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ABSTRACT

The present study investigates non-linear dynamics of atmospheric flow phenomena on different scales as

interactions of vortices. Thereby, we apply the idealised, two-dimensional concept of point vortices considering

two important issues in atmospheric dynamics. First, we propose this not widely spread concept in meteorology

to explain blocked weather situations using a three-point vortex equilibrium. Here, a steady state is given if the

zonal mean flow is identical to the opposed translational velocity of the vortex system. We apply this concept

exemplarily to twomajor blocked events establishing a new pattern recognition technique based on the kinematic

vorticity number to determine the circulations and positions of the interacting vortices. By using reanalysis data,

we demonstrate that the velocity of the tripole in a westward direction is almost equal to the westerly flow

explaining the steady state of blocked events. Second, we introduce a novel idea to transfer a stability analysis of a

vortex equilibrium to the stability of the polar vortex concerning its interaction with the quasi-biennial oscillation

(QBO). Here, the point vortex system is built as a polygon ring of vortices around a central vortex. On this way

we confirm observations that perturbations of the polar vortex during the QBO east phase lead to instability,

whereas the polar vortex remains stable in QBO west phases. Thus, by applying point vortex theory to

challenging problems in atmospheric dynamics we show an alternative, discrete view of synoptic and planetary

scale motion.

Keywords: point vortices, blocked events, polar vortex, Holton�Tan mechanism, kinematic vorticity number,

pattern recognition

1. Introduction

Persistent weather situations often have devastating con-

sequences, such as draughts or floods. Examples of these

long-lasting weather situations are blocked events in the

extratropical regions of the midlatitudes that often last

for weeks up to months. In summer 2003, such a blocked

weather situation caused the West-European heat wave;

simultaneously there was strong precipitation in East Europe.

Also the heat wave around Moscow in summer 2010 was

caused by a blocked situation. During the same time Pakistan

had to struggle against floods. A recent blocked weather

situation took place in July 2014, where a blocked high over

Norway lead to the warmest July since the beginning of

weather recording in 1900 (NMI, 2014).

In general, Rossby theory, which describes successfully

propagating waves in a zonal flow, dominates the think-

ing of large-scale atmospheric motions. A first explanation

of blocked events is stationary Rossby waves in a zonal

mean flow, which can be ascribed to Yeh (1949). A short-

coming of this global explanation is the missing description

of non-periodic, local characteristics of blocked events.

Therefore, a modern view on stationary patterns is based

on Rossby-wave breaking giving rise to more local, cut-off

structures diagnosed by PV-anomalies on isentropic sur-

faces (Altenhoff et al., 2008). In this context, we propose

a physical model based on first principles regarding the

large-scale processes as local interactions of several discrete

vortices. This approach is reasonable, because the observa-

tions show that blocked events are realised by two or three

isolated vortices represented by high over low or omega-

blocked weather patterns.

A second phenomenon that is usually described by wave

mean flow interactions is the break down of the polar vortex
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caused by mid-winter major warmings of the stratosphere.

It was discovered by Holton and Tan (1980, 1982) that

the dynamics of the northern hemispheric polar vortex are

influenced by the equatorial quasi-biennial oscillation (QBO),

resulting in a particularly strong polar vortex with negative

temperature anomalies during the QBO west phase and a

weakened and warmer polar vortex during the QBO east

phase. Current research focuses on the divergence of the EP-

flux, and therefore vertical propagatingRossbywaves.Because

the polar vortex is the strongest isolated vortex in the earths’

atmosphere, it is reasonable to transfer the problem to the

analysis of the stability of point vortex theory.

In this paper, we will consider these two challenging

atmospheric issues by the non-linear interaction of isolated

vortices. From a theoretical point of view, the classical

and simplest way to describe motions on a synoptic and

planetary scale is a two-dimensional, barotropic, inviscid

and non-divergent model that is mathematically represented

by the corresponding vorticity equation; thereby, the

property of being divergence-free is realised by the geos-

trophic wind. The concept that satisfies the required pro-

perties of being local and discrete is the classical point

vortex theory pioneered by Helmholtz (1858) and Kirchhoff

(1876). Surprisingly, there are rather few publications on

the application of point vortices to understand large-scale

motions in the atmosphere, see for example Charney (1963),

Obukhov et al. (1984), Morikawa and Swenson (1971),

Friedlander (1975), Egger (1992), DiBattista and Polvani

(1998) or Newton (2013).

The central focus of this paper is to demonstrate the

diversity of applications to atmospheric flow phenomena

under a unified theoretical approach of point vortex theory.

In the following section, we will give a short introduction

to point vortex theory by explaining the main conserved

quantities and equations of motion. In Section 3, we will

focus on the equilibrium state for multiple vortices. Data

and methods to calculate the circulations will be presented

in Section 4. In Section 5, we will give two examples of the

applicability of point vortex dynamics to blocked situations.

Thereby, we use the concept of three-point vortices building

a relative equilibrium. The first example deals with the severe

drought over the European part of Russia in 2010; in

the second example, we will analyse an omega block over the

North Pacific 2011. In Section 6, we will give an example of the

applicability of point vortex equilibria to planetary scale and

investigate the stability of the polar vortex by multiple point

vortex systems. Finally, we summarise our results in Section 8.

