significant changes in contralateral paws in all genotypes (P >  0.05; data not 
shown). These results confirm that in response to CRF, all three opioid peptides, END, ENK and DYN at the site 
of nerve injury ameliorate neuropathy-induced mechanical hypersensitivity.

However, when tested in hypersensitivity to heat (using Hargreaves test), which was demonstrated by signif-
icantly shortened withdrawal latencies in paws innervated by injured nerves (Fig. 3), the CRF applied at the CCI 
site in a wide dose range (20–400 ng) and tested up to 60 min following injections, was ineffective in wild-type 
mice. Although occasionally there were some statistically significant elevations in paw withdrawal latency (on day 
14 when tested for dose-dependency, and on day 2 when tested for time-course), these effects are very small and 
substantially below the latency measured before CCI, and unlikely to be of biological relevance (Fig. 3). Since CRF 
was ineffective in wild-type mice, there was no rationale to test it in KO mice in heat hypersensitivity.

Effects in response to exogenous opioid receptor agonists. Neuropathy-induced mechanical hyper-
sensitivity can also be ameliorated by opioid peptides derived from immune cells upon activation of opioid recep-
tors. Hence, activation of leukocyte μ -, δ - and κ -opioid receptors by selective exogenous agonists triggered the 
intracellular Ca2+-regulated opioid peptide release and resulted in analgesia. This statement was supported by 
the findings that exogenous agonists applied at the CCI site (infiltrated by opioid peptide-containing leukocytes) 
ameliorated mechanical hypersensitivity, which was attenuated by immune cell depletion or by genetic deletion 
of opioid peptides in KO mice33.

In this study, to examine whether endogenous opioid peptides contribute to exogenous agonist-induced 
analgesia in heat hypersensitivity following neuropathy, we evaluated exogenous agonist analgesia in opioid 
peptide-KO mice using Hargreaves test. Following CCI, all mice, including wild-type, END-KO, PENK-KO and 
PDYN-KO developed comparable heat hypersensitivity in paws innervated by injured nerves as compared to 
paws of sham-operated mice, on days 1–21 (Fig. 4). There were no significant alterations in the withdrawal laten-
cies of paws innervated by sham-operated nerves (Fig. 4) and in the latencies of paws contralateral to CCI or sham 
surgery (P >  0.05; data not shown).

To examine exogenous opioid analgesia we used selective agonists of μ -opioid receptors DAMGO ([D-Ala2, 
N-Me-Phe4, Gly5-ol]-enkephalin; 4 μ g on day 2 and 16 μ g on day 14), δ -opioid receptors DPDPE (D-Pen2, 
D-Pen5-enkpephalin; 266 μ g) and κ -opioid receptors U50, 488H (trans-(6)3,4-dichloro-N-methyl-N-[2-
(1-pyrrolidinyl)-cyclohexyl]-benzeneacetamide; 75 μ g). All agonists applied at the CCI site in the most effective 
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Figure 1. Development of mechanical hypersensitivity in wild-type and opioid peptide-lacking mice. The 
effects were measured using von Frey filaments in hind paws ipsilateral to the CCI or sham surgery in wild-type, 
END-KO, PENK-KO or PDYN-KO mice. *P <  0.05 compared to the corresponding thresholds before CCI 
surgery and to those in sham-operated mice; †P <  0.05 compared to the corresponding wild-type mice (two-way 
repeated measures ANOVA, Bonferroni test). There were no significant differences in sham-operated groups 
(P >  0.05, two-way repeated measures ANOVA). Detailed statistical analysis is presented in Supplementary 
Table 1. Data are expressed as mean ±  SEM. N =  6–8 mice per group.
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doses14 fully reversed heat hypersensitivity, reaching the latencies measured before CCI in wild-type mice on 
days 2 and 14 following CCI (Fig. 5). However, similar effects were produced in all three opioid peptide-KO lines 
(Fig. 5), indicating that endogenous opioid peptides do not contribute to analgesia produced by exogenous opioid 
agonists in heat hypersensitivity.

