-

P
brought to you by .i CORE

View metadata, citation and similar papers at

provided by Institutional Repository of the Freie Universitat Berlin

PHYSICAL REVIEW B 97, 045407 (2018)

Editors’ Suggestion

Bethe-Boltzmann hydrodynamics and spin transport in the XXZ chain

Vir B. Bulchandani,' Romain Vasseur,-2-3 Christoph Karrasch,* and Joel E. Moore!-2
' Department of Physics, University of California, Berkeley, Berkeley California 94720, USA
*Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley California 94720, USA
3Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA
4Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universitit Berlin, 14195 Berlin, Germany

® (Received 13 March 2017; revised manuscript received 3 November 2017; published 8 January 2018)

Quantum integrable systems, such as the interacting Bose gas in one dimension and the XXZ quantum spin
chain, have an extensive number of local conserved quantities that endow them with exotic thermalization and
transport properties. We discuss recently introduced hydrodynamic approaches for such integrable systems from
the viewpoint of kinetic theory and extend the previous works by proposing a numerical scheme to solve the
hydrodynamic equations for finite times and arbitrary locally equilibrated initial conditions. We then discuss how
such methods can be applied to describe nonequilibrium steady states involving ballistic heat and spin currents.
In particular, we show that the spin Drude weight in the XXZ chain, previously accessible only by rigorous
techniques of limited scope or controversial thermodynamic Bethe ansatz arguments, may be evaluated from

hydrodynamics in very good agreement with density-matrix renormalization group calculations.
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I. INTRODUCTION

The study of many-body quantum systems far away from
equilibrium conditions poses a considerable challenge for the-
ory, even for quantum integrable systems whose equilibrium
properties may be computed exactly. Such systems, which
include the Heisenberg antiferromagnet and the Lieb-Liniger
gas in one dimension, possess an extensive number of con-
served quantities, which prevent them from thermalizing like
generic ergodic systems and lead to dissipationless transport
properties. Under unitary evolution, the local properties of
these systems are believed to tend to a generalized Gibbs
ensemble (GGE) [1,2] at long times, containing, in principle,
all the independent conserved quantities, not just the particle
number and energy as in the standard Gibbs ensemble. The
rest of the system acts as an “unusual bath.”

However, this convergence can be rather subtle, as the GGEs
constructed using the standard conserved quantities of the
spin-1/2 XXZ chain [3-5] were shown [6,7] to fail to reproduce
the correct steady states obtained either numerically or using
the so-called quench action method [8]. This paradox can only
be resolved [9] by taking into account “hidden” (nonstandard)
quasilocal conserved quantities [10-14] in the GGE. More
recently, the nature of these new conserved quantities and
their relation to the pseudomomentum distributions used in
equilibrium thermodynamic Bethe ansatz calculations was
clarified [15-17].

Nevertheless, when combined with the infinite number of
Lagrange multipliers which must be fixed from the initial
state, this complication makes the GGE approach quite cum-
bersome for the study of interesting nonequilibrium dynamics
in integrable models, particularly those arising from spatially
nonuniform states. Moreover, generalized Gibbs ensembles
are by definition restricted to describe steady states, making
a general approach able to deal with nonequilibrium finite-
time dynamics desirable. Very recently, a more practical
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hydrodynamic approach based on a semiclassical quasiparticle
picture was introduced [18,19], and conjectured to yield exact
results for the long-time scaling limit reached from the “two-
reservoir quench,” an initial condition of two semi-infinite
reservoirs connected at the origin. One way to understand these
approaches is that they reflect an equivalence between the hy-
drodynamical and Boltzmann-type descriptions of integrable
models.

In standard statistical mechanics, the Boltzmann equation
involves the full one-particle distribution function, i.e., a
function of momentum at each point in space and time. Stan-
dard hydrodynamics contains considerably less information,
as only three quantities survive at each point in space and
time: the local particle density, momentum density, and energy
density. For integrable models, there is a more fundamental
relationship between the distribution function p(x,?,k) over
pseudomomentum k (the analog of ordinary momentum for
integrable models) and the full set of conserved quantities.
This is most easily seen in the Lieb-Liniger model, where
the conserved quantities are just moments of the pseudomo-
mentum distribution [20]. It is much less clear that it holds
for the XXZ model, whose conserved quantities have a rather
subtle structure (see Refs. [15-17] for recent developments),
but we show in this paper that a hydrodynamical description is
successful even for observables that are sensitive to the newly
discovered quasilocal charges. This result is consistent with
recent work demonstrating the equivalence of the GGE and
thermodynamic Bethe ansatz (TBA) pictures of equilibrium
states in the XXZ model [17], although some subtleties of
interpretation still remain [21].

The first derivations of the recent hydrodynamic formalism
were based upon the observation that making a local-density-
type approximation for all local conserved charges implies a
conservation law at the level of the local pseudomomentum
distribution. The latter conservation law, previously obtained
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inRefs. [18,19], can alternatively be viewed as a dissipationless
Boltzmann equation for the pseudomomentum distribution,
where the effect of collisions is to dress the bare velocity of
particle-type excitations. It is precisely this kinetic equation
that was solved in Refs. [18,19], rather than an infinite set
of hydrodynamic equations, and in recognition of its cru-
cial role within the hydrodynamic formalism, we call this
equation the “Bethe-Boltzmann equation.” Our terminology
seeks to emphasize that this equation can be understood
phenomenologically as a Boltzmann equation whose collision
term captures the Wigner time delay [22] due to Bethe ansatz
phase shifts [this is one way to interpret the velocity dressing
equation, Eq. (8)].

From this perspective, the Bethe-Boltzmann equation
emerges as the quantum analog of an established kinetic
theory of classical soliton gases [23-27]. Our viewpoint is
also consistent with a recently obtained “molecular dynamics”
realization of this equation [28]. This viewpoint is useful
because it provides some additional physical justification
for applying this equation at finite-time and length scales,
which, although admittedly less rigorous than the discussion of
quasistationary states in Refs. [18,19], is closer in spirit to the
semiclassical theory of quasiparticle transport that underpins
more conventional solid-state physics [29].