2. Point vortex theory

The first investigations on the dynamics of point vortices in the

plane were introduced by Helmholtz in 1858. Twenty years

later, Kirchhoff presented the general Hamiltonian structure

of N point vortices and Gröbli analysed in detail the motion

of three-point vortices (Kirchhoff, 1876; Gröbli, 1877). Since

then, numerous papers have been published on the motion

of point vortices, see for example the works ofNovikov (1975),

Newton (2013) or Aref (2007). In the following, let v be a

solenoidal vector field, that is, 9 �v�0, and denote v�9�v

the vorticity vector. An important quantity in vortex dynamics

is the circulation G that is defined by

C ¼
I

C

v � ds ¼
Z

A

x � n dS; (1)

where C is a closed curve on a material plane. Thereby,

to achieve the right hand side with areaA and normal vector

n, Stokes theorem was applied. Moreover, assuming ideal

incompressible fluids with conservative forces, Kelvin’s

circulation theorem states that the circulation G around

a closed material curve moving with the fluid is constant.

To apply point vortex theory to the synoptic and planetary

scale, we contract local vorticity fields with the same sign to

singular points. During this limiting process, the circulation

[eq. (1)] remains constant. This asymptotic transition leads

to a physical discretisation of the vorticity field.

In the following, we will give an overview of the basic

point vortex equations similar to Müller and Névir (2014).

We will denote xi�(xi yi)
T the local coordinates of the i-th

point vortex in the plane characterised by their circula-

tion Gi, i�1, 2, . . ., n. Further, denote rij ¼ ððxi � xjÞ
2 þ

ðyi � yjÞ
2Þ1=2

the relative distance of the i-th and j-th point

vortex (i, j�1, . . ., n). Then, the equations of motion

derived by Helmholtz (1858) are given by

dxj

dt
¼ � 1

2p

XN

i 6¼ j

i; j ¼ 1

Ciðyj � yiÞ
r2

ij

dyj

dt
¼ þ 1

2p

XN

i 6¼ j

i; j ¼ 1

Ciðxj � xiÞ
r2

ij

(2)

Kirchhoff (1876) established the Hamiltonian represen-

tation of these equations of motion as non-linear coupled

system of 2N ordinary differential equations:

Ci

dxi

dt
¼ @H

@yi

; Ci

dyi

dt
¼ � @H

@xi

(3)

with the total energyH of a N-vortex system that is given by

H ¼ � 1

4p

XN

i 6¼ j

i; j ¼ 1

CiCj lnðrijÞ: (4)

Furthermore, Kirchhoff has already shown the conserva-

tion of the zonal momentum Px, the meridional momentum
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Py and the vertical component of the angular momentum Lz

(Kirchhoff, 1876):

Pxðxi; yiÞ ¼
XN

i¼1

Ciyi (5)

Pyðxi; yiÞ ¼ �
XN

i¼1

Cixi (6)

Lzðxi; yiÞ ¼ �
1

2

XN

i¼1

Ciðx2
i þ y2

i Þ: (7)

Moreover, Kelvin’s circulation theorem allows us to

conclude that the following scalars, the total circulation G
and the quadratic sum of all circulations, are conserved:

Ctot :¼
XN

i¼1

Ci; V :¼ 1

2

XN

i; j ¼ 1

i 6¼ j

CiCj : (8)

Acomposition ofPx,Py andG leads to a further important

conserved quantity called the centre of circulation C:

C ¼
PN

i CixiPN

i Ci

: (9)

Assuming the total circulation being not equal to zero,

point vortices move around their common centre of circula-

tion. Thereby, the orientation of a rotating N-vortex system

depends on the sign of the circulation of highest absolute

value. But a whole point vortex system can also have zero

total circulation. For Gtot00, C approaches infinity. There-

fore, if Gtot�0, each vortex may rotate, but the geometric

central point of theN-vortex system translates. A translating

point vortex system with vanishing total circulation will

later be applied to describe blocked situations.

There are several concepts to describe point vortex

dynamics. We can solve the equations of motion [eq. (2)]

based on the local coordinates, orwe can describe themotion

in terms of the relative distances, such as in Synge (1949),

where he introduced tri-linear coordinates or Müller and

Névir (2014) who investigated a geometric representation of

vortex motion.

2.1. Atmospheric scales of circulation

A common approximation of large-scale atmospheric dy-

namics is to neglect dissipative processes. This approach is

used in Rossby-wave theory as well as in vortex dynamics.

However, to relate space and time scales of different vortex

patterns we follow the principle idea of Kolmogorov (1941)

taking dissipation into account.

One of the most important quantities in vortex theory is

the circulation that is explicitly given in the point vortex

equations [eq. (2)]. In order to analyse the atmospheric

scales of circulation, we follow the idea of the dimensional

analysis of Kolmogorov (1941). He considered constant

dissipation of energy o leading to a relation between the

characteristic time T and the characteristic length L:

T�o�1/3L2/3. This provides a power law of the character-

istic circulation G in terms of L:

C ¼ e1=3L4=3: (10)

Motivated by Kolmogorovs idea, we assume constant

dissipation of circulation, that is, _C ¼: l ¼ const: Since the

dimension of G is given by L2T�1, we can express the

dissipation of circulation in terms of this characteristic

quantities: m�L2T�2. Thus, we get the relation of the

characteristic time and the characteristic length L:

T ¼ l�1=2L: (11)

In contrast to the assumption of a constant dissipation of

energy [eq. (10)], eq. (11) represents a linear relation

between T and L. Moreover, G�L2T�1 and eq. (11) lead

to the linear relationship:

C ¼ l1=2L (12)

which is illustrated in eq. (1). The dashed line indicates

the circulation with respect to the characteristic lengths

in terms of the dissipation of energy [o�5 �10�4m2s�3,

Brunt (1939)] and the solid line illustrates the linear relation

given in eq. (12) in terms of the dissipation of circulation

(m�264m2s�2). This estimation of the dissipation of

circulation follows from Schielicke et al. (2015). For the

circulations of the omega block, Fig. 1 indicates circula-

tions in the order of 107�108m2 s�1 and larger circula-

tions for the polar vortex in the order of magnitude of

Fig. 1. The order of magnitude of circulations with respect to

different lengths scales for the dissipation of energy o�5 �10�4m2 s�3

and the dissipation of circulation m�264m2 s�2 .
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108�109m2 s�1. We will see that these orders of magnitude

coincide with our calculations of the circulations and

distances of the real atmospheric vortices.