Effects of opioid peptides. The results described above suggest that although exogenous agonists, 
including peptidergic DAMGO and DPDPE are effective, the endogenous opioid peptides do not attenuate 
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Figure 2. Effects of CRF on mechanical hypersensitivity in wild-type and opioid peptide-lacking mice. 
CFR was injected at the CCI site on days 2 and 14 following CCI, and effects were assessed 30 min after injection 
using von Frey filaments in hind paws ipsilateral to the CCI of wild-type, END-KO, PENK-KO or PDYN-KO 
mice. *P <  0.05 compared to thresholds before CCI (indicated by dashed lines) (paired t-test or Wilcoxon test); 
#P <  0.05, compared to the respective vehicle-treated groups; †P <  0.05 compared to the corresponding wild-type  
mice (Mann-Whitney U test). Data are expressed as mean ±  SEM. N =  6–8 mice per group.
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neuropathy-induced heat hypersensitivity. Therefore, in the following experiments we assessed whether these 
effects can be mimicked by exogenously applied opioid peptides and whether they are limited to heat hypersensi-
tivity by also testing them in mechanical hypersensitivity. Indeed, we found that END (0.5–4 μ g), ENK (0.5–4 μ g)  
and DYN (0.0625–0.25 μ g) applied at the CCI site dose-dependently reversed mechanical hypersensitivity 
(Fig. 6A), but did not attenuate heat hypersensitivity neither on day 2 nor 14 following CCI (Fig. 6B).

Discussion
The main finding in this study is that although peripherally acting exogenous opioid receptor agonists are effec-
tive, the endogenous opioid peptides do not alleviate neuropathy-induced heat hypersensitivity. In contrast, 
mechanical hypersensitivity can be ameliorated by both exogenous agonists14,33 and endogenous opioid peptides 
(this study).

These differences apply to the effects of both CRF (Fig. 3) and exogenous opioid agonists (Fig. 5), which can 
induce secretion of opioid peptides from immune cells20,33,35. To examine whether these effects are restricted 
to heat hypersensitivity, we first verified the action of CRF in mechanical hypersensitivity using opioid 
peptide-deficient mice. When tested over time, PDYN-KO mice developed slightly weaker neuropathy-induced 
mechanical hypersensitivity compared to wild-type animals (Fig. 1), suggesting some pro-nociceptive tone of 
endogenous DYN. This observation is in line with previous studies proposing that these effects mostly occur at 
the spinal cord level and can be mediated by both κ -opioid receptors and N-methyl D-aspartate receptors39,40. In 
opposite to PDYN-KO, mice lacking END or PENK developed comparable hypersensitivity to wild-type mice 
(Figs 1 and 4), indicating no major contribution of END and ENK to the tonic control of neuropathic pain. 
PENK-KO mice have not been previously examined following nerve injury, but the findings in END-KO mice are 
in line with an earlier report41. Importantly, we found that amelioration of mechanical hypersensitivity following 
perineural CRF application observed in wild-type mice was absent in all three opioid peptide-KO lines (Fig. 2), 
in accordance with the blockade of CRF analgesia by opioid peptide antibodies, found previously29. Clearly, how-
ever, CRF did not improve heat hypersensitivity (Fig. 3). This result somewhat differs from the data showing that 
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Figure 3. Effects of CRF on heat hypersensitivity in wild-type mice. (A) Dose-dependency assessed 5 min 
after CFR injection. *P <  0.05 compared to latencies before CCI (indicated by dashed lines) (paired t-test or 
Wilcoxon test); #P <  0.05 compared to vehicle-treated group (0 ng) (one-way ANOVA, Bonferroni test).  
(B) Time-course of CFR (100 ng) effects. *P <  0.05 compared to latencies before CCI; #P <  0.05, compared to 
vehicle-treated group (two-way repeated measures ANOVA, Bonferroni test). In all experiments, CRF was 
applied at the CCI site and the effects were assessed using Hargreaves test, in hind paws ipsilateral to the CCI 
on days 2 and 14. Detailed statistical evaluation is presented in Supplementary Table 2. Data are expressed as 
mean ±  SEM. N =  6 mice per group.
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Figure 4. Development of heat hypersensitivity in wild-type and opioid peptide-lacking mice. The effects were 
measured using the Hargreaves test in hind paws ipsilateral to the CCI or sham surgery in wild-type, END-KO, 
PENK-KO or PDYN-KO mice. *P <  0.05 compared to the corresponding latencies before CCI surgery and to 
those in sham-operated mice (two-way repeated measures ANOVA, Bonferroni test). There were no significant 
differences in sham-operated groups (P >  0.05, two-way repeated measures ANOVA). Detailed statistical analysis 
is presented in Supplementary Table 3. Data are expressed as mean ±  SEM. N =  6–8 mice per group.
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Figure 5. Effects of exogenous opioid receptor agonists on heat hypersensitivity in wild-type and opioid 
peptide-lacking mice. DAMGO, DPDPE and U50, 488H were injected at the CCI site on days 2 and 14 
following CCI, and effects were assessed 5 min after injection using Hargreaves test, in hind paws ipsilateral to 
the CCI of wild-type, END-KO, PENK-KO or PDYN-KO mice. Dashed lines represent latencies determined 
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N =  8–9 mice per group.
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neuropathy-induced heat hypersensitivity was diminished by opioid peptide-containing leukocytes recruited by 
granulocyte colony stimulating factor (G-CSF)32. As these discrepancies might relate to the stimulating factor 
type (CRF vs. G-CSF), the actions of G-CSF appear complex, since other studies found this growth factor did not 
improve inflammatory pain42 or even exacerbated neuropathic pain43.