This relatively simple picture of the Bethe-Boltzmann
equation raises the question of whether predictions obtained
from the hydrodynamic formalism are in fact correct. Fortu-
nately, there exist a plethora of predictions for nonequilibrium
evolution of quantum integrable models from a range of initial
conditions, against which hydrodynamics can be compared.
Among these, the two-reservoir quench mentioned above has
had an enduring popularity; this setup consists of two half-
infinite systems prepared in thermal equilibrium with different
temperatures and chemical potentials (or more generally, two
half-infinite homogeneous reservoirs), joined together at time
t =0 and allowed to evolve unitarily for ¢ > 0 according
to the Schrodinger equation [30-42]. In light of generalized
hydrodynamics, this gives rise to the intriguing possibility of
deriving aspects of nonequilibrium quantum transport from
an essentially classical equation. Nonequilibrium thermal
transport in the XXZ spin chain from hydrodynamics was
studied in detail in Ref. [19] and was thoroughly compared
to matrix-product state numerics [43,44].

The case of spin transport is somewhat more complex the-
oretically, even at the level of linear response, as the presence
of ballistic spin currents requires the existence of quasilocal
conserved quantities [10] going beyond the standard local
conserved quantities of the XXZ spin chain. For conventional
(linear response) transport, the ballistic component of the
spin current is characterized by the spin Drude weight, which
measures the degree of divergence of the zero-frequency spin
conductivity. The Bethe ansatz calculation of the spin Drude
weight [45,46] has attracted a lot of attention in the past,
and remains controversial. In fact, before the discovery of
the quasilocal conserved quantities mentioned above, it was
even debated whether this Drude weight was nonzero at finite
temperature (see, e.g., Refs. [47-51] and references therein).
In this paper, we devise a method to compute the spin Drude
weight from the Bethe-Boltzmann equation, and show that the
value of the resulting Drude weight is compatible with known

exact results and with density-matrix renormalization group
(DMRG) calculations. This is remarkable because it indicates
that the nonequilibrium steady state predicted by hydrodynam-
ics takes all quasilocal conserved charges into account (see also
Ref. [17]), even though such charges can effectively be ignored
at the level of the Bethe-Boltzmann equation, which could have
been deduced on phenomenological grounds long before the
discovery of quasilocal conservation laws.

We proceed as follows. In Sec. II, we summarize the
background from Refs. [18,19] needed to formulate our main
results on the spin Drude weight. We also discuss how the
Bethe-Boltzmann equation can be viewed as a phenomeno-
logical extension of older kinetic theories for classical soliton
gases to quantum integrable models (see also Ref. [28]), which
provides additional physical motivation for applications of the
hydrodynamic approach at finite time and length scales. We
mostly defer the detailed calculation of this finite-time hy-
drodynamics in physically relevant examples for a subsequent
publication [52], except for one example, a thermal expansion
in the XXZ chain, in Fig. 4 below. This extends the analysis in
previous works [18,19] by providing the first numerical checks
of the hydrodynamic approach beyond scale-invariant steady
states. In Sec. III, we present our main results, on the evaluation
of the spin Drude weight D(T).

II. THE BETHE-BOLTZMANN EQUATION

The reader familiar with Refs. [18,19] can skip Sec. II
without loss of continuity. Here, we summarize the background
from Refs. [18,19] that is necessary for formulating our main
results on the spin Drude weight, in Sec. III. We also discuss the
intimate connection between the Bethe-Boltzmann equation
and various existing kinetic equations describing the dynamics
of classical soliton gases [23-27].

A. Motivation

To provide some intuition, we first sketch the Bethe-
Boltzmann formalism for the one-dimensional Bose gas with
delta-function interactions. For N bosons on a line, with
interaction strength c, the Hamiltonian may be written as

N
H=-)"074+> 28(x; — x). (1)
j=1

j<k

This model, also called the Lieb-Liniger gas, is the simplest
nontrivial integrable model, and amongst the entire class of
such models has the merit of being the most relevant to
experimental physics. The physics of quasiparticle excitations
in this model, as obtained from TBA, is summarized in
Appendix B. Let us now consider a Lieb-Liniger gas on aline of
length L, consisting of N particles. In the thermodynamic limit
as N,L — oo, we assume that the system may be characterized
by a local density of occupied pseudomomenta, p(x,t,k),
giving rise to a locally varying particle density

n(x,t) = /OO dk p(x,t,k). 2)

o0

Physically speaking, this amounts to coarse-graining our line
into cells of length [ < L, such that on each cell, the gas lies
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in a macrostate fixed by the average particle and hole densi-
ties over that cell. We additionally postulate that “occupied
quantum numbers are locally conserved.” This implies a local
conservation law of the form

O p(x,1,k) + 05 j(x,1,k) =0, 3)

for some current j(x,?,k) to be determined. To obtain a specific
form for j, observe that a physically natural velocity scale for
the transport of quantum numbers is given by the quasiparticle
velocity v[p](x,t,k) in each cell, which generally depends on
the local occupation number {p(x,?,k) : kK € R}. This yields

atp(xvtsk)+ax(p(x’tvk)v[p](-xvt9k)):01 (4)

which we shall henceforth refer to as the Bethe-Boltzmann
equation. This equation has the structure of a conservation law
for the local pseudomomentum distribution p, which is how
it was first introduced in Refs. [18,19], where it was derived
from an infinite set of “generalized hydrodynamic” equations.
However, Eq. (4) can be obtained directly by the above
phenomenological arguments, and from this viewpoint, defines
a Boltzmann-type equation for the dissipationless transport
of quasiparticles. By varying the number of local densities
appropriately, an equation of this type may be formulated for
any quantum integrable model. We now discuss this formalism
in more detail, and in particular, show how it fits into an existing
kinetic theory for solitons of classically integrable PDEs.

B. Relation with the Kinetic theory of solitons of classically
integrable PDEs

It has long been known that there exists a class of nonlinear
partial differentiable equations, called “integrable,” which
admit stably propagating “solitonic” solutions. For example,
the KdV equation

¢t = 6¢¢x - ¢xxx (5)

is of this type. In 1971, shortly after the discovery of the
classical inverse scattering method for solving such equations,
Zakharov [24] considered the kinetic theory of their solitons
and proposed an integrodifferential equation for a gas of KdV
solitons in the dilute limit, of the form

atp(x7tv)")+ax(p(xstv)")v[p](xvts)\)) :07 (6)

where p(x,t,)) denotes the local density of solitons with
spectral parameter A and v their effective velocity, given as a
certain functional linear in p. Several years later, an extension
of this equation beyond the dilute limit was obtained from
an infinite-genus limit of the Whitham equations [26]. It was
found that Eq. (6) held in general, provided that Zakharov’s
explicit formula for v was replaced by an implicit integral
equation

o0

v(d) = Uo()»)-i-/ dp Ax(A, ) p()[v) —v(w)], (7)