3. Relative point vortex equilibria

Point vortex motions can be classified into two different

kinds of motions. For most initial conditions, the relative

distances vary in time, but in special cases they are constant

in time. These cases are named relative equilibria. The first

investigations of related equilibria took place more than

100 years ago. Mayer (1878) studies equilibrium config-

urations of the interactions of floating magnets with a

strong magnetic field. These configurations turned out to

correspond to point vortex equilibria. Since then numerous

studies on point vortex equilibria have been followed, see

for example Novikov (1975), Aref (1979), Dritschel (1985)

or Aref et al. (2012).

In the following, we will apply point vortex equilibria to

flow patterns on a synoptic and planetary scale charac-

terised by a low dimensional number of distinguished

vortices. On a synoptic scale, dipole and tripole structures

can be described as two- or three-point vortex systems.

Denote G1 and G2 the circulations of a two vortex system.

For jC1j 6¼ jC2j, the two-point vortex system rotates around

its centre of circulation, where each vortex moves along a

different circle. In case G1�G2, both vortices rotate on the

same circle. If G1��G2, the centre of circulation lies in

infinity, and therefore, the two vortex system translates

with constant velocity. These two last cases are called

relative equilibria and can be applied to atmospherical

dipole structures (see Kuhlbrodt and Névir, 2000).

We will extend this idea and discuss omega blocks by

three-point vortex equilibria. A first approach to study

droughts was given by Obukhov et al. (1984) (in Russian)

who realised the idea in terms of climatological geopotential

anomalies. The relative equilibrium of three-point vortices

occurs either for collinear initial states or for three-point

vortices forming an equilateral triangle. In the case of

an equilateral triangle and total circulation unequal to

zero, the three-vortex system rotates about its centre of

circulation with rotation frequency v�(G1�G2�G3)/2pr2,
where r is the triangle side (Newton, 2013). In the case of

zero total circulation, the centre of circulation lies in infinity.

Now let D123 be an equilateral triangle with the local

point vortex coordinates as vertices and equal intervortical

distances r:�r12�r23�r31. Applying eq. (2) leads to the

following translation velocity:

v ¼ jvj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðC2

3 þ C2
1 þ C2

2Þ
q

4pr
: (13)

For G1�G2, the system translates along the straight line

through vortex 1 and vortex 2. As we have derived in

Müller and Névir (2014), varying the circulations leads to

the following translation angle:

a ¼ arctan
C1 � C2ffiffiffi

3
p

C3

 !
: (14)

In Section 5, we will use the translation velocity [eq. (13)]

of a three vortex system to explain the stationarity of

blocked weather situations. Omega blocks are characterised

by two low-pressure areas south�east and south�west of a
high-pressure area (see Fig. 2). Thus, if both lows have equal

circulations and are located on the same latitude and if

the circulation of the high is twice as large as each low,

the total sum of circulation is equal to zero. Therefore, the

vortex system translates along the latitude.

In Section 6, we will apply multiple vortex equilibria to

study the stability of the polar vortex in the stratosphere.

Already in 1883, Thomson analysed the stability of co-

rotating vortices on the plane by placing equally spaced

vortices with identical circulation along a circle (Thomson,

1883). He proved that these polygonal configurations are

stable for N56 vortices. Motivated by the observed

potential vorticity structure of the stratospheric polar vortex

Westerlies

u v
_

Tripole velocity

H
H

LL

r

r r

LL

b)a)

Fig. 2. (a) A three-point vortex equilibrium describes an omega block (geopotential mean over the North Pacific 1�12 March 2011). (b)

Such a three-vortex system that represents an omega block translates eastwards, if the total circulation G �G1�G2�G3 vanishes.

Stationarity can be explained if the translation velocity vD westwards is equal to the velocity of the zonal mean flow �u eastwards denoted as

westerlies in the meteorological context.

4 A. MÜLLER ET AL.



Polvani and Dritschel (1993) extended the Thomson’s

results and studied the stability of a ring of point vortices

on the sphere. They have shown that the polygon-rings on

the sphere are more unstable than those in the plane. Barry

et al. (2012) analysed the relative equilibria of the (N�1)

vortex problem with small vortices on a circle of fixed radius

around the large vortex which is also fixed. In these

configurations, N equally spaced vortices build a polygon

with�1 vortex located in the polygon-centre of the polygon

ring.

In Section 6, we will show applications of n�8�1 point

vortex systems to the stratosphere. By applying the theore-

tical stability condition of Cabral and Schmidt (2000), we

propose a novel idea to explain the stability of the polar

vortex and its interaction with the east and west phases of

the QBO by n�8�1 point vortex systems with 8 equally

spaced vortices on a polygon and �1 polar vortex.

4. Methods and data

To apply point vortex theory to large-scale atmospheric

flow patterns, we discretise the dynamics by contracting

the high- and low-pressure areas to points. Furthermore, to

use the analytical equations of motion [eq. (2)], we need to

determine the circulations and the relative distances of the

vortices. If the centres of the vortices are known, the relative

distances can be easily measured. But the determination

of the circulations G is more complicated and we will use

both a geometrical and a numerical method to calculate the

circulations. Moreover, to apply the method to determine

the circulation and also to calculate the basic flow, we use

reanalysis data.