Recently we found that inhibition of CCI-induced mechanical hypersensitivity produced by exogenous opi-
oid agonists applied perineurally was diminished by 40–70% in opioid peptide-KO mice compared to wild-type 
mice33. Conversely, the endogenous opioid peptides at damaged nerves do not seem to contribute to local exoge-
nous opioid agonist-induced attenuation of heat hypersensitivity (Fig. 5). In the previous study we have confirmed 
the selectivity of DAMGO to μ -opioid receptors, DPDPE to δ -opioid receptors, and U50, 488H to κ -opioid recep-
tors by showing that analgesia induced by each agonist was only blocked by the respective receptor antagonist14.  
Additionally, other studies employing mice lacking either μ -, δ - or κ -opioid receptors verified the respective 
agonist selectivity in various assays, including receptor binding, respiratory depression, analgesia or analgesic 
tolerance (reviewed in ref. 44). On the other hand, just as a possible lack of specificity of pharmacological tools, 
compensatory changes in KO animals are also a potential drawback. In opioid peptide-KO mice, no changes in 
the expression of remaining opioid peptides were observed. There were also no alterations in the expression of 
opioid receptors in PDYN-KO and END-KO mice, but μ - and δ -binding sites were upregulated in PENK-KO 
mice, in brain regions associated with emotional behaviours; not in pain-related regions though (reviewed in 
ref. 44). Even if such changes occurred in the peripheral pain pathways, they do not seem to play a major role in 
our study because all three μ -, δ - and κ -opioid receptor agonists exerted comparable analgesic effects not only 
in PENK-KO but also in END-KO and PDYN-KO mice. In fact, the exogenous opioid analgesia did not differ 
between wild-type and KO mice (Fig. 5), and thus any potential compensatory changes in KO mice do not appear 
to be of relevance in our experimental conditions.

