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Near-zero-energy end states in topologically trivial spin-orbit coupled superconducting nanowires
with a smooth confinement
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A one-dimensional spin-orbit coupled nanowire with proximity-induced pairing from a nearby s-wave
superconductor may be in a topological nontrivial state, in which it has a zero-energy Majorana bound state
at each end. We find that the topological trivial phase may have fermionic end states with an exponentially small
energy, if the confinement potential at the wire’s ends is smooth. The possible existence of such near-zero-energy
levels implies that the mere observation of a zero-bias peak in the tunneling conductance is not an exclusive
signature of a topological superconducting phase, even in the ideal clean single channel limit.
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In one dimension, topological superconducting wires are
predicted to support a localized Majorana bound state at each
end.1 These Majorana states are particle-hole symmetric and
have exactly zero excitation energy. Within the associated
degenerate subspace, braiding and exchange operations can be
shown to be non-Abelian,2–4 making them potentially useful
in topological quantum computation schemes.5–8 It has been
recently noted that in the right parameter regime, spin-orbit
coupled semiconductor nanowires with proximity-induced
superconductivity should exhibit the required topological
superconductivity for Majorana pair formation.9,10

In light of these proposals, the experimental observations
of zero-bias peaks in normal-metal superconductor tunnel
junctions, which are unaffected by small variations of the
magnetic field or gate voltages, may indicate the presence of
topological superconductivity.11,12 While these observations
are a necessary indicator of the predicted midgap Majorana
states,13,14 it is crucial that alternative mechanisms for the
zero-bias conductance be ruled out in order for them to be
decisive. One example of such an alternative mechanism
applies to quasi-one-dimensional wires with multiple con-
ducting channels,15–19 for which low-energy fermionic bound
states are predicted to appear in the topological as well as in
the nontopological phase if the Zeeman energy exceeds the
splitting between transverse subbands.20–24 Other alternative
mechanisms involve disorder,25,26 possibly in combination
with a gapless region at the wire’s end.27 These latter findings
suggest that clean single-channel wires offer a favorable
setting to discern the presence of Majorana end states.
Indeed, experiments are progressively approaching this ideal
scenario.11,12

In this Rapid Communication we show that the original
proposals9,10 for topological superconductivity in clean one-
dimensional semiconductor wires also allow for near-zero-
energy end states deep in the topologically trivial phase,
provided the potential that confines the electrons at the wire’s
end is smooth. The low energy is a systematic property of
these states that persists as long as the confining potential
and the induced superconductivity are smooth functions of
position. The existence of such low-energy Andreev states
leads to a low-energy peak in the tunneling conductance in the
topologically trivial phase. Since gate-induced confinement
potentials are typically smooth, the mechanism we describe

here may be relevant for the recent experiments.11,12 Our
analysis is consistent with and explains the observation of
zero-bias conductance peaks in recent numerical simulations
of clean semiconductor wires by Prada et al.28

Following the original theoretical proposals,9,10 we con-
sider a one-dimensional semiconductor with a Rashba spin-
orbit coupling of strength α, subject to a magnetic field with
Zeeman energy B > 0 and proximity coupled to a standard s-
wave spin-singlet superconductor. Such a system is described
by the four-component Bogoliubov–de Gennes Hamiltonian

H =
(

p2

2m
+ V (x) − μ − Bσx + αpσy

)
τz + �σyτx, (1)

where σx,y,z and τx,y,z are Pauli matrices acting on the spin
and particle-hole degrees of freedom, respectively. Further,
m is the effective electron mass, μ = p2

F/2m the chemical
potential, � the proximity-induced superconducting gap in
the absence of the magnetic field, and V (x) is the potential that
describes the confinement of electrons near the wire’s end.

As shown in Refs. 9 and 10, the Hamiltonian (1) is in a
topological phase with Majorana fermions at its ends if B >

Bc =
√

μ2 + �2. Here we consider the topologically trivial
regime with weak induced superconductivity, � � B � μ.
The condition B � � rules out spin-singlet s-wave pairing,
so that the induced superconductivity must be of p-wave type.
However, unlike in the topological regime, where the model
(1) effectively admits p-wave superconductivity for one spin
channel only, in the nontopological regime B � μ both spin
channels acquire superconducting correlations. If B � � the
two spin channels exist as effectively independent p-wave
superconductors in the wire’s bulk, but they are coupled at
the wire’s ends, which gaps out the pair of Majorana-like
excitations that would have existed at the wire’s end for
uncoupled channels. As we show below, this coupling is strong
if the wire’s end is abrupt, but weak if the confinement is
smooth, which explains the appearance of an Andreev bound
state at an energy far below the bulk excitation gap. The crucial
difference between an abrupt ending and a smooth confinement
is that the spin-orbit energy εso = αp remains finite up to the
turning point for a hard-wall confinement, whereas εso goes to
zero continuously for a smooth confinement.