—00

with vp(X) the velocity of a single soliton with spectral
parameter A and Ax(A,u) the asymptotic position shift after
a collision of two KdV solitons with spectral parameters X
and p. A similar formula was obtained rigorously in the
hydrodynamic limit of a classical hard-rod gas [25]. Despite
the mathematical complexities of deriving Eq. (7), whether

for classical solitons or hard rods, its physical interpretation
in terms of two-body phase shifts is straightforward. This
interpretation led El and Kamchatnov to propose an equation
of the form (7) for arbitrary soliton gases with two-body
elastic scattering, arising from a given classically integrable
PDE [27]. More recently, the system of equations (6) and
(7) was obtained in the context of Euler-scale hydrodynamics
for quantum integrable systems [18,19]. In particular, one can
show that in the quantum setting, the dressed velocities satisfy
the integral equation [18]

1 oo
v(d) = vo(A) + —— f dp @' O — wWp()lv(r) — v(wl,
') Jow

®)

where p()) denotes the bare quasiparticle momentum, e(A) the
bare energy and vo(A) = €¢’(1)/p’(A) the bare group velocity.
Also, the differential scattering phase is given in terms of the
two-particle S matrix by

d
o — )= i InS(A — p). €))

Upon comparing Eqgs. (7) and (8), it is clear that the kinetic
theory for quantum solitons with differential scattering phase
¢’ may be expressed as a kinetic theory for classical solitons,
upon making the identification

1
A = ——¢' (A — ). 1

x(A ) p,(k)w A —w (10)
This equivalence was also obtained in Ref. [28], independently
of the existing theory in Ref. [27]. Thus, although the original
derivation of Egs. (6) and (8) in the quantum setting made use
of an infinite system of Euler equations [18,19], these equations
are intimately related with a kinetic theory framework for
solitons of classically integrable PDEs that is many decades
older.

It is worth noting that at present, both the hydrodynamic
and kinetic theory viewpoints for quantum integrable models
are approximate to the same degree; on the hydrodynamic
side, the approximation lies in the “Euler-scale” assumption
that diffusive terms are negligible while on the kinetic theory
side, the approximation lies in neglecting all higher-order
collision terms, which could lead to entropy generation.
Although it remains to be seen which viewpoint is better
suited to incorporating higher-order effects, it appears that all
of the proposed extensions of the hydrodynamic formalism
for quantum integrable models that take into account new
physics, such as external potentials [53] and collision terms
[54] (and indeed the recent analogy with classical solitons
[28]), fall naturally into a Boltzmann paradigm rather than a
hydrodynamic one.

A natural question to ask is whether there exist gases
of solitons arising from classically integrable PDEs whose
kinetic theory is captured by the Bethe-Boltzmann equation
for some quantum integrable system. For example, there is a
well-known mapping [55] between hole-type excitations of the
Lieb-Liniger gas and dark solitons of the defocusing nonlinear
Schrédinger equation in the weak-coupling limit, ¢ — 0. We
have found that the position shift resulting from a collision
of two dark solitons [56] coincides with an expression for the
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inverse of the Lieb-Liniger kernel obtained by Gaudin in the
weak-coupling limit [57].

C. The Bethe-Boltzmann equation
1. Formulation

We now return to the precise formulation of the Bethe-
Boltzmann equation (4) for the Lieb-Liniger model. Although
the integral equation (7) is helpful for developing the analogy
with kinetic theory, it is easier in practice to use the following
explicit formula for v. Recall that in TBA, the group velocity
of dressed excitations on a given equilibrium state with Fermi
factors {0(k) : k € R} for each pseudomomentum k, is given
by
A+ KKK

d+Ko)-'11k)
The manipulations required to derive this equation are sum-
marized in Appendix B. In order to be able to use this result in
the Bethe-Boltzmann formalism, we must impose an additional
assumption on the local pseudomomentum density p(x,t,k). In
particular, we need to assume that each microstate correspond-
ing to the set of local occupation numbers {p(x,t,k) : k € R}
defines an eigenstate of the Lieb-Liniger Hamiltonian. Thus
we demand that the local Bethe equation,

v(k)

Y

px.1.k) /°° o L
_— dk' K(k,k k) = —, 12
Sorn T LK KKpGn) = S (12)

holds at every point; this may be taken as a definition of the
local Fermi factor v (x,t,k), which in turn yields the local
quasiparticle velocity,
( + KD (x.0) ' [K1(k)
(A + Ko .0~ [1k)
To summarize, the Bethe-Boltzmann equation is shorthand for
the hierarchy of equations
allo(x7t’k) + ax(p(x’tak)v(x,t,k)) = 07
2mp(x,t,k)
1 =27 K [p(x,1,k)](k)
A+ KO "[K k)
(A + KD,k

which together comprise a conservation law with self-
consistently determined velocity. We can write this schemati-
cally as

v(x,t,k) = (13)

= 9 (x,t,k), (14)

v(x,t,k),

3 p + 0 (pv[p]) = 0. s)

This turns out not to be the most useful form of the Bethe-
Boltzmann equation. As in the previous works [18,19], we
find it more convenient to view ¢ as the fundamental degree of
freedom rather than p. This is possible because the local Bethe
equation (12) allows one to express p and pv as functionals of
the local Fermi factor ¢, namely,

~ 1 . A
oD (x,0)1(k) = g(m,rr‘ + K)7'[11(),
| (16)
(P[P (x,0)](k) = E(z%c,r)-' + K)7 K1),

Upon substituting these expressions into the Bethe-Boltzmann
equation, a surprising simplification occurs, and a conservation
law for p is replaced by a simpler advection equation for ¥.
One finds that

30 (x,1,k) + v[H(x,0)](k)d, ) (x.1,k) = 0,

o ] an
CH P IO oo,
(I + Ko (x,0)~'[11(k)
or schematically,
0,0 + v[]9, 0 = 0. (18)

This is an example of a quasilinear advection equation. In
general, the time evolution of such equations rapidly leads
to shock formation, even for smooth initial conditions, and
without additional assumptions the initial value problem is
ill-posed. For two-reservoir initial conditions, this issue was
circumvented [18,19] by imposing a certain self-consistent
ansatz, which for TBA-based hydrodynamics picks out a
unique weak solution ¥ (x,?,k).

Before the present work, Eq. (18) had only been verified
numerically for long-time steady states of scale-invariant
quenches, a regime in which the validity of hydrodynamics
can be argued using Bethe-ansatz techniques [18,19]. Although
the possibility of applications to finite-time dynamics had been
raised in previous works [18,53], there had been no means to
actually solve the hydrodynamic equations in the finite-time
regime.

