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Abstract� Given a simple arrangement of n pseudolines in the Euclidean plane� associate
with line i the list �i of the lines crossing i in the order of the crossings on line i�
�i � ��i

�
� �i

�
� ��� �i

n��
� is a permutation of f	� ��� ng � fig� The vector ���� ��� � � � � �n� is

an encoding for the arrangement� De
ne � i
j � 	 if �i

j � i and � i
j � �� otherwise� Let

�i � �� i
�
� � i

�
� ��� � i

n��
�� we show that the vector ���� ��� � � � � �n� is already an encoding�

We use this encoding to improve the upper bound on the number of arrangements
of n pseudolines to ��������n

�

� Moreover� we have enumerated arrangements with 	�
pseudolines� As a by�product we determine their exact number and we can show that
the maximal number of halving lines of 	� point in the plane is 	
�

� Introduction

Arrangements of lines and pseudolines are recognized as important and appealing objects
for research in geometry and combinatorics� A general theory of arrangements is given
in Gr�unbaum�s monograph ���� The oriented matroid point of view on arrangements is
taken in Bj�orner et al� ���� Enumeration questions for arrangements are discussed in 	���

Subsection ���
 and in Knuth 	���
 Section �
� In most texts arrangements of pseudolines
are de�ned with the real projective plane as ambient space� In contrast
 we consider
arrangements in the Euclidean plane�

Let a pseudoline be an x�monotone curve in the Euclidean plane� An arrangement of

pseudolines is a family of pseudolines with the property that each pair of pseudolines has
a unique point of intersection where the two pseudolines cross� An arrangement is simple

if no three pseudolines have a common point of intersection� Throughout this manuscript
the term arrangement if not speci�ed further will always denote a simple arrangement
of pseudolines� The size of an arrangement is the number of its pseudolines� Given an
arrangement A of size n we label the pseudolines so that they cross a vertical line left of
all intersections in increasing order from bottom to top�

An arrangement partitions the plane into cells of dimensions �
 � or �
 the vertices�
edges and faces of the arrangement� The cells of an arrangement carry a natural lattice
structure� Adding a � and a � element we obtain the face lattice of the arrangement� Two
arrangements are considered to be isomorphic if their face lattices are isomorphic under
the correspondence induced by their labelings�

Particularly nice pictures of arrangements of pseudolines are given by their wiring

diagrams introduced in Goodman ���
 see Figure �� LetW be a wiring diagram of a simple

�
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arrangement of size n� For each abscissa x where no crossing takes place the vertical order
	upwards
 of the pseudolines at x is a permutation �x of f���ng� Assuming that no two
crossings of W have the same x position we obtain

�n
�

�
�� di�erent permutations� Denote

by � the sequence of these permutations in left to right order� We note two properties of
sequence ��

3

4
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Figure �� Wiring diagram�

	�
 The �rst element of � is the identity permutation 	�� �� � � � � n
 and the last element
of � is the reverse permutation 	n� � � � � �� �
�

	�
 Two consecutive permutations in � di�er by the reversal of an adjacent pair�

Following Goodman and Pollack ��
 �� we call a sequence � of
�n
�

�
� � permutations of

f���ng satisfying the above properties a simple allowable sequence� In general allowable
sequences it is allowed for consecutive permutations to di�er by the reversal of a larger
substring� A simple allowable sequence is easily transformed into a wiring diagram and

hence
 an arrangement of pseudolines� Note
 however
 that many allowable sequences
may correspond to the same arrangement� Consecutive pairs of crossings that have no
pseudoline in common can be interchanged without changing the arrangement�

Figure �� Wiring diagrams corresponding to one arrangement
but two allowable sequences�

Simple allowable sequences are basically the same as re�ection networks
 see Knuth ����
Alternatively
 they can also be seen as maximal chains in the weak Bruhat order of the
symmetric group� In this last context their number An has been determined by Stan�
ley ����� His remarkable formula is

