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Abstract

Time-of-flight principle range cameras are becoming
more and more available. They promise to make the 3D
reconstruction of scenes easier, avoiding the practical is-
sues resulting from 3D imaging techniques based on trian-
gulation or disparity estimation. Their low resolution and
frame rates as well as their low signal-to-noise ratio, how-
ever, kept many researchers from seriously considering this
technology for segmentation purposes. The following arti-
cle uses a practical application as an example to present
both, an analysis of the problems resulting from the use of
time-of-flight principle 3D cameras and a solution to deal
with these issues. A lecturer is extracted out of a video
that shows him in front of an electronic chalkboard. The
extracted instructor can later be laid over the board semi-
transparently allowing the students to look through him in
a later video replay. Using the 3D Time-of-Flight camera
technology improves the robustness of the segmentation and
lowers its computational complexity.

1 Introduction

The underlying scenario presented in this paper is de-
duced from the practical experiences of using our e-learning
environment called E-Chalk [21]. When using E-Chalk, a
lecturer stands in front of a classroom writing on an elec-
tronic chalkboard. The electronic chalkboard captures the
instructor’s handwriting and stores them as vector data. The
system records the creation of the board content along with
the voice of the instructor to allow for live transmission and
archival of lectures. With an electronic board to capturing
strokes instead of using a camera to film the blackboard, the
drawings can be rendered as a crisp image with the usual
video compression artifacts that cause a disturbing blurring
of the edges. However, when only the board image is trans-

Figure 1. The left picture shows the scene as
acquired by the 2D-camera. The data written
on the electronic chalkboard is stored as vec-
tor data. The goal is to extract the teacher
out of the scene and overlay his image on the
vector data for replay. The result is shown in
the right picture.

mitted mimics and gestures of the instructor are lost and the
replay sometimes appears quite unnatural when drawings
appear from the void. For this reason, many lecture record-
ing systems do not only transmit the slides or the board con-
tent but also an additional video of the instructor. However
the issue of split attention arises because we have two ar-
eas of the screen competing for the viewer’s eye: the video
window showing the instructor and the board window (for
a detailed explanation of this psychological issue see [18]).
In order to solve this problem, the idea is to create an ad-
ditional film of the instructor showing him or her in front
of the board and then extracting his or her image from the
video. The image of the lecturer must then be separated
in real-time from the steadily changing board background.
Having performed this task, the image of the instructor can
then be overlaid semi-transparently on the board, creating
the impression that the lecturer is working directly on the
screen of the remote student. Mimics and gestures of the
instructor appear in direct correspondence to the board con-
tent (see Figure 1) which helps the student to better asso-



ciate the lecturer’s gestures with the board content. Further-
more, no board content is occluded by the lecturer even if
he or she is standing right in front of it.

In order to achieve this effect, a robust pixel-accurate
segmentation technique has to be used that is feasible for
regular operation in lecture rooms. This document presents
that an appropriate solution for this task can be built using
a combination of a 3D time-of-flight camera plus a normal
video camera. Both cameras capture the instructor’s 3D im-
age and a corresponding video resolution 2D image respec-
tively. Although our experiments focus on solving this par-
ticular segmentation problem the results can be generalized
to various other object segmentation tasks.

2 Related Work

The standard technology for overlaying foreground ob-
jects onto a given background is chroma keying [11]. This
technique is not applicable for many segmentation prob-
lems because the background of a scene is rarely fixed or
monochromatic.

Separating the foreground from either static or dynamic
background is the object of current research, see for exam-
ple [16]. Much work has been done on tracking objects for
computer vision (like robotic soccer [23], surveillance tasks
[15], or traffic applications [2]), and also on interactive seg-
mentation for image processing applications [3]. Numerous
computationally intensive segmentation algorithms are be-
ing developed in the MPEG community, for example [5].
In computer vision, real-time performance is more relevant
than segmentation accuracy as long as the important fea-
tures can be extracted from each video frame. For photo
editing applications, accuracy is more important and algo-
rithms can rely on information obtained through user in-
teraction (see discussion in [22]). For the task we investi-
gate here, the segmentation should be as accurate as possi-
ble and non-interactive. A real-time solution is needed for
live transmission of lectures.