Our findings are in agreement with previous work evaluating exogenous opioid analgesia in opioid 
peptide-deficient mice following systemic, spinal or intracerebroventricular opioid agonist applications, in heat 
hypersensitivity. Indeed, in most of those studies the exogenous analgesia was unaltered in KO mice compared 
to wild-type mice under healthy conditions (without tissue damage) or in an inflammatory pain model38,45–47. In 

2 days 14 days

END

ENK

0

1

2

3
P

aw
 w

ith
dr

aw
al

 
   

th
re

sh
ol

d 
(g

)

4

0 0.5 1 2 g

0 0.5 1 2 g

0 0.062 0.125 0.25 g

0 1 2 4 g

0 1 2 4 g

0 0.062 0.125 0.25 g

DYN

Mechanical hypersensitivity Heat hypersensitivity

0

5

10

P
aw

 w
ith

dr
aw

al
 

   
 la

te
nc

y 
(s

)

15END

ENK

DYN

0.5 1 2 g

0 0.5 1 2 g

0 0.062 0.125 0.25 g

0 1 2 4 g

0 1 2 4 g

0 0.062 0.125 0.25 g

END

ENK

DYN

END

ENK

DYN

*

*

*

*
*

*
*

*

*

*

A B

*
* #

#

*

#

*
*

#

#

#

#

*
*

#

#
#

*

#
#

#

#

#

*

***

* * * *

* * * *

****

****

* * * *

P
aw

 w
ith

dr
aw

al
 

   
th

re
sh

ol
d 

(g
)

0

1

2

3

4

P
aw

 w
ith

dr
aw

al
 

   
th

re
sh

ol
d 

(g
)

0

1

2

3

4

0

5

10

P
aw

 w
ith

dr
aw

al
 

   
 la

te
nc

y 
(s

)

15

0

5

10

P
aw

 w
ith

dr
aw

al
 

   
 la

te
nc

y 
(s

)

15

2 days 14 days

0

Figure 6. Effects of exogenously applied opioid peptides on mechanical and heat hypersensitivity in wild-
type mice. (A) Effects of opioid peptides on mechanical hypersensitivity assessed using von Frey filaments.  
(B) Effects of opioid peptides on heat hypersensitivity measured using Hargreaves test. In all experiments, 
opioid peptides were applied at the CCI site and the effects were assessed 5 min later, in hind paws ipsilateral 
to the CCI on days 2 and 14. *P <  0.05 compared to thresholds or latencies before CCI (indicated by dashed 
lines) (paired t-test or Wilcoxon test); #P <  0.05 compared to vehicle-treated group (0 μ g) (one-way ANOVA, 
Bonferroni test). Detailed statistical analysis is presented in Supplementary Table 5. Data are expressed as 
mean ±  SEM. N =  7–8 mice per group.
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a partial sciatic nerve ligation-induced neuropathy, systemically applied morphine and U50, 488H (in the most 
effective doses) in END-KO and PDYN-KO mice, respectively, also produced comparable analgesia to that in 
wild-type mice40,41; however, mechanical hypersensitivity was not examined. In the early 1980s, spinally or intrac-
erebroventricularly applied END, ENK and DYN were reported to attenuate tail pinch and tail-flick responses in 
naïve (without tissue injury) rats or mice (reviewed in ref. 48). More recently, spinal delivery of vectors encod-
ing POMC or PENK improved both mechanical and heat hypersensitivity following CCI49,50; yet, it is unclear 
whether actions of such genetically delivered and native opioid peptides are mechanistically identical. Together, 
the relative contribution of the CNS endogenous opioids to mechanical vs. heat hypersensitivity in neuropathic 
conditions has not been systematically examined.