In order to arrive at an approximate analytical solution
of this problem, we assume that the energies B, εso, and
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� are much smaller than the kinetic energy μ − V (x). This
separation of energy scales breaks down near the turning point
at the wire’s end, where the velocity

v(x) =
√

2[μ − V (x)]/m (2)

goes to zero. We circumvent this difficulty by solving a
modified version of the problem, in which the wire has a
hard-wall confinement with V = 0 inside the wire, and a
position-dependent spin-orbit strength α̃ with

εso(x) = mαv(x) = α̃(x̃)pF (3)

to account for the position dependence of εso. The two
descriptions are essentially equivalent if the coordinate x̃

in the hard-wall model is related to the original coordinate
x as

x̃ =
∫ x

x0

dx ′ vF

v(x)
, (4)

where vF = √
2μ/m is the Fermi velocity in the hard-wall

model. Taken together, the relations (3) and (4) ensure that the
electrons “see” the same Zeeman energy B and spin-orbit
energy εso as a function of time when they reverse their
direction at the wire’s end.

The inequalities B, εso, � � μ allow us to linearize the
kinetic energy, writing

ψ(x̃) = ψ+(x̃)eipFx̃/h̄ + ψ−(x̃)e−ipFx̃/h̄, (5)

where the functions ψ± are slow functions of position on
the scale h̄/pF. The function ψ+ describes right-moving
electrons and left-moving holes, while ψ− describes left-
moving electrons and right-moving holes. They are subject
to the four-component Bogoliubov–de Gennes Hamiltonian

H̃± = ∓ih̄vFτz∂x̃ − Bσxτz ± α̃(x̃)pFσyτz + �σyτx, (6)

and the boundary condition ψ+(0) = e2iηψ−(0), η being a
phase shift characteristic of the detailed boundary conditions
at the wire’s end at x̃ = 0.

The normal part of the Hamiltonian (6) can be diagonalized
by a rotation in spin space. Defining the angle θ (x̃) and the
wave number k̃m(x̃) > 0 as

B = h̄vFk̃m(x̃) cos θ (x̃),
(7)

εso(x̃) = h̄vFk̃m(x̃) sin θ (x̃),

a basis change maps the Bogoliubov–de Gennes Hamiltonian
(6) to H̃0,± + H̃1,±, with

H̃0,± = h̄vF(∓i∂x̃ − k̃mσz)τz ± �σzτx sin θ (x̃), (8)

H̃1,± = �σyτx cos θ (x̃) + h̄vF

2

∂θ

∂x̃
σxτx. (9)

The superconducting pairing in H̃0,± is of p-wave type and
pairs electrons of equal spin (in the rotated frame) with a
p-wave gap

�p = � sin θ = εso�√
B2 + ε2

so

, (10)

whereas the superconducting pairing in H̃1,± is of s-wave type
and connects electrons of opposite spin.

In the limit B � � and for a smooth confining potential,
H̃1,± can be treated in perturbation theory. The unperturbed
Hamiltonian H̃0,± admits two zero-energy end states of
Majorana type,

ψ↑,± = e±iη

√
�̃

⎛
⎜⎜⎜⎝

e−iπ/4

0

eiπ/4

0

⎞
⎟⎟⎟⎠ e

∫ x̃

0 dx ′[±ik̃m(x ′)−1/ξ̃ (x ′)],

(11)

ψ↓,± = e±iη

√
�̃

⎛
⎜⎜⎜⎝

0

eiπ/4

0

e−iπ/4

⎞
⎟⎟⎟⎠ e

∫ x̃

0 dx ′[∓ik̃m(x ′)−1/ξ̃ (x ′)],

where the superconducting coherence length ξ̃ is defined as
h̄vF/ξ̃ (x̃) = �| sin θ (x̃)| and �̃ is a normalization constant.
Calculating the matrix element of H̃1,± between these states,
we find that the wire’s end harbors a single Andreev end state
with energy

ε = 2

�̃

∣∣∣∣
∫ ∞

0
dx̃

[
2� cos θ (x̃) + h̄vF

∂θ

∂x̃

]

× cos

[
2
∫ x̃

0
dx ′k̃m(x ′)

]
e−2

∫ x̃

0 dx ′1/ξ̃ (x ′)
∣∣∣∣. (12)

Returning to the parameters of the original model (1), the
energy ε of the Andreev end state reads

ε = 2B

�

∣∣∣∣
∫ ∞

x0

dx
2�

√
B2 + εso(x)2 − h̄α(dV/dx)

v(x)[B2 + εso(x)2]