The use of stereo cameras for the reconstruction of depth
information has been thoroughly investigated. Disparity es-
timation is a calculation intensive task. Since it involves tex-
ture matching, it is affected by the same problems as texture
classification methods, that is, similar or homogeneous ar-
eas are very difficult to distinguish and real-time processing
requires additional hardware [25]. However, [14] already
showed, that range information can principally be used to
get a better sample of the background faster.

Weingarten, Gruener and Siegwart [24] describe the
use of a 3D-camera for robot navigation. They use a
differential-driven robot equipped with a time-of-flight 3D-
camera in front of two horizontal laser range scanners and
some ultrasound and infrared distance sensors. Although
their article contains useful information about the working

Figure 2. The Swissranger SR-2 3D-camera
(left picture) and the 2D/3D-camera combi-
nation mounted on the self-developed pod
(right picture).

principles and capabilities of 3D time-of-flight cameras it
does not concern video segmentation.

Göktürk and Tomasi [13] investigated the use of 3D
time-of-flight sensors for head tracking. They used the out-
put of the 3D camera as input for various clustering tech-
niques in order to obtain a robust head tracker. This article
investigates lecturer segmentation using time-of-flight prin-
ciple 3D cameras. This is different because instead of only
a head position, a pixel accurate boundary of the instructor
has to be found in each frame.

Diebel and Thrun [7] use Markov Random Fields to in-
crease the resolution of 3D cameras. They also use a com-
bination of a 2D Camera and a 3D camera. They exploit the
fact that discontinuities in range (i.e. in the 3D image) and
coloring (i.e., in the 2D image) tend to co-align. We also
experimented with their approach. The experiments showed
that it works reasonably well. However, the method is com-
putationally expensive and far from real-time performance.
A downside is that the method sometimes blurs the edges
between instructor and chalkboard. Sometimes the influ-
ence of the 2D camera image gets too strong and reflections
from the board surface appear in the final segmentation re-
sult.

3 Hardware

3.1 The Time-of-Flight Principle

Time-of-flight principle 3D cameras are becoming more
and more available (see for example [6, 20, 4, 1]) and their
acquisition costs are continually decreasing. The experi-
ments described herein were conducted using a miniature
camera called SwissRanger SR-2 [6] built by the Swiss
company CSEM.

Time-of-flight principle cameras work similar to radars.
The camera consists of an amplitude-modulated infrared
light source and a sensor field that measures the intensity
of backscattered infrared light. The infrared source is con-



stantly emitting light that varies sinusoidal between a max-
imum and a minimum. Objects of different distances to the
camera reflect the light in different intensities. The reason is
that, at the same moment, objects that have different camera
distances are reached by different parts of the sinus wave.
The incoming reflected light is then compared to the sinu-
soidal reference signal which triggers the outgoing infrared
light. The phase shift of the outgoing versus the incoming
sinus wave is then proportional to the time of flight of the
light reflected by a distant object. This means, by measur-
ing the intensity of the incoming light, the phase-shift can
be calculated and the cameras are able to determine the dis-
tance of a remote object that reflects infrared light. The
output of the cameras consists of depth images and a con-
ventional low-resolution gray scale video, as a byproduct.
A detailed description of the time-of-flight principle can be
found in [17, 19, 12].

The depth resolution depends on the modulation fre-
quency. For our experiments we used a frequency of
20 MHz which gives a depth range between 0.5 m and
7.5 m, with a theoretical accuracy of about 1 cm. Usually,
time-of-flight cameras allow to configure frame rate, inte-
gration time, and a user-defined region of interest (ROI) by
writing to internal registers of the camera. The cameras then
calculate the distances in an internal processor. The resolu-
tion of the SwissRanger camera is 160 × 124 non-square
pixels. Unfortunately, 3D time-of-flight cameras are not yet
available in higher resolutions such as NTSC or PAL.

3.2 2D/3D-camera combination

In order to capture a high resolution 2D color image, a
standard web-camera from Logitech with a resolution of
640 × 480 is mounted on the time-of-flight camera using
the self-developed stand shown in Figure 2. The idea is to
correlate the high resolution 2D image with the low resolu-
tion 3D range data using this combination of 3D and 2D-
camera. Both cameras are configured such that they see the
same image. If the 3D-camera had the same resolution, the
same lens-distortion, and its lens laid at the same position
as the 2D-camera’s lens, the range image and the 2D color
image would directly correlate. The segmentation problem
described here would then reduce to a simple depth range
check and a cut-out of all those pixels that are closer to the
3D-camera than the board.