In order to address this shortcoming, we have developed a
numerical scheme to solve Eq. (18) at finite times for evolution
from arbitrary smooth, locally equilibrated initial conditions,
whose details are given in Appendix C. The simplest imple-
mentation of this scheme yields a self-consistent ansatz that
generalizes the two-reservoir case. We were able to obtain
physically reasonable predictions for a range of models and
initial conditions, which are mostly deferred to a companion
paper [52] except for one example, a thermal expansion in
the XXZ model. As discussed in Ref. [18], we expect on
general physical grounds that Eq. (18) should be accurate at
time scales that are long compared to the time scale of local
thermalization and at length scales that are long compared to
the length scale over which the system is locally in thermal
equilibrium, even though rigorous justification for applications
beyond the scaling limit is lacking at present.

D. The two-reservoir quench

Let us now outline the ansatz for nonequilibrium steady
states of the two-reservoir quench already presented in
Refs. [18,19]. Thus consider solving the initial value problem

8,0 (x,1,k) + v[D1(k)d O (x,1,k) = 0,
(19)
D (x,0,k) = ¢(x,k).

for r > 0, with discontinuous initial conditions
¢(x,k) = 0,(k)H(—x) + Or(k)H (x), (20)

where 6, and 6 denote the Fermi factors for initial equilibrium
states with temperatures and chemical potentials {7,/ } and
{Tr, R}, respectively, as given by the Yang-Yang equations
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[58], and H denotes the Heaviside step function. By analogy
with the solution by characteristics for the Burgers equation,
one can write down the ansatz

B (x,1,k) = p(x — v[d](k)t,k), 21
which yields!
0 (x,1,k) = 0, (k)H(v[D (x,0)](k)t — x)
+Or(OH(x —v[d(e,0lk)D).  (22)
In the special case that v[d (x,1)](k) is monotonic in k, we can
write this as a step function of the wave number k, as was done

in Ref. [18]. To see this, suppose that for fixed x and 7, the
function v[v(x,#)](k) is monotonic in k. Then the equation

v[d(x,0)](k)t —x =0, (23)
has a unique solution, k*(x,t), such that
v[d (x,0)](k*(x,1)) = x/t. 24)

Thus, for example, if v[z@‘(x,t)](k) increases with k, we can
write

9 (x,t,k) = 0, (k) H (k — k*(x,1)) 4+ 0 (k) H (k*(x,1) — k).
(25)

As they stand, Eqgs. (22) and (25) both appear intractable.
However, when solving for long time steady states, we can
exploit the crucial property of scale-invariance. In particular, at
long times we may suppose that 9 (x,#,k) depends on position
and time via their ratio { = x /¢ alone. In (22), this yields

DL, k) = Op(k)H@[D()](k)—¢ D)+0r(K) H (¢ —v[F()](K)),
(26)

which is essentially equation (16) of Ref. [19]. Assuming that v
increases with k, this may be recast as the pair of self-consistent
equations

V[HONK () = ¢

D(&.k) = OL(k)H (k—k"(£)) + Or(k)H (k™ (£)—k),
27

which is essentially Eq. (35) of Ref. [18]. This form is
particularly amenable to iterative solution.

E. Hydrodynamic charges and currents

In order to make contact with the direct numerical sim-
ulations of the two-temperature quench, we must develop
hydrodynamic expressions for the local charges and currents
of the model. Therefore suppose that Q is a conserved charge
operator of the model, with single-particle eigenvalue g (k).
Then the total charge carried by a Bethe wave function with

!"This only works for two reservoirs due to (i) scale invariance and (ii)
the fact that TBA-based hydrodynamics is linearly degenerate, in the
sense of Lax [75]. Otherwise, existence and uniqueness of solutions
to this ansatz are not guaranteed, even if one assumes monotonicity
of v[?](k) in k.

limiting density of states p(k) is given by
o0
(0 =Y qlp~L / dk pkgk),  (28)
j —0Q

in the thermodynamic limit. Whilst this is a standard result,
the surprising claim of Ref. [19] (proven in the case of Lorentz
or Galilean-invariant theories in Ref. [18]) is that the local
currents associated with such charges may also be written in
terms of the local density of states, via the formula

[o.¢]

(J) ~ L/ dk p(k)gq(kyv(k), (29)
—00

where v(k) denotes the quasiparticle velocity. In the hydrody-

namic approximation, this allows us to write down expressions

for the local charge and current densities associated with the

operator Q, namely,

(@)oxr) = f dk p(x.t.k)qgk), (30)

o]

o0
(J)(x,1) 2/ dk p(x,t,k)q(k)v(x,t,k). (3D
—00

Given these definitions, the Bethe-Boltzmann equation imme-
diately implies local conservation of charge, in the form

9 (q)(x,0) + 9:(j)(x,1) = 0. (32)

Equation (32), together with a “completeness property” of
local conserved charges, is used to derive the Bethe-Boltzmann
equation by both Ref. [18] and Ref. [19]. However, attempt-
ing to derive the Bethe-Boltzmann equation in this way at
finite-length and time scales ends up being equivalent to the
phenomenological derivation we provide in Sec. II A, as one
must a priori make a local-density-type approximation for p,
whose rigorous justification for nonstationary states does not
yet exist.

III. LINEAR RESPONSE AND DRUDE WEIGHTS
IN THE SPIN-1/2 XXZ CHAIN

Now that we are equipped with the Bethe-Boltzmann or
generalized hydrodynamics framework, we illustrate how it
can be applied to study energy and spin transport in the spin-
1/2 XXZ spin chain, and compare our results to density-matrix
renormalization group calculations. Even near equilibrium
(linear response), we argue that this framework allows one to
compute transport quantities that were previously inaccessible,
including the spin Drude weight at arbitrary temperature.