× cos

[
2
∫ x

x0

dx ′km(x ′)
]
e
−2

∫ x

x0
dx ′1/ξ (x ′)

∣∣∣∣, (13)

where h̄v(x)km(x) = mαξ (x)�/h̄ = √
B2 + ε2

so and

� = 4
∫ ∞

x0

dx
e
−2

∫ x

x0
dx ′1/ξ (x ′)

v(x)
. (14)

For the simple example that V (x) has a linear dependence on
x near the wire’s end, V (x) = μ − V ′x, with the condition
that V ′ � B�/h̄α, which ensures that εso � B throughout
the entire integration range, a closed-form expression can be
obtained and one finds

ε ≈ �e−B3/(h̄αV ′�). (15)

This result should be compared with the energy of the Andreev
end state for a hard wall, which is

ε =
(

�2

2B2
+ εso

�

)
� (16)

if εso, � � B. The energy (15) is essentially zero—even if
compared with the p-wave gap �p—for a range of magnetic
field far below the critical field Bc at which the transition
to the topological phase takes place. (Incidentally, even with
hard-wall boundary conditions, the Andreev end-state energy
ε may be small in comparison to �p if B is sufficiently large
in comparison to εso and �.) Experimentally, the difference
between the finite excitation energy ε of Eq. (15) and the strict
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zero energy of the Majorana bound states may be difficult to
resolve.

Both the splitting from the singlet pairing [first term in
Eq. (9)] and the splitting from the nonadiabaticity of the con-
fining potential [second term in Eq. (9)] vanish exponentially
in the limit of a smooth, adiabatic confinement, provided the
Zeeman energy B sufficiently far exceeds �. This is the main
result of this Rapid Communication.

In the limit of an extremely small slope of the confining
potential V (x) there is another, trivial, effect, that also leads
to the formation of near-zero-energy Andreev bound states: In
principle, the smooth confinement leads to a spatial separation
between the turning points for electrons of opposite spin, the
region between the turning points being “topological.” When
the coherence length is shorter than the distance between the
turning points, this topological segment hosts Majorana modes
at its ends. These Majorana modes are spatially well separated
and, hence, have an exponentially small energy that decreases
with increasing �. This is, however, not the situation we
discuss here. Indeed, in the weak pairing limit, the energy
(15) increases upon increasing �, whereas the wave function
of the Andreev end state extends over a length much larger
than the distance between the classical turning points. (Note
that this distance is zero in the effective hard-wall model used
for our calculation.)

We have compared the theoretical predictions to numerical
tight-binding simulations of a discretized version of the
Hamiltonian (1). For this purpose we choose the confining
potential

V (x) =
{

ae−x2/2σ 2
, x > 0,

∞, x < 0,
(17)

where the parameter σ controls the degree of adiabaticity.
Figures 1 and 2 show representative results of the numerical
calculation, together with the analytical prediction of Eq. (13).

As discussed above, the small energy ε of the Andreev end
states results from the ineffectiveness of a smooth potential to

FIG. 1. (Color online) Andreev end-state energy ε, normalized to
the bulk excitation gap �p , as a function of adiabaticity parameter σ .
The red circles are obtained from a numerical calculation for which
the wire is terminated by a smooth potential V (x) of the form (17) with
a = 5μ. Other parameters used in this numerical calculation are εso =
0.1μ, � = 0.05μ, B = 0.275μ. The solid blue curve corresponds to
Eq. (13) of the main text.

FIG. 2. (Color online) Andreev end-state energy ε as a function
of the Zeeman energy B (main panel) and induced superconducting
gap parameter � (inset). The parameters of the numerical calculation
are εso = 0.1μ, � = 0.04μ (main figure), B = 0.5μ (inset). The con-
fining potential has the form (17) with a = 5μ and σ = 1.273(h/pF).

couple the two Majorana modes for the two spin channels. This
near degeneracy will be lifted in the presence of perturbations
with an abrupt spatial dependence that couple the different
spin-orbit bands. Examples of such perturbations are scattering
from pointlike impurities (which couple left-moving and
right-moving particles), or the abrupt vanishing of the pairing
potential, which happens, e.g., if not all of the semiconducting
wire is covered with the superconducting contact. The Andreev
end-state energy ε in the presence of a point impurity with
potential Uδ(x − xi)τz is (to first order in U )

ε = 4Uαme
−2

∫ xi
x0

dxξ−1(x)

�
√

B2 + εso(xi)2

∣∣∣∣ sin

[
4η +

∫ xi

x0

dx
mv(x)

h̄

]∣∣∣∣. (18)

For the example of a slowly varying potential V (x) = μ − xV ′
with a linear dependence on position, this gives