4.1. Geometrical method to calculate the circulations

To calculate the circulation Gi of a point vortex geometri-

cally, we use a method to estimate the circulation by

integrating a loop around the geopotential field of the

blocking high/low:

Ci ¼
g

f

X
k

jdZkj sinðakÞ (15)

with the Coriolis parameter f, the gravity acceleration g, the

geopotential height Z and the angle a. For a more detailed

description, see Kuhlbrodt and Névir (2000).

4.2. Kinematic vorticity number method to calculate

the circulations

Following Schielicke et al. (2015), the circulation of a

vortex can also be determined numerically. The size of a

vortex is estimated with help of the velocity gradient tensor

and its invariants which describe the local motion around

a point. The velocity gradient tensor 9v in two dimensions

is given by

rv ¼ @u=@x @u=@y

@v=@x @v=@y

� �
; (16)

where u and v are the horizontal wind components in zonal

and meridional direction, respectively. The velocity gradi-

ent tensor can be decomposed into the sum of a symmetric

tensor S (rate-of-strain tensor) and an antisymmetric tensor

V (vorticity tensor):

rv ¼ Sþ X (17)

with

S ¼ 1=2ðrv þ ðrvÞT Þ ; X ¼ 1=2ðrv � ðrvÞT Þ: (18)

While the rate-of-strain tensor S describes the deforma-

tion of the flow field composed of expansion, shearing and

stretching deformation, the vorticity tensor V describes the

rotation of the flow. A vortex is identified as a connected

region of grid points where the local rate of rotation IVI
prevails over the local strain rate ISI. Truesdell (1953)
introduced the kinematic vorticity number Wk as a ratio of

the local rate of strain and the local rate of rotation:

Wk ¼
Xk k
Sk k

: (19)

In the case of Wk�1, the local rate of rotation exceeds

the local strain rate, Wk�1 in the case of a pure shearing

motion and WkB1 if the deformation is larger than the

rotation. With the help of Wk, the boundary of a vortex

core is defined by Wk�1 around a vorticity extremum.

The circulation of the vortex is calculated by the integral

[eq (1)].

4.3. Numerical implementation to determine omega

blockings in gridded data

In regularly gridded data (mercator projection), the shape

of the tripole point vortex configuration is approximated

by an isosceles trapezoid which at least includes parts of

the polewards located high and of the two equatorwards

located low-pressure systems. The parallel sides of the

trapezoid are aligned with two latitudes with the smaller

side located polewards. The aim of this pattern recognition

method following Schielicke et al. (2015) is to minimise the

absolute value of the total circulation NGN. The circulations
of the local coordinates of the centres of circulations and

the intervortical distances are derived systematically by the

following steps:

A trapezoid is fixed to the lat�lon grid such that the

vertical centreline of the trapezoid coincides with the

APPLICATIONS OF POINT VORTEX EQUILIBRIA IN THE ATMOSPHERE 5



approximated centre of the high-pressure system and its

West�East (width)/North�South (height) extent includes

(at least most) the high-pressure area as well as parts of

the two lows. See Table 1 for more details on the initial

configuration of the trapezoids for two real cases.

We will use an ensemble of 45 trapezoid shapes derived

by moving the southern baseline of the trapezoid by 9108
latitude in 2.58 steps and by moving the position of the

northern line equatorwards by four steps a 2.58 latitude

(summarised in Table 1).

At each time step, the total circulation and the centre

of positive and negative circulations associated with the

three vortices inside the trapezoids are determined under the

following conditions: Only positive circulations located

south of the high-pressure centroid and west (east) of the

trapezoid centreline contribute to the southwesterly (south-

easterly) low; only negative circulations polewards of the

low-pressure centroids contribute to the high (see Fig. 3).

For every time step the minimum absolute value of the

total circulation, the centre of circulation, the trapezoid

configuration, the translation velocity and the relative

distances between the circulation centres are determined.

Thereby, the local coordinates of the highs and lows are

determined by calculating the centres of circulation [eq. (9)]

of each high and low-pressure region. An example is given

in Fig. 4 where the local coordinates of the centres of the

high- and low-pressure systems are indicated by the red/

blue circles.

Finally, averaged values of the variables derived in eq.

(4) are calculated for the whole blocked period. Moreover,

the North�South extent of the averaged trapezoid config-

uration is used to calculate the mean global wind speed

averaged over the same latitudes and period.

4.4. Reanalysis data

For the analysis of blockedweather events in summer (June�
August) 2010 and March 2011, the horizontal wind field

(u, v) and the geopotential height on the 500 hPa level from

theNCEP/DOEReanalysis 2 (R2) Project was used (NCEP,

2000; Kanamitsu et al., 2002). The data is available on a

regular 2.5�2.5 degrees grid with a temporal resolution of

6 hours. In order to respect the differing perimeter of the

latitudes on the sphere, we weigh the velocity of the zonal

mean flow in terms of its latitude, that is, for the zonal

mean flow u on the latitude 8i with radius Ri�R � cos (8i)

and the earth radius R the weight is given by

ðRiuðuiÞ � RiÞ � ðRiRiÞ
�1
.

For the numerical investigation of the stability of the

polar vortex, NCEP/NCAR reanalysis data also was used,

that is, the geopotential height of the December, January,

February (DJF) mean 1979�2012 in 30 hPa. For the outer

point vortices, the annual mean of the relative vorticity 1997

and 2005 in 30 hPa was built using ERA-Interim reanalysis

data (ERA, 2009; Dee et al., 2011) using a 0.7�0.7 degrees

grid and a temporal resolution of 6 hours.

