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Introduction

One of the goals of data analysts is to establish relationships between variables using regres-

sion models. Standard statistical techniques for linear and linear mixed regression models are

commonly associated with interpretation, estimation, and inference. These techniques rely on

basic assumptions underlying the working model, listed below:

1. Normality: Transforming data to create symmetry in order to correctly use interpretation

and inferential techniques

2. Homoscedasticity: Creating equality of spread as a means to gain efficiency in estimation

processes and to properly use inference processes

3. Linearity: Linearizing relationships in an effort to avoid misleading conclusions for es-

timation and inference techniques.

Different options are available to the data analyst when the model assumptions are not

met in practice. Researchers could formulate the regression model under alternative and more

flexible parametric assumptions. They could also use a regression model that minimizes the

use of parametric assumptions or under robust estimation. Another option would be to par-

simoniously redesign the model by finding an appropriate transformation such that the model

assumptions hold. A standard practice in applied work is to transform the target variable by

computing its logarithm. However, this type of transformation does not adjust to the under-

lying data. Therefore, some research effort has been shifted towards alternative data-driven

transformations, such as the Box-Cox, which includes a transformation parameter that adjusts

to the data.

The literature of transformations in theoretical statistics and practical case studies in differ-

ent research fields is rich and most relevant results were published during the early 1980s. More

sophisticated and complex techniques and tools are available nowadays to the applied statisti-

cian as alternatives to using transformations. However, simplification is still a gold nugget in

statistical practice, which is often the case when applying suitable transformations within the

working model. In general, researchers have been using data transformations as a go-to tool

to assist scientific work under the classical and linear mixed regression models instead of de-

veloping new theories, applying complex methods or extending software functions. However,

transformations are often automatically and routinely applied without considering different as-

pects on their utility.

In Part I of this work, some modeling guidelines for practitioners in transformations are

each presented. An extensive guideline and an overview of different transformations and esti-
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Introduction

mation methods of transformation parameters in the context of linear and linear mixed regres-

sion models are presented in Chapter 1. Furthermore, in order to provide an extensive collection

of transformations usable in linear regression models and a wide range of estimation methods

for the transformation parameter, the package trafo is presented in Chapter 2. This package

complements and enlarges the methods that exist in R so far, and offers a simple, user-friendly

framework for selecting a suitable transformation depending on the research purpose.

In the literature, little attention has been paid to the study of techniques of the linear mixed

regression model when working with transformations. This becomes a challenge for users of

small area estimation (SAE) methods, since most commonly used SAE methods are based on

the linear mixed regression model which often relies on Gaussian assumptions. In particular,

the empirical best predictor is widely used in practice to produce reliable estimates of general

indicators for areas with small sample sizes. The issue of data transformations is addressed in

the current SAE literature in a fairly ad-hoc manner. Contrary to standard practice in applied

work, recent empirical work indicates that using transformations in SAE is not as simple as

transforming the target variable by computing its logarithm.

In Part II of the present work, transformations in the context of SAE are applied and further

developed. Chapter 3 proposes a protocol for the production of small area official statistics that

is based on three stages, namely (i) Specification, (ii) Analysis/Adaptation and (iii) Evaluation.

In this chapter, the use of some adaptations of the working model by using transformations is

showed as a part of the (ii) stage. In Chapter 4 we extended the use of data-driven transfor-

mations under linear mixed model-based SAE methods; In particular, the estimation method

of the transformation parameter under maximum likelihood theory. First, we analyze how the

performance of SAE methods are affected by departures from normality and how such trans-

formations can assist with improving the validity of the model assumptions and the precision

of small area prediction. In particular, attention has been paid to the estimation of poverty

and inequality indicators, due to its important socio-economical relevance and political impact.

Second, we adapt the mean squared error estimator to account for the additional uncertainty

due to the estimation of transformation parameters. Finally, as in Chapter 3, the methods are

illustrated by using real survey and census data from Mexico. In order to improve some fea-

tures of existing software packages suitable for the estimation of indicators for small areas, the

package emdi is developed in Chapter 5. This package offers a methodological and computa-

tional framework for the estimation of regionally disaggregated indicators using SAE methods

as well as providing tools for assessing, processing, and presenting the results.