A. Bethe-Boltzmann formalism for the XXZ chain

Recall that the Hamiltonian for the spin-1/2 XXZ chain on
N sites in an external field 4 is given by

N
+ASIST, +2h ) S5 (33)

j=1

N-1

H=1J)Y S8, +8/5,,
j=1

Here, we take periodic boundary conditions Sy = Sy41, set

the coupling to J = 1, and parametrize the anisotropy of

the theory by A = cosy. We assume in the following that

—1 < A < 1; the behavior outside this regime is mentioned
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briefly in the Discussion. The Bethe-Boltzmann equation for
the Hamiltonian (33) is discussed in detail in Ref. [19]. The
derivation proceeds almost exactly as for the Lieb-Liniger gas,
except that one must now account for the “strings” of bound
states appearing in the thermodynamic limit. We define a string
of type j to be a an ordered pair, (n;,v;), where n; is the
number of spin flips comprising the string and v; is its parity,
and assume that there are N, string types in total. One can show
that their dressed velocities are given by the formula

~ A B —17T_ A7,
ZL(U+T1?)Q [ :4a 1; o). (34)
T (6 +Tv) '[a]);

Uj()\.) =

whose motivation is sketched in Appendix B. Since there are
now multiple branches of quasiparticle excitations, we must
postulate multiple Bethe-Boltzmann equations; in abridged
form, these read

Bup; + (o[ =0, j=12.....N. (35
with advection formulation
90, + v;[919,9, =0, j=12,....N;,  (36)

where the v; are given by (34). For steady states of the two-
reservoir quench, the latter may be solved formally to yield the
2N, coupled equations

v [FOIRE) = ¢,
9(8.1) = 6 () HO—= X5 +0p; () H O () =D,
(37)

where we again assumed that the v; were monotonic in A.

B. Linear response

We now turn to conventional (linear response) quantum
transport in integrable systems. Linear response transport
coefficients are given by the Kubo formula, which relates the
conductivity at zero frequency to the integral over equilibrium
dynamical correlation functions describing the return to equi-
librium of a spontaneous fluctuation. In an integrable system
that does not thermalize in a conventional way, the energy
or spin (charge) currents may not be able to relax if they
have a nonzero overlap with conserved quantities, leading to
a divergent zero-frequency conductivity and dissipation-less
transport [59]. The degree of divergence of the dc conductivity
may be characterized by considering the conductivity at finite
frequency and defining the Drude weight D(T') such that

o(w) =7 D(T)s(w) + Uregular(w)’ (33)

with D(T) given by the long-time behavior of the equilibrium
dynamical correlation function
D(T) = B lim L DT s (39)
t—00 L

For energy transport in the XXZ spin chain, this is es-
pecially simple as the energy current Jg is a conserved
quantity ([H,Jg] = 0), so that o(w) = 7 Dgo(w) with Dg =
B(J%)/L.Inthis case, the Drude weight can be computed using
standard Bethe ansatz techniques [60,61]. In general, the Drude
weight for a current is bounded from below by a sum over

conserved quantities that have a nonzero projection on to the
current, via the Mazur inequality [59,62]

2
lim (J()JO) > ) %, (40)

o

where Q, are independent local conserved quantities [63]. In
the XXZ spin chain at zero magnetic field, the conventional
(strictly local) conserved quantities give zero contribution
to the Drude weight by symmetry [48], but a new set of
conserved quantities [10] (see also Refs. [11-13]) that are
given by sums of quasilocal operators (local up to exponential
tails) do contribute. At least at high temperatures and some
values of anisotropy A, these new integrals of motion appear
to saturate the numerical value of the Drude weight [50]
obtained from time-dependent density-matrix renormalization
group simulations. Two different thermodynamic Bethe ansatz
expressions for the spin Drude weight have been proposed
[45,46], yielding contradictory results. These Bethe ansatz
results are controversial and they were argued to violate exact
results at high temperatures (see Ref. [49] and references
therein). Going beyond linear response, the description of
nonequilibrium spin transport in the XXZ model is described
by generalized Gibbs ensembles that include nonstandard
quasilocal conserved quantities [17].

C. Spin Drude weights from hydrodynamics

Given the long history of linear-response spin transport in
the XXZ spin chain, it seems intriguing that the hydrodynamic
approach introduced above could describe nonequilibrium
spin transport exactly. In particular, it is interesting to note
that the hydrodynamic approach discussed above could have
been discovered, in principle, shortly after the development of
the TBA formalism [58]—years before the subtleties related
to quasilocal charges in the XXZ chain were uncovered by
Prosen [10]. Nevertheless, we will argue below that the Bethe-
Boltzmann equation (4) can be used to compute both energy
and spin Drude weights in agreement with exact low- and high-
temperature results, and with density-matrix renormalization
group (DMRG) calculations.

We start by considering energy transport for a two-
temperature quench with a left reservoir at temperature 7;, and
a right reservoir at temperature Tg, joined together at time
t = 0. For a small temperature difference 7, =T + AT /2
and Tp =T — AT/2 (AT K T), it is natural to expect that
the energy current in the steady state should be described
by linear-response theory. In fact, because the energy current
is itself a conserved quantity, one can show that the spatial
integral of the energy current at long times is determined by
the equilibrium Drude weight even far from equilibrium [37],

00 TL

lim — dT Dg(T), (41)
t—00

dx je(xr) = /

—00 Tr

for arbitrary 7; and Ty. In particular, for a small temperature
gradient AT « T, the Drude weight immediately follows
from the value of the energy current in the steady state
Dg =lima7_0 57 [ d&jp(§ = x/t). Interestingly, Eq. (41)
is exactly satisfied by the Bethe-Boltzmann hydrodynamic
approach: in a way similar to the Lieb-Liniger discussion above
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(Sec. ITE), one can show [19] that the expectation value of the
local energy current (jg(x,t)) from the hydrodynamic frame-
work coincides with the local conserved quantity (g3(x,?)), as
it should for the XXZ spin chain where the energy current
is a conserved quantity. This is a nontrivial check on the
hydrodynamic approach. Integrating spatially the conservation
law 9,q3 + 0,G = 0, with G the current associated with the
conserved charge g3, thus yieldsfdx je/t = G(Ty) — G(Tg),
where the “state function” G can be determined for a small
temperature gradient from linear response [37]. One finds
G(T) = fT dT Dg(T), from which Eq. (41) follows.

The hydrodynamic approach is therefore consistent with
the linear-response energy Drude weight. This is perhaps not
especially surprising, given that the energy Drude weight
has a very simple equilibrium expression that is accessible
from quantum transfer matrix or thermodynamic Bethe ansatz
[60,61]. The case of spin transport between two reservoirs
prepared at different magnetic fields Ay, hgx and uniform
temperature ! is much more interesting. In this case, there is
no simple relation like (41) relating nonequilibrium transport
and equilibrium Drude weights, but for small fields i, =
—hg = % <« J =1, the spin Drude weight can be expressed
as (see Refs. [37,64])

1 o0
Dy = Jim lim L f dx js(x0), @2)

h—0t—00 00
which is a spatial integral over the steady-state spin current.
This formula allows us to extract the spin Drude weight by
solving (37) iteratively, and using the hydrodynamic formula

1
EOEEDY / dinjp;(Cvi(Eh).  (43)
J

for the steady-state spin current in a two-reservoir quench with
T, =Trand hg = —h, =% <« 1.