5. Application on a synoptic scale: blocked events

In this section, we will give two examples of the applicability

of point vortex theory to omega blocks. During blocked

events, the basic flow is usually divided into different

branches caused by a low number of isolated and persistent

vortices. This large-scale feature of the atmospheric flow

field was already recognised by Garriott (1904). In 1947,

Namias (1947) mentioned that blocked situations are

associated with a retardation in the zonal circulation. Yeh

(1949) explained blocking situations by the dispersion of

an initial solitary wave. One year later, Rex (1950a, 1950b,

1951) characterised in detail different blocked situations: the

zonal basic flow should be divided into two branches at

which each of the branches needs to transport mass. More-

over, following his definition, the extent of these branches

must be at least 45 degrees of longitude and should remain

blocked for at least 6�10 days. Usually, during blocked

situations a very strong high-pressure area appears.

Bluestein characterises three kinds of blocks (Bluestein,

1992): The simplest blocked event consists of a high-pressure

area, and another blocked event is described by a high-

pressure area north of a low-pressure area (high over low).

A further arrangement consists of a high-pressure area and

two low-pressure areas located south�west and south�east.
The last weather situation is called omega block and

illustrated in Figs. 2 and 4. High temperatures and droughts

Table 1. Initial and final (averaged) configurations of the trapezoids for the omega blocks over Russia in summer 2010 and over the North

Pacific in March 2011

Russia/Europe (Summer 2010) North Pacific (March 2011)

Points of initial trapezoid (10 8 E, 80 8 N) (80 8 E, 80 8 N) (160 8 E, 85 8 N) (220 8 E, 85 8 N)

(10 8 W, 35 8 N) (100 8 E, 35 8 N) (140 8 E, 45 8 N) (240 8 E, 45 8 N)

Adjustment of northern line 80 8 N 0 70 8 N by 2.5 8 85 8 N 0 75 8 N by 2.5 8
Adjustment of southern basis 25 8 N 0 45 8 N by 2.5 8 35 8 N 0 55 8 N by 2.5 8
Final averaged height 32.5 8 N�75 8 N 46.9 8 N�80 8 N

6 A. MÜLLER ET AL.



can be caused by those persistent high-pressure areas

that can be stationary for several days or even for months.

Moreover, the persistence of the low-pressure areas can lead

to heavy rainfalls and floods.

However, the first application to describe stationary,

blocked weather situations by three-point vortices, was

established by Obukhov et al. (1984). Since then, numerous

works on blocks have followed, see for example Bluestein

(1992), Pelly and Hoskins (2003) or Bott (2012). After

Névir (1998) showed the equivalence of continuous vorti-

city dynamics and point vortex dynamics via a group

theoretical approach, Kuhlbrodt and Névir (2000) applied

blocked dipole structures to point vortex motion.

We will discuss analytically stationary solutions of

a three-point vortex system. The general applicability of

two-dimensional point vortex theory to blocked events is

indicated in Fig. 5, where the analytical translation velocity

[eq. (13)] of a three-point vortex equilibrium with respect to

its intervortical distances is shown. Thereby, each curve

represents a three-point vortex system. We chose circula-

tions that are typical on a synoptic scale and that sum up

to zero. A main result of our approach is that the point

vortex velocity of 5�10m/s on the typical synoptic scale

of 2000�3500 km coincides with the characteristic velocity

of atmospheric basic flow. This result leads to a natural

explanation of the whole omega block consisting of the

three vortices regarding the orientation. The tripole moves

eastwards with velocity vD, and the remaining interaction

of vortices is parameterised as zonal mean flow leading to

the westwards velocity �u. Since both velocities coincide with

respect to the magnitude, that is:

vD ¼ ��u; (20)

the stationarity of blocked events can be explained (see

Fig. 2b). Because the point vortex constellation should be

a relative equilibrium, the total circulation of an ideal

blocked event should vanish and therefore it should satisfy

CLow1
þ CLow2

¼ �CHigh: (21)

If the local coordinates of the two lows, CLow1
and CLow2

,

are lying on the same latitude, the whole three vortex system

translates along this latitude with velocity [eq. (13)]. We do

not explain the formation of blocked events, such as Rossby

waves do, but we explain the stationarity by considering

the local character, whereas wave theory is based on global

features.

To include the b-effect, the earth rotation has to be

added. Therefore, from an inertial-system perspective the

absolute vorticity should be used leading to an absolute

circulation [according to eq. (1)] and to modifications of

the equations of motion [eq. (2)] considering the absolute

point vortex velocity. Moreover, we have to add the effect

Fig. 4. Temporal averages [(a) 24 July 2010, 00UTC to 7 August 2010, 18UTC and (b) 1 March 2011, 00UTC to 11 March 2011,

12UTC] of geopotential height (black contours) and relative vorticity (in 10�5 s�1, coloured contours). The vorticity is shown in the field

of kinematic vorticity numberWk�1. The trapezoids encircle the area of zero total circulation, and the blue and red circles mark centres of

the low- and high-pressure areas, respectively. Note the different ranges of vorticity in the plots.

Fig. 3. Trapezoid approximating the region of the omega block.

In the green area, the total cyclonic circulation CLow1
is calculated,

and in the yellow area, the total cyclonic circulation CLow2
is

determined. The total anticyclonic circulation GHigh is calculated in

the striped area.
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of the earth rotation to the velocity of the basic flow. By

applying eq. (20), both terms considering the effects due to

earth rotation would cancel out. Therefore, in the following

examples we calculate circulations and the velocities in

terms of the relative frame of reference.