An �

�n
�

�
�Qn��

k��	�n� �k � �

k
�

Edelman and Greene ��� prove this formula via a combinatorial bijection between di�erent
types of tableaux�

Let Bn be the number of non�isomorphic simple arrangements of size n� Besides the
numbersAn and Bn we will consider their logarithms an � log�An and bn � log�Bn� From
the above remarks it follows that there are more allowable sequences than arrangements
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i�e�
 bn � an� From Stanley�s formula an O	n� logn
 upper bound for an follows� Knuth ���
proves lower and upper bounds for the number of arrangements�

�
n�

�
� �n

� � Bn � �
	n��

�



This gives bn � ������ 	n� � n
� Knuth reports on some computations supporting a
conjecture of bn �

�n
�

�
� From the sharpest version of the zone theorem 	Bern et al� ���
 a

bound of bn � ������ n� is obtained� In the next section we propose a new encoding of
arrangements from which we easily obtain bn � ������ n�� In Section � we work a little
harder to obtain an improved bound of bn � ������n

��

� An encoding for arrangements

Representing an arrangement by an allowable sequence can be seen as an encoding by
an ordered sequence of vertical cuts through the arrangement� We turn the picture and
give a representation by a sequence of horizontal cuts� An obvious way to do this is to
associate with line i the list �i of the lines crossing i in the order of the crossings on line
i� To an arrangement A thus corresponds a vector 	��� � � � � �n
 where �i is a permutation
of f�� ��� i� �� i��� ��� ng� As will be shown in this section it su�ces to know which entries
of �i are larger than i in order to obtain an encoding for A�

De�nition � Let Tn be the set of n�tuples 	��� ��� � � � � �n
 with �i � 	ti�� t
i
�� � � � � t

i
n��
 a

binary vector and
Pn��

j�� t
i
j � n� i for all i�

De�ne a mapping � from arrangements of size n to Tn� Given an arrangement A let �i
report the crossings of pseudoline i with the other lines from left to right� More precisely
tij � � if the j�th crossing on line i is a crossing with a line with index larger than i� In the
wiring diagram this corresponds to a move of wire i up into the next track� Conversely
tij � � if line i is moving down at the j�th crossing
 i�e�
 if the j�th crossing on line i is
a crossing with a line with index smaller than i� Each of the n� � lines di�erent from i
contributes exactly one crossing on line i and n� i of these lines have a larger label than
i� This proves that 	��� ��� � � � � �n
 � �	A
 is in Tn� E�g�
 the element of T� corresponding
to the arrangement represented by the wiring diagram of Figure � is

T � 		�� �� �� �
� 	�� �� �� �
� 	�� �� �� �
� 	�� �� �� �
� 	�� �� �� �

�

Of course
 not all elements of Tn correspond to an arrangement
 e�g�
 for n � � we
have � elements in T� but only � arrangements� The element of T� not in the image of �
is T � 		�� �� �
� 	�� �� �
� 	�� �� �
� 	�� �� �

�

Theorem � The mapping � is injective�

Proof� Algorithmically the tool of choice for the construction of the face lattice of an
arrangement of pseudolines is a topological sweep 	see Edelsbrunner and Guibas ���
�
Below we make use of the sweep paradigm to prove that we can reconstruct A from �	A

and thus prove the theorem�

Imagine a sweep as a move of a topological line continuously from left to right across
the plane� All incidences between cells of the arrangement are met by the line during this
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move� We discretize the line and replace it by a cut of edges of the arrangement� This is
a list 	e�� e�� � � � � en
 of edges such that

	�
 Edge e� is on the boundary of the bottom face
 i�e�
 on the face containing the vertical
ray to �� and edge en is on the boundary of the top face
 i�e�
 the face containing
the vertical ray to ���

	�
 For each � � i � n� � there is a face Fi of the arrangement with edges ei and ei��
on its boundary�

To get from the bottom face to the top face every pseudoline has to be crossed� Since a cut
consists of n edges only it follows that the order of edges of a cut represents a permutation
of the lines of the arrangement� The sweep begins at the leftmost cut consisting of all left
unbounded edges� The permutation corresponding to this cut is the identity permutation�

An advance move corresponds to shifting the topological line cross a point of the
arrangement� The admissible points for advance moves are those with both left edges in
the current cut 	Figure �
�

Figure �� Advancing the cut across a vertex�

To have a deterministic algorithm our sweep always picks the highest admissible
point for an advance move� Formally
 let i be the least index such that the right end�
points of edges ei and ei�� coincide in the current cut 	e�� � � � � en
� The next cut is
	e�� ��� ei��� e

�
i� e

�
i��� ei��� ��� en
 where e

�
i is the edge right of ei�� on the same pseudoline

and e�i�� is the edge right of ei on the same pseudoline� In general
 if two cuts di�er by
an advance move the corresponding permutations di�er by an adjacent transposition� As
long as some edges in the cut have right endpoints an advance move is possible� The
algorithm terminates when the current cut has become the rightmost cut consisting of all
right unbounded edges and the vertical order of the lines is reversed�

The next algorithm works with input �	A
 and produces a sequence of permutations�
The �rst permutation � � 	��� ��� �n
 is the identity� We initialize an edge counter s	i
 � �
for each line i and let vi � t�is��i� and v � 	v�� v�� � � � � vn
� It will be important to keep in

mind that v depends on � and s� Initially vi is simply the �rst bit of �i where �	A
 �
	��� � � � � �n
�

In each step the algorithm takes the least index i with vi � � and vi�� � �� Edge coun�
ters s	�i
 and s	�i��
 are increased by one and � is changed by an adjacent transposition
at position i
 i�e�
 � becomes 	��� ��� �i��� �i��� �i� �i��� ��� �n
�

The claim is that sweeping A and �	A
 produces the same sequence of indices i for
advance moves� The following invariant su�ces to prove the claim by induction�

	�
 v contains the information which lines go up and which go down at the next crossing
behind the current cut in the order in which the lines appear in the cut�
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This is trivially veri�ed at the beginning� Now suppose that 	�
 is true after some �xed
number of moves of both algorithms�

If the next advance move of the sweep is made at index i then vi � � and vi�� � �
by induction and i is a candidate index for the choice of i in the algorithm with input
�	A
� Now let j be any index with vj � � and vj�� � �� This means that at its next
crossing line �j is moving up while line �j�� is moving down at its next crossing� Since
line �j is below line �j�� and they border a common face in A they cross each other
 i�e�

edges ej and ej�� have a common right endpoint� Therefore
 j is a candidate index for
an advance move� The candidate sets for both algorithms thus agree and both choose the
same 	least
 candidate� After the move the new � is the permutation corresponding to
the new cut� Since we have also increased the counters for the two lines involved in the
crossing invariant 	�
 is seen to hold�

It has been remarked that the sequence of cuts produced by the sweep corresponds to
a sequence of permutations� By 	�
 this sequence of permutations is exacly the sequence
produced by the second algorithm� This sequence is a simple allowable sequence and
characterizes an arrangement� Evidently this arrangement is again A� This completes the
proof that A can be reconstructed from �	A
�

We have seen that � is an injective mapping from arrangements of size n to elements
of Tn� Counting elements of Tn is a trivial task
 jTnj �

�n��
�

��n��
�

��n��
�

�
� � �
�n��
n��

�
� Taking

logarithms and using Stirling�s formula we obtain�

Fact �� bn �
Pn��

k�� k log e � ������ 	n
� � n
�

Compared to the best known bound bn � ������ n
� this was surprisingly easy to obtain�

For a better understanding of the encoding � it would be interesting to have some tools
to discriminate between members from Tn that are in the image of � and those that are
not� At this time we have little more than the second algorithm from the above proof� We
can take arbitrary elements T � Tn as input to this algorithm� The two possible outcomes
are�

	�
 The algorithm gets stuck before
�n
�

�
moves have been made
 i�e�
 in the current vector

V there is no index i with vi � � and vi�� � ��

	�
 T indeed corresponds to an arrangement�

Other cases can be ruled out as follows� Suppose that T can be swept and consider the
sequence of permutations generated� Since line i moved up n � i times and down i � �
line i ends up on wire n� i��� This proves that we end up with the reverse permutation�
Hence
 the sequence is allowable and corresponds to an arrangement�

� A better bound for bn

Recall the element T � 		�� �� �
� 	�� �� �
� 	�� �� �
� 	�� �� �

 of T� not in the image of ��
Trying to sweep T we get stuck after two moves� At the second move we already note that
something goes wrong since the lines involved in the crossing of the �rst move cross back�
Call an immediate backcross a situation where two lines cross twice in a row� Geometrically
this corresponds to two edges with the same left and right endpoints� When sweeping
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T � Tn we recognize an immediate backcross when the pair 	vi� vi��
 � 	�� �
 of the move
is replaced by 	v�i� v

�
i��
 � 	�� �

 i�e�
 the vectors v and v� before and after the move are

identical�
Note that the sweep corresponding to T � Tn is completely determined by the initial

vector v and a sequence of replace pairs w�� w�� � � � � w	n
�

� If the jth move of the sweep

interchanges �i and �i�� we replace 	vi� vi��
 � 	�� �
 by the pair wj � 	w�
j � w

�
j 
� A

sequence of replace pairs leads to an immediate backcross exactly if one of the pairs wj is
	�� �
� The number of backcross free elements of Tn and
 hence
 the number of arrangements
can thus be estimated from above by the number of initial vectors v and the number of
	�� �
 free sequences of replace pairs� For v there are � �n choices and for each pair wj

there remain � choices
 therefore�

Fact �� Bn � �
n�	

n
�


 i�e
 bn � ������ n

� �O	n
�

The proof of Fact � made use only of the number of � and � in each �j� The proof of
Fact � is based on forbidding immediate backcrossings� With the replace matrix we next
de�ne a representation that helps to take care of both aspects� Estimating the number of
replace matrices will enable us to slightly improve the upper bound for bn in Theorem ��

De�nition � A replace matrix is a binary n� n matrix M with properties

	�

nX

j��

mij � n� i for i � �� ��� n�

	�
 mij � mji for all i � j�

Lemma � There is an injective mapping � from arrangements of size n to n�n replace

matrices�

Proof� Consider �	A
 and let mii � ti�
 that is
 we record the initial v of the sweep of
�	A
 along the diagonal of M � If in the kth move of the sweep of �	A
 lines i and j cross
we de�ne mij � � if the next crossing 	after the crossing with line j
 of line i goes up and
mij � � if the next crossing of line i goes down
 respectivly mij � tis�i���� If i � j then at
their crossing line i is going up and line j is going down� Since the lines don�t backcross
we have 	mij�mji
 �� 	�� �
 or equivalently mij � mji� After the complete sweep of �	A

we remain with a single unde�ned entry in each row of M � Let this entry be �� Suppose
i � j and mij was the last unde�ned entry of its row� It follows that after crossing j from
below line i was not involved in further crossings� If line j had a further crossing then it
had to move down there since the position above j was occupied by i
 hence
 mji � ��
Otherwise line j had no further crossings and again mji � ��

Property 	�
 of replace matrices is easily seen to hold for M as de�ned above� The
entries in row i ofM are the entries of �i in �	A
 and an additional � in some permutation�
Hence
 M � �	A
 is a well de�ned replace matrix� To show that this mapping is injective
we sweep M � �	A
 and reconstruct �	A
� The details very similar to the arguments in
the proof of Theorem � are left to the reader�

We illustrate this encoding of arrangements by replace matrices by giving the replace
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matrix corresponding to the arrangement of Figure �� In that case

M �

�
BBBBB�

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

�
CCCCCA

To obtain an estimate for the number of replace matrices we use probabilistic arguments�
Consider the probability space  of all binary n� n matrices with

Pn
j��mij � n � i for

i � �� ��� n and let M be an uniformly distributed random variable in  � Let pi be the
probability that a �xed entry in row i of M is �
 i�e�
 pi �

i
n 
 and qi � � � pi be the

probability that this entry is �
 i�e�
 qi �
n�i
n �

For i � j let Eij be the event mij � mji� Since mij �� mji is equivalent to 	mij�mji
 �
	�� �
 the probability of event Eij is Prob�Eij � � 	�� piqj
� For the number Rn of replace
matrices we have Rn � j jProb�

V
i�j Eij ��

Carelessly assuming independence of the events Eij we obtain as estimate for Rn the

product
Qn��

k��

�n
k

�Q
i�j	��

i�n�j�
n� 
� The logarithm of this function behaves like ����n�� Of

course due to the �xed row sums of matrices in  the Eij are not independent� In the
remaining part of this section we derive a valid and weaker estimate for Rn�

Lemma � If I is a subset of f	i� j
� � � i � j � n � �g such that Prob�E�j
V
��J E�� �

Prob�E�� for all 	 � I and J 	 I � 	 then Rn � j j
Q

��I Prob�E���

Proof� For every enumeration 	�� ��� 	jIj of I we have Prob�
V
i�j Eij � � Prob�

V
��I E�� �QjIj

i�� Prob�E�i j
V
j�iE�j �� The assumption on I implies Prob�E�i j

V
j�iE�j � � Prob�E�i �

for all i�

Lemma � The set I � f	i� j
� � � i � bn� c � j � ng obeys the condition of Lemma ��

Proof� Let  	i� j
 be the set of matrices that can be obtained from matrices of  by
removing rows i and j� Think of  	i� j
 as the set of 	n � �
 � n matrices with rows
indexed �� ��� i � �� i � �� ��� j � �� j � �� ��� n and

Pn
l��mkl � n � k for index k� Given

M � �  	i� j
 let N	M �
 be the number of matrices M in  that reduce to M � by removing
rows i and j
 equivalently N	M �
 counts the number of pairs 	ri� rj
 of rows that extend
M � to a matrix in  � Generalizing this notation let N	M � � E
 be the number of pairs of
rows that extend M � to a matrix M in  so that E holds for M � Let 	 � 	i� j
 � I and
J 	 I � 	� The following inequalities are equivalent�

Prob�E�� � Prob�E�j
�
��J

E��

Prob�
E�� � Prob�
E�j
�
��J

E��

Prob�
E�� � Prob�
�
��J

E�� � Prob�
E� �
�
��J

E��

X
M ��	�i�j�

N	M ��
E�

X

M ��	�i�j�

N	M ��
�
��J

E�
 �
X

M ��	�i�j�

N	M �

X

M ��	�i�j�

N	M ��
E� �
�
��J

E�


X
M �N ��	�i�j�

N	M ��
E�
N	N
��
�
��J

E�
 �
X

M �N ��	�i�j�

N	M �
N	N ��
E� �
�
��J

E�
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We claim that the last of these inequalities holds component�wise�

Claim� for any pair M �� N � of matrices in  	i� j
�

N	M ��
E�
N	N
��
�
��J

E�
 � N	M
�
N	N ��
E� �

�
��J

E�


N	M �
 counts the number of pairs 	ri� rj
 of row vectors that extend M � �  	i� j
 to
M �  � The condition on ri is