Finally, in Part III, a discussion of the applicability of transformations is made in the context

of generalized linear models (GLMs). In Chapter 6, a comparison is made in terms of precision

measurements between using count data transformations within the classical regression model

and applying GLMs, in particular for the Poisson case. Therefore, some methodological dif-

ferences are presented and a simulation study is carried out. The learning from this analysis

focuses on the relevance of knowing the research purpose and the data scenario in order to

choose which methodology should be preferable for any given situation.

8
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Chapter 1

A Guideline of Transformations in
Linear and Linear Mixed Regression
Models

1.1 Introduction

The linear regression model is perhaps the simplest and most common model used in statisti-

cal analysis. The linear mixed regression model is similarly useful for cluster or longitudinal

data types. The estimation and inference methods employed with these kinds of models typi-

cally rely on a set of assumptions; some of them inherent to the functional form of the model

(e.g., linearity), and others related to the nature of the error terms, the response variable, and

the covariates (e.g., homoscedasticity). However, empirical data does not always satisfy these

assumptions and, therefore, one must decide how to carry on with the analysis. According

to Sakia (1992), there are many available options for such cases, which may be summarized

as: (i) ignore the violation(s) and proceed; (ii) use a method that allows for the correspond-

ing violation(s); (iii) redesign the model e.g., by properly transforming the data, and (iv) use

a distribution-free method. Instead of developing new theories, applying complex methods or

extending software functions, using transformations (option (iii)) is a parsimonious way to deal

with model assumption violations under both linear and linear mixed regression models. The

set of model assumptions that are commonly satisfied by properly transforming the data are

normality, homoscedasticity, and linearity. Furthermore, using transformations allows prac-

titioners to apply the most powerful methods available for parametric statistics and to make

analysis simpler than otherwise possible. For instance, transformations can allow us to easily

get rid of high order terms and work only with first-order linear relationships, which is often

preferred in several branches of knowledge (Draper and Hunter, 1969). But how and where are

transformations usually used in practice?

The use of transformations has received much attention in the last century in both theo-

retical knowledge and practical applications (e.g., Edgeworth (1900); Bartlett (1947); Box and

Cox (1964)), and is still of great concern in many investigations (e.g., Gurka et al. (2006);

Lakhana (2014)). In the literature of transformations, we find linear, monotonic, accelerating,
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and decelerating, power and two-bend transformations, among others. The most discussed type

of transformations is the power family, which includes as a particular case both the Box-Cox

transformation and the logarithmic function. General overviews about applying transforma-

tions under the linear regression model are published by Kruskal (1968); Hoyle (1973); Tukey

(1977); Sakia (1992) and Fink (2009). Zarembka (1974b) provides an overview of variable

transformations in econometrics. He paid special attention to the problem of heteroscedasticity

and illustrated the transformations theory employing elasticity and demand studies. Volatility

studies, functional form of demand equations, and economic depreciations have been analyzed

mainly using the logarithmic transformation, and also the Box-Cox method (Gemmill et al.,

1980; Hulten and Wykoff, 1981; Boylan et al., 1982; Goncalves and Meddahi, 2011). Hossain

(2011) gives an analytical review in economic sciences about the importance of the Box-Cox

transformation regarding estimation, model selection, and testing. In education, social, bio-

logical, and ecological studies, the logarithm is certainly the most relevant transformation and

the Box-Cox is also becoming a standard method for variable transformations in these fields

(Buchinsky, 1995). In the medical sciences, special attention is paid to dealing with non-normal

data (Bland and Altman, 1996). Snedecor and Cochran (1989); Sokal (1995); Keene (1995);

Zar (1999) and Armitage et al. (2008) give an introductory literature for medical researches

about using transformations, focusing on the logarithmic, Box-Cox, square root, and arcsine

transformations. Since biological and medical studies often use longitudinal data, linear mixed

regression models for repeated measures analysis are commonly applied (Miller, 2010). In or-

der to deal with model assumption violations under these models, the logarithmic and Box-Cox

transformations are preferred (Gurka et al., 2006; Maruo et al., 2017). Furthermore, renowned

applications of the Box-Cox transformation in this context are described in Solomon (1985);

Sakia (1988); Gurka et al. (2006); Piepho and McCulloch (2004) and Lo and Andrews (2015).