Results are shown in Fig. 1 for different values of the XXZ
anisotropy parameter A. The small field gradient was taken
to be either & = 10~ or 10~* with no significant difference
in the value of the Drude weight, and we carefully checked
for A = % that all the numerical errors associated with the
numerical discretization of the hydrodynamic equations lead
to relative errors on the Drude weight below 10~*. Our results
are in good agreement with exact asymptotic results at low [65]
and high [11] temperature—note that the high-temperature
results are strictly speaking a lower bound that is believed to
be saturated for the values of A that we consider [11,50]. The
speed of convergence of the spin Drude weight to the 7T = 0
result decreases as A approaches A = 1, consistent with earlier
results [45].

We further checked these results against density-matrix
renormalization group (DMRG) calculations. To this end,
we used a finite-temperature version [50,66,67] of the real-
time DMRG [43,44] to compute the linear response current-
correlation function (J(¢)J(0)) 4 that appears in Eq. (39). The
key parameter governing the accuracy of this method is the
so-called discarded weight, which we chose such that the error
of (J(1)J(0)) g was smaller than the linewidth. The system size
was taken large enough for all results to be effectively in the
thermodynamic limit (a typical value is L ~ 200).

10°

10t}

F107%}

10 ‘ ‘ ‘
1072 10! 10° 10! 102

FIG. 1. Spin Drude weight extracted from the hydrodynamic
approach for the XXZ spin chain with A = cos = and v = 3,4,5. The
dashed lines correspond to exact 7 = 0 and T = oo limits (the high
temperature result is a lower bound that is believed to be saturated).
Inset: steady-state spin current for h; = —hg = h/2 = 10~* and

A= % for various temperatures, ranging from 7 = 0.01 to 7 = 100.

The results of the hydrodynamic approach turn out to match
the DMRG predictions to within numerical accuracy (see
Fig. 2 and Appendix A), except at low temperatures where
extracting the Drude weight from DMRG calculations would
require accessing longer time scales. Thus it seems that the
nonequilibrium steady state predicted by hydrodynamics is
cognizant of the quasilocal conserved charges discovered in
Refs. [10-13] (see also Ref. [17]).

Itis also instructive to discuss the Drude weight for negative
values of A, for which bosonization [49] predicts a small
decay rate at low temperatures and finite-time data need to be

<J(t)J>/LT

FIG. 2. Dynamical spin current correlation functions obtained
from equilibrium DMRG calculations in the XXZ spin chain with A =
% and A = cos(sr/5) for various temperatures. The long-time asymp-
totics determine the spin Drude weight D, = Blim,_ w
in very good agreement with the Bethe-Boltzmann hydrodynamic

approach (dashed lines).
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5 . | . | . !
1075 20 40 60

FIG. 3. Dynamical spin current correlation functions obtained
from equilibrium DMRG calculations in the XXZ spin chain with
A= —%, compared with Drude weights from hydrodynamics (dashed
lines) for various temperatures. Although the results obtained for the
Drude weights differ from the case A = %, there is clear long-time
agreement between DMRG and hydrodynamic predictions, and the
DMRG is observed to relax to the latter values even at low T'.

interpreted with caution. In this regime, hydrodynamics can
be viewed as a check on results obtained from the DMRG.
In Fig. 3, we show that the DMRG curves saturate to the
hydrodynamics prediction even at low 7. This shows that
almost all of the spectral weight is concentrated in the Drude
peak and that the DMRG data for the Drude weight [51] are
not misleading.

IV. DISCUSSION AND A STRONGLY NONEQUILIBRIUM
EXAMPLE

Having treated linear response in the XXZ chain in the
previous section, we now consider the following far-from-
equilibrium example of the implementation described in
Sec. II. Thus suppose that a system is prepared with a Gaussian
temperature profile

B(x) = Bo— (Bo — Bu)e ™~ 'V, (44)

where L characterizes the spread of the initial localized temper-
ature inhomogeneity. We compared the results of the one-step
implicit hydrodynamic solution (C2) to DMRG simulations
starting from the same initial profile (44) for various values of
Bo, Bu, and A and found an excellent agreement (Fig. 4).

The agreement is perhaps surprising given the way that
Eq. (C2) is motivated in Appendix C, as an implementation of
a finite-difference scheme with only one time step. We do not
yet understand this level of agreement. It could arise because
there are a number of limits or simple cases for which the
finite-difference scheme is actually exact, which constrains the
behavior even in other cases such as the Gaussian initial profile.
It is also possible that the scheme is accurate to higher order.
We will discuss more examples and mathematical aspects of
this approach in a future publication [52].

A number of natural questions arise for future work. The
first concerns the limitations of the hydrodynamical approach.
For example, the Bethe-Boltzmann equation is effectively clas-

-0.15F [— DMRG
---- hydrodynamics

-0.25

20 ‘ 0 ‘ 20

FIG. 4. Expansion in time of a Gaussian temperature profile
B(x) = By — (Bo — Bu)e ="/t in the XXZ spin chain with A = -4
Bo =2, Bu =1, and L = 8. The agreement between the one-step
implicit hydrodynamic solution (C2) (dashed lines) and DMRG
results (solid lines) is excellent. (Inset) Finite time solution at t = 10
for different values of the XXZ anisotropy parameter A.

sical in the sense that nearly the same mathematical structure
would arise in the dynamics of an integrable classical particle
gas. (For a recent study of the two-reservoir quench in classical
systems and references to earlier classical work, see Ref. [68].)
Where did quantum-mechanical effects, reflecting the wave
nature of the particles, go? Obviously, the quantum-mechanical
interactions between particles determine the phase shifts that
underlie the Bethe ansatz, but it is apparently true that long-
time dynamics in many situations is effectively classical. This
includes situations such as the two-reservoir quench that are
sufficient to determine the Drude weights. It should be possible
to discern quantum effects in short-time or short-length behav-
ior, which could be viewed as transients before the local GGE
assumption of generalized hydrodynamics becomes justified.
We should also note that there is no reason to expect the striking
agreement in Fig. 4 for observables such as spin density, which
has two transport channels (ballistic and diffusive) even in
the gapless regime [49]. This is in contrast to energy density,
whose transport is purely ballistic across all regimes, and
is related to the fact that the energy current is a conserved
charge of the XXZ Hamiltonian whereas the spin current is
not.