Pn
l�� ril � n� i
 there are

� n
n�i

�
choices for ri� The number

of choices for rj is
� n
n�j

�
�

Now consider the pairs 	ri� rj
 counted by N	M
��
E�
� To match condition 
E� the

values rij � � and rji � � are required� There remain
�n��
n�i

�
choices for ri and

� n��
n�j��

�
choices for rj �

The number N	N ��
V
��J E�
 really depends on N � respectively on the column vectors

si and sj of N
�� First consider the choices for ri� To match the conditions E� for 
 � J

certain relations between entries of ri and si must hold� Note that due to the choice of I
we have i � n�� and all pairs containing i in J are of the form 	i� k

 i�e�
 n�� � k and
all relations forced between si and ri are of the form rik � ski� Relevant for ri are only
those positions with ski � �� Let �� be the number of pairs 	i� k
 � J with ski � �
 hence

conditions E� for 
 � J force exactly �� positions rik � �� There remain

� n���
n�i���

�
choices

for ri� For rj note that all pairs containing j in J are of the form 	k� j

 i�e�
 k � n�� � j
and all relations forced between sj and rj are of the form rkj � sjk� De�ne �� as the

number of pairs 	k� j
 � J with sjk � �� There remain
�n���
n�j

�
choices for rj�

Finally
 consider N	N ��
E� �
V
��J E�
� Compared to the previous case we have

additionally �xed values rij � � in ri and rji � � in rj � Hence

�n�����
n�i���

�
choices for ri and�n�����

n�j��

�
choices for rj � The claim is thus boiled down to the veri�cation of�n��

n�i

�� n��
n�j��

�� n���
n�i���

��n���
n�j

�
�
� n
n�i

�� n
n�j

��n�����
n�i���

��n�����
n�j��

�
�

Both of the following inequalities hold separately� Use
�n
k

�
� n

n�k

�n��
k

�
and

�n
k

�
�

n
k

�n��
k��

�
for their proofs� �n��

n�i

�� n���
n�i���

�
�
� n
n�i

��n�����
n�i���

�
� n��
n�j��

��n���
n�j

�
�
� n
n�j

��n�����
n�j��

�

Theorem � The number Bn of arrangements of n pseudolines is at most

n��Y
k��

�
n

k

� Y
��i�n

�
�j�n

	
��

i	n� j


n�




and hence bn � ������ n
��

Proof� The above lemmas allows to bound the number Rn of n� n replace matrices by
j j
Q

�i�j��I	��
i�n�j�
n� 
� Plugging in j j �

Qn��
k��

�n
k

�
and the de�nition of I bounds Rn by

the above formula� By Lemma � the bound holds true for the number of arrangements�
The proof is completed with a simple calculation� Recall that ��p � e�p for � � p� Using
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this in every factor of the product and taking logarithms we obtain rn � log�	e
	
�n��

�

�
�P

�i�j��I
i�n�j�
n� 
� The sum equals 	��n�
	

P
i�j�n�� i � j
 � 	��n

�

�n����

�

��

 	����
n�
 alto�

gether rn � log�	e
	��� � ����
n
� � ������ n��

Conclusion

B�� � ��� ���� ���� ���� This is an additional value for the table of Knuth 	���
 page ��
�

As a byproduct of the computation for counting arrangements with �� pseudolines we also
found that the maximum number h�� of halving�lines a set of �� points in the plane can
have is ��� This adds a new value to the list h� � �
 h
 � � and h� � �� Via the duality
between non�vertical lines and points 	y � ax � b
 � 	a� b
 a halving line of point�set P
corresponds to a cell c in the arrangement dual to P such that a vertical line through c
crosses half of the lines above and the other half below c� We call the set of these cells
the middle�level of the arrangement� Note that the leftmost and the rightmost cell of
the middle�level of an arrangement correspond to the same halving line in the dual� For
more on the size of middle�levels and the more general k�set problem see ����
 ��� and the
references therein�
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Figure �� Ten lines with �� cells in the middle�level�
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