5.1. Example 1: Omega block over Russia 2010

We will examine the blocked situation in summer 2010,

where the blocked high caused a heat wave in the European

part of Russia and surrounding countries. During this

summer, low precipitation, low wind velocities and fatal

forest fires were observed. InMoscow, more than 30 degrees

Celsius was measured onmore than 40 days; even on 15 days

the temperature exceeded 35 degrees Celsius (Friedrich

and Bissolini, 2011). Even though 2010 was one of the

warmest years since weather recording, large parts of West

and Central Europe were colder than the average, which

could be ascribed to the two stationary low-pressure areas.

During the time period 18 June 2010�23 July 2010, we

recognised a blocked dipole structure followed by an omega

block from 24 July 2010 to 07 August 2010. Even though

the dipole structure can also be explained by a (two) point

vortex equilibrium, we will concentrate on the omega block

and explain the persistent structure by point vortex theory.

Thereby, to determine the circulations we first search

for the trapezoid-area of zero circulation as we described

in Section 4.1. The vertices of the initial trapezoid and

the enlargement of the trapezoid boundary are summa-

rised in Table 1. Figure 4a shows the determined final

configuration. To identify the low-pressure systems CLow1

and CLow2
, we use the lower part of the trapezoid,

that is, the area south of 608N. And for the determination

of the high-pressure vortex we consider the area north

of 458N.

The values and local coordinates of the finally deter-

mined circulations are summarised in Table 2. These values

add up to the total circulation G��0.009 �108m2 s�1,

which is only 0.71% of GHigh. Thus, the total circulation

is still small enough to apply formula (13). The averaged

triangle side lengths which are the intervortical distances

are given by �r ¼ 2910 km. Applying formula (13) leads

to the analytical solution of the tripole translation:

vD ¼ �ð6:3� 2Þm
s
; (22)

where the error tolerance is estimated by the calculated

minima/maxima intervortical distances of the system. In

the same time period, the zonal mean flow averaged in the

area 32.58 N�758N 1 is given by

�u ¼ ð6:5� 1Þm
s
: (23)

The sum of the mean flow and the analytical dipole

velocity vanishes which explains the stationarity of the

tripole.

5.2. Example 2: Omega block over North Pacific 2011

As a second example, we will analyse an omega block

during the time period 1�12 March 2011 that is shown in

Fig. 4b. The circulations are again determined by the

numerical method and its values and local coordinates are

summarised in Table 2. Here, the circulations of the two

lows and the high sum up to G��0.005 108 m2 s�1, which

is 0.32% of the value of GHigh. The averaged intervortical

distance, that is, the side length of the equilateral triangle,

Table 2. Values of the circulation of the tripole and the locations

of the centres over Russia and Europe in summer 2010 and over

the North Pacific in March 2011

Russia/Europe (2010) North Pacific (2011)

Circulation

inm2 s�1

Location

(8N; 8E)
Circulation

inm2 s�1

Location

(8N; 8E)

GLow1 7.543.107 (45.8; 17.7) 7.090.107 (51.7; 166.7)

GLow2 5.424.107 (45.1; 70.9) 8.322.107 (53.0; 214.3)

GHigh1 �1.306.108 (60.7; 48.9) �1.546.108 (67.8; 186.0)

1The error tolerance of the basic flow results from the calculation

of the maxima/minima mean wind speeds.

 

Γ1 = 1.5 · 107, Γ2 = 7.5 · 107, Γ3 = –9 · 107

Γ1 = 7 · 107, Γ2 = 8 · 107, Γ3 = –1.5 · 108

Γ1 = 1 · 108, Γ2 = 1 · 108, Γ3 = –2 · 108
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Fig. 5. Translational velocity of a three-point vortex system as

a function of the intervortical distances r for three different vortex

configurations with vanishing total circulation is shown. For typical

distances on a synoptic scale of 2500�3500km, the absolute value

of the analytical translation velocity of 5�10 ms�1 of a three-point

vortex equilibrium coincides with the typical basic flow velocity.
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is �r ¼ 2490 km. Applying formula (13) and including the

error estimation provides the tripole velocity:

vD ¼ �ð8:8� 2Þm
s
: (24)

On the other hand, the mean flow (458N�808N) is given

by

�u ¼ ð8:3� 1Þm
s
: (25)

Again, the sum of the flow velocity and the analytically

determined point vortex velocity vanishes explaining the

stationarity of the block.

5.3. Modes of disturbed equilibria

In principle, it is necessary to consider deviations of the

perfect equilibrium tripole with vanishing total circulation

and equal side lengths, because often we do not observe perfect

omega blocks. First, we disturb the equilateral triangle in

terms of its side lengths by shifting one vertex by o. This does

not influence the circulations; that is, the centre of circula-

tion still lies in infinity. Therefore, the three vortex system

still translates. But in the case of perturbations of the local

coordinate, the three vortices do not build a perfect equian-

gular triangle anymore; therefore, the trajectories of the

vortices are given by cycloids with small amplitudes, which is

simplified illustrated in Fig. 6. Here, the translationalmotion is

superimposed by an additional pulsating mode. For o00,

these amplitudes approach zero; that is, the cycloid approaches

a straight line. Moreover, the translation angle [eq. (14)] is

affected by the perturbation o. Both effects, the pulsatingmode

and the varying angle only rarely effect the tripole velocity

and therefore do not spoil the overall explanations of the

persistence of blocked situations.

Second, we disturb the circulation. Thus, the centre of

circulation does not lie in infinity anymore. But for a small

perturbation the centre of circulation still lies far away from

the three-point vortex system and therefore, the vortices

move along a large circle, which locally can be assumed as

linear translation.

We can summarise that small variations of both, the local

coordinates and the circulations do not affect the applic-

ability of point vortex theory to atmospheric blocked events.

6. Application on planetary scale: the stability of

the polar vortex

So far, we adapted relative equilibria of point vortex constel-

lations to a synoptic phenomenon. In addition, we apply a

stability analysis of relative point vortex equilibria to strato-

spheric dynamics regarding larger scale, planetary patterns.