Aside from numerical studies, a complementary approach
that might be useful for understanding the scope of hydro-
dynamical techniques is based on exact solutions for time
evolution in certain limits, such as the Luttinger-liquid two-
reservoir quench studied in recent work [42]. This should be
comparable to the XXZ model studied in this paper in the
low-temperature regime. At intermediate times, features are
seen in the time evolution of densities that are compared to
those in numerical calculations [32] and may reflect finite-
time corrections to the hydrodynamic description. For the
case of energy transport, similar terms, also involving the
Schwarzian derivative of the initial temperature distribution,
appeared previously in a calculation based on conformal
invariance [30].
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<J(t)J>/LT
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FIG. 5. Dynamical spin current correlation functions obtained from equilibrium DMRG calculations in the XXZ spin chain with A = %
(left) and A = cos % (right) for various temperatures. The results for the spin Drude weight at long times are in good agreement with the

hydrodynamic predfctions (dashed lines).

Another obvious question concerns the mathematical exis-
tence and physical validity of the hydrodynamical solutions
in Sec. IIC, beyond the special case of the two-reservoir
quench. The two-reservoir quench is quite special for a number
of reasons: for example, it has no intrinsic time or length
scale, which means that the scaling limit is effectively a
complete description of its universal properties. We have
found that for at least some cases of practical importance,
computations based on the implicit method described here
yield physically plausible results, even after the time at which
shocks from different initial discontinuities coincide. However,
this is very far from a mathematical demonstration of existence
of solutions, which may be unreasonable to expect given that no
such proof exists even for the venerable equations of standard
hydrodynamics.

A deeper physical understanding of the behavior of the
Bethe-Boltzmann equation in various important contexts is
a more feasible goal. Even for the two-reservoir quench,
important questions remain. We have limited ourselves in
this paper to the regime —1 < A < 1, when the dynamics
have a ballistic component (e.g., the energy and spin Drude
weights are nonzero). A very recent numerical study [69] finds
diffusive behavior for |[A] > 1 (see also Refs. [70-73]) and
superdiffusive behavior at the Heisenberg points |A| = 1, and
it would be desirable yet difficult to capture this behavior using
the hydrodynamic formalism. While it is no doubt challenging
to capture the entire diversity of dynamical behavior in inte-
grable models within a single formalism, the Bethe-Boltzmann
equation, or equivalently generalized hydrodynamics, is at an
exciting stage of its development, with important results for
some long-standing problems and tantalizing hints for others.

Note added. While this work was being completed, we
became aware of a related paper [74], which also showed that
the spin Drude weight could be obtained from hydrodynamics.
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APPENDIX A: SPIN DRUDE WEIGHT FROM DMRG

In the main text, we compared DMRG calculations of the
spin Drude weight to the hydrodynamic approach for A = %
We also performed detailed comparisons for A = % (left) and
A = cos T with good agreement, even though the convergence
of the DMRG calculations to the asymptotic values becomes
slower as A gets closer to the isotropic value A = 1 (see Fig. 5).

APPENDIX B: SUMMARY OF THERMODYNAMIC BETHE
ANSATZ

1. Lieb-Liniger gas

In this section, we briefly recall the main features of
thermodynamic Bethe ansatz for the Lieb-Liniger gas. Recall
that the Lieb-Liniger Hamiltonian for N bosons on a line, with
interaction strength ¢, may be written as

N
H==>"07+) 2c8(x; — x).
j=1

j<k

B

Away from the collision planes {x; = x; : j # k}, the eigen-
functions of this Hamiltonian are superpositions of plane-wave
functions. For example, in the fundamental chamber Dy =
{x; <x; <... < xy}, we may write

W(x,x0, .. xy) = Y A(P)e Dk (B2)

PESN
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where the sum is over all permutations on N letters. The model
is called integrable because all N-body scattering processes
factorize into two-body processes. This property turns out to
be sufficiently restrictive to solve the model. In particular, upon
imposing periodic boundary conditions,

W(xy,x0,...,xy5) = Y(xy,x3,...,x5,x1 + L), (B3)

one may use certain combinatorial relations between the
amplitudes A(P) to deduce the Bethe equations

koL =211, +Y ¢bke—k), a=12,....N, (B4
b#a

where ¢(k) denotes the two-body phase shift. The Bethe
quantum numbers 1, are integers for fermions or an odd
number of bosons, and half-integers for an even number of
bosons. Generally, one finds that only certain allowed Bethe
quantum numbers are occupied in a given eigenstate of the
Hamiltonian. Passing to the thermodynamic limit N,L — oo,
with N /L fixed, this allows one to define densities of particles,
holes, and vacancies via

Lp(k)dk = {# occupied wave numbers in [k,k + dk)},

Lp"(k)dk = {# unoccupied wave numbers in [k,k + dk)},

Lp' (k)dk = {# allowed wave numbers in [k,k + dk)}.
(BS)

respectively. By definition, we have

p'(k) = pk) + p" (k), (B6)
and it is useful to define the nonequilibrium Fermi factor, given
by
p(k)
p' (k)
One can then show [76] that the continuum version of the Bethe
equations (B4) reads

B(k) == (B7)

0 1
o' (k) —I—/ dk' Kk, kYo (KNp' (k') = oo (BS)

oo
where the kernel C is given by

1 c 1
Kkk)y=—¢'k—-k)=——————.
( ) 27T(p( ) T2+ (k— k)

Integral equations of this type occur sufficiently frequently in
the nonequilibrium theory that we define operators K and ¢,
which act on functions via

(B9)

RUFI0 = [ dk KEk)7®). @10
ILfIk) = O (k) f (k). (B11)
For example, in operator notation, equation (B8) reads
A 1
(I+ KN[p' k) = 5. (B12)

21

Now consider particle-type excitations on such states. These
arise when one introduces an additional quantum number in the
Bethe equations (B4) causing a shift in wave number k; —
k} across all k space, which reflects the collective nature of

the underlying excitation. The physics of such excitations is
captured by the pair of integral equations

(I + KN F1K k) = —K(k,K),

Q/(k)+/ dk' e F(K'|kyp(k)Q'(K)) = AQ'(k), (B13)

o0
where F(k'|k) := Lp' (k) Ak denotes the backflow function® for
a particle-type excitation with momentum k, and Q and AQ
denote the bare and dressed values, respectively, for any given
conserved charge of the model. Rather conveniently, equations
(B13) together imply the closed integral equation