Unfortunately, the 2D camera image and the range im-
age do not correlate directly. The reason for this is that the
lens and image characteristics of the two cameras differ sig-
nificantly (compare Figure 3). These must be corrected by
software.

4 Technical Issues

4.1 Motion blur

The time-of-flight principle assumes that an object does
not move during a measurement period. Objects that move
too fast appear blurred. This makes finding an accurate
boundary between the moving object and the rest of the
scene difficult. In our example scenario, this poses a prob-
lem with the teacher’s hands because they move fast while
writing.

4.2 Light scattering

The 3D-camera illuminates the scene actively. However,
the objects hit by the light reflect it not only towards the
camera but in all directions possible. Objects that are close
to the camera (less than about 75 cm) reflect too much light
thus obstructing the correct depth measurement by an over
saturation of the light sensors.

In our scenario, the working depth of the camera is be-
tween 50 cm and 250 cm. As soon as the teacher steps in
front of the board, he or she also reflects some of the light
onto the board, thus creating a silhouette around him. This
makes the board appear closer than it actually is. The opti-
mal depth for the 3D-camera would be between 2 m and 4 m
but this would make the actual region of interest smaller in
the depth image and make the effective resolution of the
range image even smaller.

Figure 3. The left picture shows the depth
data of the scene that is shown in the right
picture. The pictures where acquired with the
2D/3D-Camera combination.

4.3 Camera synchronization

A major issue is the camera synchronization. The two
cameras have different maximal frame rates and although
the 3D-camera could theoretically work with a higher frame
rate, practically, this does not come into consideration be-
cause the exposure-time would have to be lowered (thus
making only very near objects measurable). The 3D-
cameras do not yet support triggering by device drivers, so



a precise synchronization of the two cameras is not easily
possible.

By setting the frame rates of both cameras to 10 fps and
acquiring the data periodically, we are able to find out how
many milliseconds need to pass after retrieving the data
from one camera and before retrieving the data from the
other camera. Even after this soft-syncronisation there is
still a slight offset between the frames. In the worst case,
we observed a spatial offset of up to 50 border pixels in the
2D image. For fast movements, the average error is about
10-30 pixels.

4.4 Noise

During our experiments we noticed that there is a sub-
stantial amount of noise from reflecting surfaces such as
monitor screens. Experiments in front of a non-reflecting,
white wall showed that the amount of noise depends on the
reflection properties of the illuminated object. The noise
from reflecting surfaces in the depth image also correlates
with the image position: While in the center of the scene
noise is not a major issue, the signal-to noise ratio shrinks
radially from the center of the captured depth image. The
error caused by noise makes up to 30 cm in the outer parts
of the image. Of course, this reduces the precision of the
3D-camera seriously. In our scenario, it is nearly impos-
sible to distinguish the teacher from the board if he or she
comes too near. The hands are especially hard to separate
because they almost touch the board.

4.5 Lens distortion

The two cameras have different lens distortions. The
3D-camera’s lens is wider and there is also a stronger ra-
dial distortion. Practically, the two lenses can of course not
be put at the same position. This causes an offset between
the two images of the scene. Furthermore there is a depth-
distortion (probably caused by different lens sizes), so if an
object moves away from the camera, it will “shrink” in one
of the cameras faster than in the other one.

4.6 Different resolutions

Because the resolution of the 3D-camera is only 160 ×
124 the calibration (as explained in the next Section) basi-
cally scales the picture up to 640×480 pixels and transforms
the pixel positions in respect to the offset of the different
lens distortions. The gaps between the transformed pixels
of the 3D-camera scene are filled by bilinear interpolation.

Figure 4. Without any calibration, segmenta-
tion by depth interval checking would look
like this.

5 Calibration

As explained in the last Section, the images of the same
scene as acquired by the two cameras differ (compare Fig-
ure 4). In order to calculate the mapping between the two
images, a calibration step has to be performed prior to using
the camera combination for segmentation tasks.