Onemain aspect of point vortex dynamics is the investiga-

tion of the stability of relative equilibria. Already in 1883,

Thomson investigated stability studies on multiple, equally

spaced point vortices on a circle (Thomson, 1883), followed

by many other works in this field, see for example Campbell

and Ziff (1978), Cabral and Schmidt (2000), or Aref et al.

(2012). Charney (1963) extended those configurations of

7, 8 and 16 vortices to atmospheric motion. Based on these

works, we introduce a novel idea to transfer a stability

analysis of a vortex equilibrium to the stability of the polar

vortex concerning its interaction with a simple model of the

QBO. In this context, we propose a conceptional explana-

tion of the Holton�Tan mechanism based on discrete,

low-order vortex dynamics.

Fig. 6. (a) The equilibrium state for the initial states x1 ¼ ð1; 0Þ; x2 ¼ ð0:5;
ffiffiffiffiffiffiffi
:75
p

Þ; x3 ¼ ð0; 0Þ and G1�1, G2� �2, G3�1, which builds

an equilateral triangle where total sum of circulations equals zero. (b) Small perturbations of x3 lead to cycloid motions.
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Stratospheric dynamics are mainly determined by the

polar vortex, which denotes a major low-pressure system in

the polar stratosphere on both hemispheres during winter-

time, and the QBO, an equatorial, zonal wind pattern, which

changes its direction approximately every 2 yr (see, e.g.,

Baldwin et al., 2001). In Fig. 7, we show this zonal oscillation

in terms of the wind as a time series in the equatorial region

in 0�208 N in 30 hPa. Moreover, because of our approach

of vortex dynamics, we also illustrate the corresponding

mean vorticity. Due to horizontal shearing of the wind, the

vorticity oscilates nearly in phase with the zonal wind, even

though deviations can be diagnosed. The westerly winds

are related to cyclonic vorticity, while the easterly winds

correspond to anticyclonic vorticity.

It was first discovered by Holton and Tan (1980, 1982)

that the dynamics of the northern hemispheric polar vortex

are influenced by the equatorial QBO, resulting in a

particularly strong polar vortex with negative temperature

anomalies during the QBO west phase and a weakened

and warmer polar vortex during the QBO east phase.

Approaches to explain the mechanisms of the Holton�Tan
effect have been developed, but they are still not well

understood (Anstey and Shepherd, 2014; Watson and

Gray, 2014). Here we tackle this problem by analysing the

stability of point vortex equilibria.

6.1. Stratospheric configuration of the point vortexmodel

6.1.1. Conceptual model. The novel idea in this paper is to

analyse the interaction of the polar vortex and the QBO by a

low-order, non-linear point vortex model. Following Lim

et al. (2001), less concentrated regions of vorticity can be

approximated by large numbers of point vortices. Therefore,

we parameterise the vorticity distribution of the QBO as a

belt of identical point vortices on a regular polygon in

the plane with a central, cyclonic point vortex representing

the polar vortex. To simulate the QBO west phase, we

take cyclonic point vortices whereas the QBO-east phase is

represented by anticyclonic point vortices.

Even though the above explained configuration, often

calledN� 1 configuration, is a relative equilibrium, it is not

necessarily stable. Depending on the number of vortices and

their circulations this equilibrium configuration can become

unstable. In this case, small perturbations are growing

leading to a complete different configuration, while a stable

equilibrium will hardly be affected by perturbations. To

examine the stability for the N � 1 relative equilibrium, we

consider the criterion of Cabral and Schmidt (2000) for

the Lyapunov stability:

N2 � 8N þ 8

16
B

Cc

Ci

B
ðN � 1Þ2

4
for N even

N2 � 8N þ 7

16
B

Cc

Ci

B
ðN � 1Þ2

4
for N odd;

(26)

where Gc denotes the vortex lying in the centre and Gi is the

vortex circulation of the i-th vortex on the polygon (i�1,

. . ., N). This criterion was proven for the unit circle and

corresponding circulations. The adaption of the analysis to

atmospheric scales in terms of the circulation and lengths

scales can be realised with the linear relationship between

the two parameters derived in eq. (12). As an example for

the investigation of vortex equilibria on planetary scale, we

will adjust a 8�1 constellation to stratospheric scales.

Subsequently, we use both numerical simulations and this

theoretical stability criterion to analyse the point vortex

model and its applicability to stratospheric dynamics.

6.1.2. Scaling of the point vortex model. The magnitude

of the intervortical distances and the circulation of the point

vortices are adapted to atmospheric scales. To determine the

circulation of the polar vortex, represented by the central

point vortex, the geometrical method [eq. (15)] is used,

resulting in an estimated circulation of

Cc ¼ 6 � 108 m2 s�1: (27)

To represent the QBO and its interaction with the polar

vortex via point vortex dynamics, we approximate the
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continuous vorticity distribution by discrete point vortices.

Thereby, the total circulation of the outer vortices on the

polygon, defined as GQBO, is estimated by averaging the

relative vorticity z in 30 hPa over an equatorial area

between 08N and 208N:

CQBO :¼
X8

i¼1

Ci � �f � A: (28)

In this approximation of the circulation, A is the lateral

surface of the spherical segment with respect to the earth’s

radius. A time series of the vorticity and the resulting cir-

culation for each single QBO phase and the mean for the

east andwest phases is presented in Fig. 8. For the simulations,

the total circulation of the outer vortices is approximated to

CQBO ¼ �5:6 � 108 m2 s�1 (29)

with Gi�90.7 �108m2 s�1 (i�1, . . ., 8). The sign depends

on the phase of the QB0, where positive, cyclonic circula-

tions represent the west phase and negative circulations

represent the east phase. In Fig. 8, the value of GQBO is

marked by the dotted lines and lies within the first standard

deviation. The area of 0�208N has been selected, because the

oscillation of the vorticity seems to be strongest in this area.