AQ'(k) + / dk' K(k,k0(k)AQ'(K') = Q'(k)

oo

(B14)

for the dressed charge. In the context of equilibrium TBA,
this equation is used to justify the interpretation of ¢ as
a Fermi factor [20,76]. In the present context, it allows us
to determine the dressed charges carried by a quasiparticle
excitation directly from the bare charges. Now recall that the
group velocity of a quasiparticle excitation is given by

_ AE'(k)

AP/(k)
where AE and A P denote its dressed energy and momentum
respectively. From the bare values P (k) = k, E(k) = k?/2, we

can take the formal inverse’ of the kernel appearing in (B14)
to yield the dressed values

AP'(k) = (1 + KO)~'[1]1(k),

(k)

(B15)

o (B16)
AE'(k) = (1+ K&)™'[K'1(k),
so that the quasiparticle velocity is given by
T+ KH'Kk
v(k)—( + Kv)"'[K'](k) (B17)

A+ RO M1k

2. The gapless XXZ chain

Recall that the Hamiltonian for the spin-1/2 XXZ chain on
N sites, in zero external field, is given by

N—-1
H=17Y SISt +S8I8), +ASS,,. (B18)
j=1

We take periodic boundary conditions Sy = Sy4;, set the
coupling to J = 1, and parametrize the anisotropy of the theory
by A = cos y. We also assume that the model is in its gapless
phase, i.e., —1 < A < 1. The thermodynamic limit of this
phase is believed to be characterized by a finite number of
“strings” of bound states, consisting of families of rapidities
in the complex plane possessing the same real part [76]. We
define a string of type j to be a an ordered pair, (n,v;), where
n; is the number of spin-flips comprising the string and v; is

2Q0ur convention for the backflow function follows Ref. [19] and,
in that respect, is different from the convention F(k'|k) = Lp(k)Ak
used, for example, in Ref. [76].

3This is shorthand for the infinite (Neumann) series obtained by
solving (B14) iteratively.
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its parity. Suppose that there are N, string types in total so that
Jjef{l,2,...,N,}, and M; strings of type j. Let M denote
the total number of spin-flips in the system. By definition,
Z?’;l M;n; = M. Upon fixing a string type j, we denote the
rapidities of a given string o € {1,2, ..., M;} within that type
by

Y +i|:(m,- +1=2a)y +(1— v,)%},

a=12,...,m;j. (B19)

The TBA equations then read

N, 00
oilosr+el]+ Y [ ax TG0 = a0,
k=197

(B20)
where j € {1,2,...,N,}; for definitions of the various terms
see the book of Takahashi [76]. We define quantities

h
p;j)
ni(h) = - (B21)
pj(A)
and the Fermi factors
(A 1
9;(4) = pi) _ (B22)

Pi) 1 +n,;00)

for strings of type j. It can be shown [19] that the dressed
charge for any given quasiparticle excitation is related to the
bare charge via the N, coupled integral equations

N oo
AQ@HE:/ AN T(o=2)9 0o A QL) = Q) (V).
k=1Y 7%
(B23)
These imply the formula

A & S\—1 AR,
o) = ATV ImAdd;

3 (B24)
(6 + 1) Al

for the velocity of quasiparticle excitations within each string
type.

APPENDIX C: FINITE-TIME NUMERICAL SCHEME

Consider the infinite-dimensional initial value problem

3,9 (x,1,k) + v[d1(k)d, ¥ (x,t,k) = 0,
(CD)
(x,0,k) = ¢(x,k).

Motivated by analogy with the solution by characteristics for
the Burgers equation, we propose the compact approximate
ansatz

O(x,t,k) = p(x — v[D1(k)t,k). (C2)

Here, the velocity functional v[#] is evaluated using all values
of ¥ at (x,7). This ansatz is presumably not exact in general but
arises naturally as the one-step version of a backwards implicit

scheme to solve the advection equation Eq. (C1).* We solve it
numerically for an example in the closing discussion section
of this paper (see Fig. 4 above).

First, in order to provide some intuition, we illustrate
the meaning of this ansatz for the finite-dimensional version
of Eq. (C1) (as arises in practice when discretizing on a
computer). Thus consider the initial-value problem

aten(xat) + 011(91,927 e 59N)ax9n(xvt) = 07
(€3

9,1()(7,0) = ¢n(-x)9

fort > 0, withn = 1,2, ...,N. We will have found a solution
of this equation (ignoring the possibility of discontinuities in
any derivative) if we can find 6, satisfying

On(xo + dt v,(01,02, ...,0N)|x.10,20 + dt)
= 0,(x0,10) + O(d1?), (C4)

for every xp,fy and small dz, because expanding the left-hand
side in a Taylor series yields the advection equation. Since the
error is of order dr2, this could be the basis of a convergent
finite-difference scheme: given 6, at time #(, one steps forward
in time repeatedly by dt using Eq. (C4), and the global error
in advancing by time ¢ is small as dt — 0. However, it is well-
known from the theory of simpler differential equations that
this type of Euler method can be quite unstable. A safer option
is to use an implicit or backwards method [77]: for a time step
dt, we solve for the current values of 6, by looking back at
earlier times,

O, (x,1) = 0,(x — v,(01,02, ...,.0N)|x, dt,t —dt), (C5)
where the notation means that the velocities are evaluated at
x,t. This is just the infinitesimal form of Eq. (C2); in other
words, Eq. (C2) is obtained by covering the entire desired
integration range of time in a single step. Another advantage
in practice of the backwards scheme is that, unlike for the
forward scheme, it is easy to get all the 6, at a particular (x,¢)
point without interpolation if the initial condition is known
everywhere.

We have found that one can solve the ansatz (C5) by
numerical iteration to obtain detailed predictions for finite-time
evolution, from a range of initial conditions [52]. This is of
particular experimental relevance for the Lieb-Liniger model,
which provides a physically realistic description of quasi
one-dimensional Bose gases. We report one such calculation
for energy expansion in the XXZ chain at the end of this paper
using the simpler approximate ansatz (C2) [corresponding to
a single time step with dt = ¢ in Eq. (C5)], after introducing
that model and discussing its linear response, and discuss there
its (perhaps unexpected) agreement with a DMRG solution. A
detailed discussion of the range of validity of the predictions
obtained using this method is given in Secs. II and IV of the
main text.

“We thank B. Doyon for helpful discussions and for sharing
unpublished work on a different approach to this problem.
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