Our study suggests that distinct roles of exogenous opioid agonists and endogenous opioid peptides in the 
peripheral control of neuropathic pain predominantly apply to heat hypersensitivity. This finding is supported by 
experiments showing that also exogenously applied END, ENK and DYN fully reversed mechanical hypersensi-
tivity, but were ineffective in heat hypersensitivity (Fig. 6). This was somewhat unexpected, since both exogenous 
and endogenous opioids are agonists of opioid receptors, which are expressed in C and Aδ  afferents, and in a 
lower degree in Aβ  fibres6,7,51, and these afferents respond to mechanical and thermal stimulation52. It is thus 
possible that exogenous and endogenous opioids differently interact with transducer molecules sensing mechan-
ical stimuli (e.g., potassium channels) or heat (e.g., transient receptor potential channels)53. DAMGO decreased 
capsaicin-induced activity of transient receptor potential vanilloid 1 (TRPV1) in dorsal root ganglion nocicep-
tors assessed by patch clamp54, but DPDPE, U50, 488H and opioid peptides, and their effects in response to heat 
stimulation have not been examined. On the other hand, TRPV1 may not be the best candidate, since its blockade 
can attenuate both heat and mechanical hypersensitivity in pathological pain models (ref. 55 and refs. therein). 
A biased agonism (or functional selectivity) might still be an option. This phenomenon is characterised by the 
ability of different ligands of the same receptor to stabilise various receptor active states leading to the activation 
of diverse signalling pathways. This concept has been mostly examined for exogenous opioid receptor agonists 
and only few studies addressed opioid peptides. For example, in AtT20 mouse pituitary tumour cell line express-
ing mouse μ -opioid receptors, compared to DAMGO, ENK showed bias towards μ -receptor internalization over 
inhibition of cyclic adenosine monophosphate formation, and towards cell hyperpolarization over β -arrestin 
recruitment56. Nonetheless, whether such effects translate to in vivo conditions and how they correspond to 
the modulation of mechanical vs. heat hypersensitivity by opioids is very challenging to examine and remains 
speculative. Interestingly, however, in a spinal nerve injury-induced neuropathy, μ -opioid receptor-KO mice had 
increased responses to mechanical but not heat stimulation, whereas in WT mice morphine attenuated both 
hypersensitivity forms57. Analogously, conditional deletion of δ -opioid receptors in Nav1.8 nociceptors resulted 
in enhanced mechanical but not heat hypersensitivity, while δ -opioid receptor agonist SNC80 attenuated both 
hypersensitivity types in WT mice in a partial sciatic nerve ligation neuropathic pain model6. Hence, the findings 
of both studies suggest that exogenous μ - and δ -agonists attenuate responses to mechanical and heat stimuli, 
while their endogenous agonists control mechanical but not heat hypersensitivity following neuropathy, in accord 
with our data. Another study reported that DYN applied into paws innervated by injured nerves following CCI 
attenuated both hypersensitivity types; however, not all data were shown, the effects appeared much weaker in 
heat hypersensitivity, and the use of rats11 vs. mice (this study) might be additional factor contributing to these 
differing results.

Currently it is uncertain how these effects apply to other pain models. For example, in a complete Freund’s 
adjuvant-induced hind paw inflammation in rats, opioid peptides secreted from immune cells by chemokine 
CXCL2/3 or formyl peptides attenuated both mechanical and heat hypersensitivity23,24. CRF as well as END, 
ENK and DYN injected into inflamed paws improved mechanical hyperalgesia, but they were not tested in heat 
hypersensitivity18–22,58–60. Thus, it remains to be elucidated whether the type of opioid peptide-releasing factor, 
animal species and/or pain model determine possible different roles of exogenous and endogenous opioids in the 
modulation of heat hypersensitivity.

In conclusion, our data suggest the differences between synthetic opioids (DAMGO, DPDPE, U50, 488H) 
and native opioid peptides (END, ENK, DYN) in the regulation of neuropathic pain. Interestingly, even 
though DAMGO and DPDPE are derivatives of ENK, only exogenous opioid agonists but not endogenous 
opioid peptides ameliorated heat pain. While the reasons for the intriguing finding that these effects apply to 
neuropathy-triggered heat but not mechanical hypersensitivity need to be explored, it appears that both opioid 
type and modality of pain resulting from nerve damage might determine the successful therapy. These findings 
may be helpful considerations in the view of an interest in the development of peptide-based pain medications11,61.