As we can see, the literature of transformations in theoretical statistics and practical case

studies is very rich. However, some important considerations for using them in linear and linear

mixed regression models are still broadly discussed: for example, at which stage of the analysis

a transformation should be applied, which transformation is suitable for a specific problem and

how the results should be interpreted. Practitioners often automatically and routinely apply

transformations without considering the above mentioned questions. For this purpose, the

present work proposes a framework that seeks to help the researcher to decide if and how a

transformation should be applied in practice. It combines a set of pertinent steps, tables, and

flowcharts that guide the practitioner through the analysis of transformations in a friendly and

practical manner. This guideline is structured as follows:

• Defining relevant assumptions depending on the research goals

• Choosing a suitable transformation and estimation method according to model assump-

tion violations

• Providing a proper inference analysis and interpreting model results more carefully

Furthermore, the paper points out briefly a selection of special issues that need to be considered

when using transformations. To the best of our knowledge, none of the existing reviews for

transformations provides such a comprehensive overview of transformations in the context

11
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of linear and linear mixed regression models, as well as developing a practical guideline for

researchers.

The remainder of this paper is structured as follows. Section 1.2 guides the reader through

the steps of the framework. Each transformation and estimation method is introduced to its cor-

responding model assumption. Section 1.3 discusses further issues that can arise in modelling

and how these interact with the transformations. We conclude the paper in Section 1.4.

1.2 Transformations step framework

“Although we often hear that data speak for themselves,

their voices can be soft and sly.”

—Frederick Mosteller

1.2.1 Choose the model and be aware of the corresponding assumptions

Linear regression models are one of the most widely used statistical methods in most branches

of knowledge, in particular, the social and natural sciences. It can be expressed in a general

form:

yi = x>i β + ei, ei
iid∼ N(0, σ2

e), (1.1)

where yi is the target variable defined for the ith individual, with i = 1, . . . , n; x>i is a

vector containing deterministic auxiliary information with dimension 1× (p+1) andX would

be the corresponding n × (p + 1) matrix where p is equal to the number of predictors; β is

the (p + 1) × 1 vector of regression coefficients defined as β> = (β0, . . . , βp) and ei is the

unit-level error term.

In social, behavioral, educational, and medical sciences, data is commonly hierarchically

collected, for instance, as a clustered or longitudinal design (Raudenbush and Bryk, 2002). To

appropriately take this type of data structure into account, the so-called linear mixed regression

models are typically used. These models, handled as a special extension of the linear regression

model, contain additional random-effects depending on the case study and can be written as

follows:

yj = Xjβ +Zjuj + ej , (1.2)

where yj is a nj × 1 vector of the dependent variable, nj is the sample size in each cluster j

with j = 1, ...,m cluster,Xj is a nj × (p+ 1) matrix, β is the (p+ 1)× 1 vector of regression

coefficients, Zj is the nj × (q + 1) matrix with (q + 1) random effects, uj is a (q + 1) × 1

vector of random effects and ej is the vector of residuals of size nj × 1. The distribution of the

random effects is given by:

uj ∼ N(0,G), where G =


σ2

0 σ01 . . . σ0q

σ10 σ2
1 . . . σ1q

...
...

. . .
...

σq0 σq1 . . . σ2
q

 ,
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and the residuals are distributed with ej ∼ N(0,R) withR = Injσ
2
e where Inj is the nj ×nj

identity matrix and σ2
e is the residual variance. The random effects vj and the residuals ej are

assumed to be independent.

Typically the set of assumptions upon which these models rely can be summarized as:

(i) The error terms are normally distributed.

(ii) The error terms have (conditional) homoscedastic variances.

(iii) The response and explanatory variables have a linear and an additive relationship.

(iv) The error terms are (conditionally) independent.

(v) The error terms have (conditional) mean equal to zero.