If we scale the 3d-camera’s image to 640 × 480 we are
able compare them directly. There is an offset caused by the
different positions of the cameras that can be fixed by a sim-
ple translation. Now, the two images are centered around
the same point. However, with growing distance from the
center, the points are bent more rapidly in the image of the
3D-camera than in the image of the 2D-camera because of
the different radial distortions.

So the difference between the same world points as ac-
quired by the two cameras can be described by a polyno-
mial, one for each dimension (x, y). Coefficient 0 is the
offset between the lenses, coefficient 1 is a linear scaling
factor, and the second, third, or higher coefficients repre-
sent any curvatures, or other mappings.

We measure the position of characteristic points in the
worlds of the 3D-camera and the 2D-camera, compute their
difference, and perform a curve fitting. We use a calibration
pattern with at least 5×5 characteristic points, distributed as
evenly as possible on the screen of both cameras (see Figure
5).

Any pattern (for example, circles, squares, ellipses, or
line intersections) can be used as calibration template as
long as it is roughly evenly distributed along the screen of
both cameras and we can see the difference between the
points in every part of the screen of the two cameras. For
automatic software recognition of the points we used big
black circles printed on a sheet of paper. We also tried to
project a pattern using an overhead-projector, but this was
invisible to the 3D-camera as it only senses reflected light
from real objects - such as pigments on a sheet of paper.



Figure 5. Left: The scene as captured by the
3D-camera (an amplitude image) Right: The
scene as captured by the 2D-camera. The
difference between the two images is notice-
able. This pattern is used for calibration.

5.1 Formal Description of the Calibration

Let S2D be the scene as acquired by the 2D-camera and
S3D be the scene as acquired by the 3D-camera (originally
a 160× 124 pixel image scaled to 640× 480 pixels using a
bilinear filter). Let n denote the number of the characteristic
world points, pi the characteristic world points as captured
by the 2D-camera and Pi those captured by the 3D-camera:

~pi, ~Pi ∈ [0..639, 0..479], i = 0, .., n− 1

We look for a function F : R2 → R2:

F (x3, y3) = (x2, y2)

(x3, y3) ∈ S3D, (x2, y2) ∈ S2D

We can divide F into two functions - one for each axis:

F (x3, y3) = (Fx(x3), Fy(y3)) = (x2, y2)

Fx : R → R,Fy : R → R

Using the acquired point pairs (pi, Pi) we can approx-
imate Fx, Fy . We use steepest descent with the following
error function (analog for y-axis):

Ex :=

√√√√n−1∑
i=0

(Fx(x3i)− x2i)2

x3i ∈ (pi)x, x2i ∈ (Pi)x

As function Fx we use a polynomial (analog for Fy):

Fx(x) = a0 + a1x + .. + akxk

Since we use steepest descent, we need to compute the
gradient of E with respect to F . More precisely, we devi-
ate to each coefficient ai of F and update the steepest de-
scent iteration rule. We stop when the error is small enough.

Experiments showed that polynomials of third degree were
sufficient for a good approximation.

However, depth-distortion is still another problem. The
calibration as presented above works only in one depth. In
order to get an appropriate depth calibration, the calibration
step is repeated in different depths. A linear interpolation
between the polynomials for two nearest depths finally pro-
vides the entire mapping.

There is still a residual error because we assumed that
all characteristic world points have the same distance to the
camera. Although they are on the same plane, they do not
have the same distance for the camera’s lens. The closest
point is in the middle of the lens, radially progressing far-
ther away. Although this error proved to be ignorable it is
easy to adjust the transformation function F to correct this
theoretical issue.

F : R3 → R2

F (x3, y3, z3) := (A(x3)+C(z3), B(y3)+D(z3)) = (x2, y2)

A,B, C, D are polynomials, A and B have the same
function as Fx and Fy , C and D are the depth dependent
offsets.

The result is that only four polynomials need to be com-
puted for all depths (through experimentation: A,B have
degree 3, C,D degree 1).

Figure 6. Noise introduces a depth-
measurement error of up to 30 cm. Which
makes a segmentation exclusively by depth-
range checking impossible.