Methods
Animals. Experiments were approved by the State animal care committee (Landesamt für Gesundheit und 
Soziales, Berlin, Germany) and were performed according to the ARRIVE guidelines62. The animals were male 
mice (22–30 g, 6–13 weeks old), either wild-type (C57BL/6J; Harlan Laboratories) or lacking END, PENK or 
PDYN. PENK-KO and PDYN-KO mice backcrossed to C57BL/6J background for at least ten generations were 
provided by A. Zimmer37,38. The heterozygous END+/− mice (on C57BL/6J background) were purchased from 
the Jackson Laboratory (B6.129S2-Pomctm1Low/J; stock number 00319)36 and bred with heterozygotes or wild-type 
(C57BL/6J) mice to obtain END-KO homozygotes. Since all KO mice were backcrossed to C57BL/6J background 
for at least ten generations, non-littermate C57BL/6J wild-type mice were used as controls. All animals were bred 
at the Charité, Berlin, and were kept in groups of 3–5 per cage, with free access to food and water, in environmen-
tally controlled conditions (12 h light/dark schedule, light on at 7:00 h; 22 ±  0.5 °C; humidity 60–65%).

Animals were randomly placed in cages by an animal caretaker not involved in the study. Experiments were 
blinded regarding the genotypes and treatments/doses. Substances were prepared in separate, coded vials by a 
colleague not involved in in vivo testing. The codes were broken after completion of experiments. No statistical 
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test was run to determine sample size a priori; the animal numbers are similar to those used in previous stud-
ies6,10,11,14,29,55. Each group consisted of 6–9 animals and was tested on 2–3 different days. After completion of 
experiments, animals were killed with isoflurane overdose (AbbVie, Ludwigshafen, Germany). All efforts were 
made to minimize animal numbers and suffering.

PCR. Mice were genotyped by PCR, as described previously33. Briefly, ear tissue punches were 
digested overnight and genomic DNA was purified. To genotype PENK-KO and PDYN-KO mice the 
following primers were used: PENK (forward 5′ -GCATCCAGGTAATTGGCAGGAA-3′ , reverse 5′ 
-CAGCAGCCTCTGTTCCACATACACTTCAT-3′ , middle 5′ -TCCTTCACATTCCAGTGTGC-3′ ), PDYN  
(forward 5′ -CGCACCGTCCATTTTAATGAGGAGGACTTG-3′, reverse 5′-CTTCAGAATAGGTATT 
GGGGTTCTCCTGGG-3′ , middle 5′ -AGCGCATCGCCTCTCATCGCCTTCTT-3′ ). To genotype END-KO mice, 
two primer sets were used; one set (forward 5′ -GAAGTACGTCATGGGTCACT-3′ , reverse 5′ -GACATGTTC 
ATCTCTATACATAC-3′) amplified PCR products corresponding to the wild-type POMC, and a second set (for-
ward 5′ -GAGGATTGGGAAGACAATAGCA-3, reverse 5′ -GACATGTTCATCTCTATACATAC-3′ ) amplified 
PCR products corresponding to the truncated POMC. All primers were purchased from TIBMOLBIOL (Berlin, 
Germany).

Neuropathy. CCI was induced in deeply isoflurane-anesthetized mice by exposing the sciatic nerve at the 
level of the right mid-thigh and placing three loose silk ligatures (4/0) around the nerve with about 1-mm spacing;  
the ligatures were tied until they elicited a brief twitch in the respective hind limb. The wound was closed with silk 
sutures. Sham operation was performed in a similar manner but without nerve ligation14,29,30,33.

Assessment of nociception. In all experiments, animals were habituated to the test cages daily (1–2 times 
for 15 min), starting 6 days prior to nociceptive testing. During the testing, the sequence of paws was alternated 
between animals to avoid “order” effects.