ε = 2Um

√
α3V ′�
πh̄B3

e− 2mα�
h̄B

(xi−x0)

×
∣∣∣∣ sin

[
4η + 2

√
2mV ′

3h̄
(xi − x0)3/2

]∣∣∣∣. (19)

In the case where the order parameter vanishes abruptly,
�(x) = ��(x − xN) (see the inset of Fig. 3), the end-state
energy can be obtained directly from Eq. (13). For the special
case where the entire potential modulation occurs in the normal
region, the discontinuity in � contributes to the end-state
energy by the amount

ε = 2h̄B

�

1

mαvF

Re
e

2i
∫ xN
x0

dxkm(x)

1 + ikmξ
,

where

� = 2ξ

vF

+ 4
∫ xN

x0

dx
1

v(x)
(20)

and km, ξ , and vF are the asymptotic values for x > xN.
Figure 3 compares numerical simulations of the model (1)
with and without an abrupt change in the superconducting
order parameter �.
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FIG. 3. (Color online) Andreev end-state energy ε vs the induced
superconducting gap parameter � with (squares) and without (circles)
an abrupt termination of the order parameter � at position xN.
The inset shows the functional form of the superconducting order
�(x) = �θ (x − xN). In both cases the wire is terminated by a smooth
potential V (x) of the form (17) with parameters with a = 5μ and
σ ≈ 3.183h/pF. Other parameters used in this numerical calculation
are εso = 0.1μ and B = 0.275μ.

Up to this point, our discussion has focused on one-
dimensional semiconductor wires with a single transverse
channel. Our arguments continue to be valid for multichannel
wires. In this case, for B � � each transverse channel is
in a separate effectively spinless p-wave superconducting
state. Hard-wall boundary conditions at the wire’s end couple
the channels, which gaps out the end states, up to the
possible exception of a single Majorana end state if the total
number of channels N (counting spin) is odd. In general,
a coupling exists between spin-degenerate channels with
the same transverse mode, as well as between channels
with different transverse modes, although the “off-diagonal”
coupling is small if the wire width is much smaller than
the superconducting coherence length ξ because of an ap-
proximate chiral symmetry.20,29 By the mechanism discussed
above, a smooth confinement strongly reduces the diagonal
and the off-diagonal couplings between channels, giving rise
to int(N/2) low-energy fermionic states at the wire’s end. This
is illustrated in Fig. 4 for the case of a semiconducting wire
with two spin-degenerate transverse channels.

In conclusion, we have shown that a smooth confining
potential at the wire’s ends leads to the existence of low-
energy Andreev end states even in the topologically trivial
phase of one-dimensional proximity-coupled nanowires. The
presence of such low-energy Andreev states would give rise to
(near-) zero-bias conductance peaks deep in the topologically

FIG. 4. (Color online) Andreev end-state energies ε for a two-
dimensional wire with two transverse channels, normalized by the
bulk excitation gap, as a function of the adiabaticity parameter σ . The
Hamiltonian is given by the two-dimensional extension of Eq. (1),
which has the spin-orbit coupling term αpxσyτz − αpyσx . Parameters
in the numerical calculation are B = 0.1667μ, and wire width W =
1.225h/pF = 0.054ξ . The spin-orbit energies of the two transverse
bands (calculated for B = 0) are εso,1 = 0.074μ, εso,2 = 0.042μ.

trivial parameter regime. Our findings could be relevant for
recent experiments,11,12 in which the confinement at the
nanowire ends is gate induced, since they provide an alternative
mechanism for a zero-bias peak that needs to be ruled out
in order to unambiguously identify the observed zero-bias
conductance peak with a topological superconducting phase.
[We note that even if � vanishes abruptly near the wire’s end
before the termination by a smooth gate-induced potential sets
in, the energy of the Andreev end state in the topologically
trivial phase can still be parametrically small in the limit
B � εso—see Eq. (20).] At elevated temperatures, where the
zero-bias peak in the tunneling density of states is thermally
broadened, a Majorana bound state cannot be separated from
an Andreev bound state with energy ε � kBT as the origin
of the peak. One way to experimentally distinguish the two
scenarios is to go to lower temperatures, where a single
Majorana end state leads to a quantized conductance peak
of height 2e2/h,13,14 whereas a near-zero-energy Andreev
bound state of the type discussed here appears as a peak of
height 4e2/h, in the limit that the zero-temperature peak width
exceeds ε.

We gratefully acknowledge discussions with J. Danon, F.
Von Oppen, Y. Oreg, and F. Pientka. This work is supported by
the Alexander von Humboldt Foundation in the framework of
the Alexander von Humboldt Professorship, endowed by the
Federal Ministry of Education and Research.
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