Theoretically, a simple depth-interval check, every pixel
between depths A and B is ignored, can be used to seg-
ment the 2D image after the two camera outputs have been
correlated. In practice, however, this proved to be insuf-
ficient because of the low signal-to-noise ratio caused by
light scattering (compare Figure 6). Furthermore the de-
synchronization of the cameras create a visible distortion
(compare Figure 7). At first, we tried to minimize the noise
influence by the use of standard image processing opera-
tions, such as gauss filters, media filters, or dilate/erode.



Figure 7. Left: The scene as captured by
the 2D-camera. Right: The segmentation by
depth range check after calibration. The ex-
tra pixel layer around the teacher is actually
two or three pixels wide. The table is also rec-
ognized as foreground because it lies in the
same depth interval.

Although this helps for an empty scene, light-scattering gets
worse as soon as the instructors comes into the picture. The
body of the person reflects light on the board area surround-
ing him or her. In the result, segmentation by depth range
check alone is not precise enough. However, using the depth
range check it is easy to extract a superset of the instructor
robustly. This makes it possible to combine the output with
software segmentation methods.

6 Segmentation using SIOX

In order to get a pixel-accurate segmentation result we
feed the output acquired as described in the previous sec-
tions in the SIOX engine [8, 9]. SIOX stands for “Simple
Interactive Object Extraction” and is a generic image and
video segmentation engine.

SIOX segments a given image into foreground and back-
ground based on the color characteristics of the two classes.
The input for the algorithm consist of an image or video
frame and a set of characteristic colors for foreground and
background. The scene is then segmented with sub-pixel
accuracy [10].

The basic idea is to use the 3D-camera to collect the
background and foreground color samples for SIOX. Us-
ing the depth data, we are able identify several areas that
can very robustly classified as foreground and background.
Since only a few characteristic colors suffice, we can safely
ignore many of the errors described above including the
blurring of the lecturer’s border pixels caused by light-
scattering, camera de-synchronization, noise, etc.

6.1 Acquiring representative colors

A good subset of the teacher can be easily found by re-
moving border pixels with an erode operation on the depth-
image. We then find the biggest component in the speci-
fied depth range. From this component we accumulate the
foreground colors. Then we compute the superset by ex-
panding the border pixels of the biggest component and
classify everything outside the blob as background. After
about 20 frames, we have accumulated enough sample col-
ors. We initialize the SIOX engine with the accumulated
colors (compare Figure 8).

6.2 Applying SIOX

We can now apply the SIOX on the superset using col-
ors acquired using the depth range check. By applying it
on the superset, we can be sure that SIOX will not classify
large portions of the board as foreground if the colors of the
teacher image are very similar to other objects in the cam-
era view. New colors are continuously learned during the
lecture. Since we have a relatively robust way to find the
instructor’s superset, we can add “fresh” background col-
ors from everything outside this superset. This is helpful
because the board contents and thus its colors are changing
continuously over time.

The approach works in real-time with 25 frames per sec-
ond on a video with 640× 480 pixels and is rather resistant
against blurred edges and de-synchronization effects. Fig-
ure 9 shows some examples of final segmentation results.

Figure 8. Acquiring color sample for the SIOX
algorithm. The subset of the teacher is high-
lighted. We can also easily compute the su-
perset by expanding these pixels (see rectan-
gle).



7 Conclusion

3D time-of-flight cameras in combination with standard
2D-cameras promise an efficient way to solve many seg-
mentation problems. In practice however, the exact calibra-
tion and synchronization of the two cameras is tricky. The
3D cameras do not yet provide any explicit synchronization
capability, such as those provided by many FireWire cam-
eras. The low resolution and frame rate of the 3D-cameras
is not enough for many segmentation tasks to be performed
directly. Furthermore, the low signal-to-noise ratio causes
many problems. Besides overflows, there are other artifacts
caused by quickly moving objects, light scattering, back-
ground illumination, or the non-linearity of the measure-
ment. Last but not least, using a time-of-flight camera re-
quires a large budget. This made many researches restrain
from a serious use of this technology. This article, however,
shows that the cameras already provide an interesting sup-
plement to other segmentation methods. The presented real-
live problem could easily be solved by combining the 3D
time-of-flight depth information with a software segmenta-
tion approach. While 3D cameras improve during the next
years they are also becoming cheaper they have the poten-
tial to revolutionize segmentation approaches.

Figure 9. Examples of the final segmentation
results. These pixel-accurate results can be
computed in real-time.
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