Mechanical sensitivity (von Frey test). Animals were individually placed in clear Plexiglas cubicles located on 
a stand with anodized mesh (Model 410; IITC Life Sciences, Woodland Hills, CA). The calibrated von Frey fil-
aments in the range of 0.054 mN (0.0056 g) to 42.85 mN (4.37 g) were used (Stoelting, Wood Dale, IL). The fil-
aments were applied until they bowed, for approximately 3 s, to the plantar surface of hind paws. The up-down 
method was used to estimate 50% withdrawal thresholds63. Testing began using a 2.74 mN (0.28 g) filament. If 
the animal withdrew the paw, the just preceding weaker filament was applied. In the case of no withdrawal, the 
next stronger filament was applied. The maximal number of applications was 6–9, and the cut-off was 42.85 mN 
(4.37 g), according to our previous studies14,29,30,33.

Heat sensitivity (Hargreaves test). Mice were individually placed in clear Plexiglas chambers positioned on a 
stand with glass surface (Model 336; IITC Life Sciences, Woodland Hills, CA). Radiant heat was applied to the 
plantar surface of hind paws from underneath the glass floor with a high-intensity projector lamp bulb and paw 
withdrawal latency was evaluated using an electronic timer. The withdrawal latency was defined as the average of 
two measurements separated by at least 10 s. The heat intensity was adjusted to obtain baseline withdrawal latency 
of about 10–12 s in uninjured paws, and the cut-off was 20 s to avoid tissue damage14,55.

Substances. The following substances were used: CRF, U50, 488H (Sigma Aldrich, Deisenhofen, Germany), 
DAMGO, DPDPE, END, ENK (Bachem, Weil am Rhein, Germany), and DYN (Tocris, Wiesbaden-Nordenstadt, 
Germany). All substances were dissolved in sterile water to obtain stock solutions and diluted with 0.9% NaCl. 
Control groups were treated with 0.9% NaCl.

All substances were injected near the nerve at the CCI site (30 μ l) under brief isoflurane anaesthesia. A poly-
ethylene tube was placed 2 mm from the tip around the 26G needle to ensure the same depth of needle insertion 
into the middle of the scar tissue after operation14,29,30,33.

Experimental protocols. The development of mechanical and heat sensitivity was evaluated a day before 
and daily on days 1–7, 14 and 21 following CCI or sham surgery in wild-type and opioid peptide-KO mice. 
The effects of CRF and opioids on mechanical and heat hypersensitivity were assessed on days 2 and 14 follow-
ing CCI. The effects of CRF on mechanical hypersensitivity (20 ng on day 2; 100 ng on day 14) were measured 
30 min after CRF injection, in wild-type and opioid peptide-KO mice. The dose-dependency of CRF (20–400 ng) 
on heat hypersensitivity was tested at 5 min, while the time-course of CRF (100 ng) was evaluated before and 
5–60 min following injection in wild-type mice. The contribution of endogenous opioid peptides to exogenous 
opioid analgesia in heat hypersensitivity was examined by testing effects of DAMGO (4 μ g on day 2; 16 μ g on day 
14), DPDPE (266 μ g), and U50, 488H (75 μ g) at 5 min following injections, in wild type and opioid peptide-KO 
mice. The effects of END (0.5–4 μ g), ENK (0.5–4 μ g) and DYN (0.0625–0.25 μ g) were assessed 5 min following 
injections. Control groups were examined accordingly. Doses and time-course are based on our pilot experiments 
and earlier studies14,29,30.

Statistical analysis. The data are expressed as means ±  SEM. Two-sample comparisons were per-
formed using paired t-test for dependent normally-distributed data, Wilcoxon test for dependent 
not-normally-distributed data, and Mann-Whitney U test for independent not-normally-distributed data. 
Dose-response relationships were analysed by one-way analysis of variance (ANOVA) followed by Bonferroni 
test. Two-way repeated measures ANOVA followed by Bonferroni test was used to compare two treatments over 
time. Two-way ANOVA followed by Bonferroni test was used to analyse two independent treatments at one time 
point. Differences were considered significant at values of P <  0.05. Statistical tests are specified in figure legends.
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