For our planar point vortex model, we choose as distance

between the polar vortex and the vortex polygon 10 000 km

approximated as a quarter of the circumference of the earth.

To analyse the 8�1 point vortex system numerically, the

differential equations of motion [eq. (2)] was solved using

the Runge-Kutta method of order four.

6.2. Results of the stability analysis of the polar

vortex

6.2.1. Numerical simulation. To analyse the stability of

the adjusted 8�1 configurations, we consider two different

modes of perturbation. The first perturbation is realised

by slightly displacing the central point vortex from the

centre. As example, we consider a displacement of 250 km.

Compared to the radius of the polygon of 10 000 km, this

displacement is hardly visually noticeable. A second type of

perturbation is provoked by representing the elliptic extent

of the polar vortex by adding a further point vortex near the

circulation centre. Thereby, the two vortices are shifted

1500 km and �1200 km in the y-direction from the origin.

The circulation of the polar vortex is equally split such that

both vortices have the circulation of 3 �108m2 s�1.

For both phases of the QBO and both types of perturba-

tions, the disturbed initial vortex system and the resulting

trajectories after an integration time of 180 days are shown

in Fig. 9. Independent of the mode of perturbation, during

the west phase of the QBOwith cyclonic outer point vortices

the relative equilibrium is only slightly disrupted. In this

case, Fig. 9 shows a central point vortex and a uniform,

stable motion of the outer vortices on a circle for the whole

period. In contrast, during east phase with anticyclonic,

outer point vortices, the polar vortex is definite unstable.

The outer point vortices leave their circular path after a

while also. The second example might be even more realistic

because in our simulations the split polar vortex rotates

as a cycloid around the centre of circulation which reflects

the wobbling motion of the polar vortex.

If we do not disturb the relative equilibrium during east

phase, we observe the instability of the relative equilibrium

after a five-time longer time period. These numerical results

of the different phases will be confirmed by the theoretical

stability analysis in the next section.

6.2.2. Theoretical stability analysis. The theoretical con-

ditions of Lyapunov stability after Cabral and Schmidt

(2000) given in eq. (26) are adapted for the characteristic

scales in the stratosphere are illustrated in Fig. 10. The total

circulation of the outer vortices GQBO given by eq. (29) is
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assumed to be constant. Furthermore, the circulation

of each outer vortex depends on their total number N

and is given by Gi�N�1GQBO. Therefore, by increasing the

number of point vortices N, the circulation of each outer

vortex decreases. Fig. 10 shows that stable configurations

for the west phase of the QBO are possible for a certain

range of the ratio Gc/Gi with respect to N. The blue and

red lines show our estimated circulations indicating the

west and east phase. For the west phase, there is a range of

stability depending on the number of outer vortices which

is given by 6BNB27. In contrast, Fig. 10 indicates that the

red line and all other east phase constellations are located

in the unstable region.

Thus, at first we have shown that the theoretical stability

results coincide with the numerical simulations. Moreover,

these stable and unstable point vortex configurations for the

QBO west and east phases can be interpreted as potentially

stable and unstable phases in terms of reasonable perturba-

tions in stratospheric dynamics. As a consequence, this

might also lead to an explanation of the varying strength of

the polar vortex according to the Holton�Tan effect. Stable

configurations with cyclonic outer point vortices correspond

to the strong and cold polar vortex during the west phase

of the QBO and unstable configurations with anticyclonic

outer point vortices are in accordance with the weak and

warm polar vortex during the east phase of the QBO.
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7. Concluding remarks

In this work, we have shown the applicability of point vortex

theory for a better understanding of phenomena on a

synoptic as well as on a planetary scale. A basic conserved

quantity under adiabatic, inviscid conditions on material,

two-dimensional surfaces is the circulation which is a widely

used concept to describe atmospheric motions in meteorol-

ogy and climatology and which even constitutes the equa-

tions of point vortex motion derived from first principles.

By assuming constant dissipation of circulation, we showed

a linear relation of the characteristic circulation and char-

acteristic lengths in synoptic and planetary scale.

On a synoptic scale, we have given examples for the

explanation of blocked weather situations by three-point

vortex equilibria. Since the point vortex velocity of a three-

vortex equilibrium and the mean zonal wind derived from

reanalysis data coincide with respect to their absolute values,

the stationarity of blocked situations are explained. Evaluating

omega blocks over the European part of Russia and over the

North Pacific affirms the possibility to explain the stationarity

of blocked events by this low-order point vortex model.

On a planetary scale, we have analysed the interaction

between the equatorial stratosphere and the polar vortex by

numerical simulations of 8�1 point vortex equilibria. Con-

cerning the influence of reasonable perturbations, we confirm

instability of QBO east phase and stability of QBO west phase

during north hemispheric winter period. This is also consistent

with the theoretical stability analysis of Cabral and Schmidt

(2000). Thereby, we propose a dynamical explanation of the

observed Holton�Tan effect during winter period by point

vortex theory. The central focus in this novel approach in terms

of vortex interactions is the stability analysis of the east and

west phases. Further investigations to combine this stability

analysis with the more classical wave mean flow approach

concerning different types of perturbations are desirable.

We have applied a simple, conceptional model requiring

less computational effort to explain two challenging problems

inatmospheric dynamics.Bydemonstrating theapplicabilityof

point vortex theory to different atmospheric scales, we under-

line the diversity of applicability of the classical point vortex

model.
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