Two potential problems that will also be taken into account are multicollinearity and out-

liers. However, these are not listed as assumptions for these regression models, since they are

not seen as theoretical constraints (Barry, 1993). As we shall discuss in more detail below, if

any of these assumptions is violated, estimations, predictions, and scientific insights produced

by the linear and linear mixed regression models may be inefficient or, in some cases, severely

biased and misleading (Nau, 2017). This work mainly focuses on the relevance of assumptions

(i) - (iii). For readers interested in the assumptions (iv) and (v), discussions, diagnostics and

potential solutions are presented in econometric books such as Johnston and DiNardo (1972)

and Spanos (1986).

1.2.2 Choose a suitable transformation that addresses assumption violations

The usage of data transformations is directed towards a twofold aim: to create a useful metric

or to improve model regression assumptions. For the first aim, linear transformations help in

the following ways: information can be easier to understand (e.g. percentage); standardization

can be applied in order to change the scale (e.g. covariances into correlation); and a shift can

be added to the set of points to make variables positive. Furthermore, these can be useful

when transforming qualitative ordinal data into a more convenient and continuous scale, for

which normal scores are recommended (for further details see Hoyle (1973) and Fink (2009)).

However, such linear transformations do no attempt to correct violations of the regression

model assumptions presented in Section 1.2.1. A linear transformation will change only the

intercept of the regression equation. For instance, using this type of transformation does not

help to linearize non-linear relations (Brown, 2015). In this work, we focus on transformations

that attempt to correct violations of the assumptions of the linear and linear mixed regression

model. These non-linear transformations are monotonic and shrink or stretch a topological

space in an inhomogeneous way. That is, the order of the points lying on this space remain

unchanged, but the relative distance between them will be altered (Cohen et al., 2014). For

defining such a transformation, the following notation is used consistently through the present

work. We denote y as the response variable with expected value denoted by E(y) = µy and

variance by V (y) = σ2
y . For a single untransformed observation we use yi, yij where an

additional symbol ∗ denotes that the observation is transformed. The untransformed vector
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of the response variable is defined as y. Furthermore, y∗(Θ) represents the vector of the

transformed observations of the response variable and Θ represents the set of parameters upon

which the transformation depends. The transformation parameter is generally denoted by λ,

but it depends on the functional form of the transformation. Some transformations also include

additional parameters. The relationship between original and transformed data is denoted by

T (y) = y∗.

For this section, the following structure is used: we describe the model assumption and

its relevance, we introduce assessment tools to check its fulfilment, we mention alternative

methods to transformations, and we discuss the range of possibilities using transformations

with corresponding estimation methods.

1.2.2.1 Transformations to achieve normality

Why is the normality assumption important?

The fulfillment of the normality assumption is usually twofold: it builds confidence intervals

and for computing statistical tests and appropriately uses the percentage points of customary

tables of χ2, t, F distributions. When this assumption is not fulfilled, practical problems can

arise; as for estimation, the ordinary least square method does not provide best estimators in

terms of efficiency, in case the true distribution of the error term is skewed or has heavy tails.

When the interest lies in inference hypothesis testing, such as a t-test for significance of the co-

efficients, the results of this test seem to be fairly robust for large enough samples. However, its

power may be somewhat affected when, for instance, the true distribution has heavy tails, as σ2
e

is very sensitive to values at the tails of the distribution (Wilcox, 2005). The most common de-

partures from normality are skewed, heavy-tailed, and light-tailed distributions. Additionally,

human errors can contribute to the presence of non-random aspects which lessen the strength of

the assumption that the error term is normally distributed (Zeckhauser and Thompson, 1970).

Some papers related to the consequences when Gaussian assumptions are not satisfied are pub-

lished by Fisher (1922b); Pearson (1931); Bartlett (1935); Hey (1938); Finney (1941), and

Cochran (1947).

How can we check the normality assumption?

Due to the importance of the normality assumption, many methods have been developed to

check its validity: visual methods such as the normal probability plot of the residuals (Cham-

bers et al., 1983), histograms, and probability plots. The normal probability plot, also known as

normal scores plot, quantile-quantile (Q-Q) plot, quantile comparison plot or rankit plot can be

useful for comparing two probability distributions in terms of the location, scale, and skewness

parameters (Weisberg, 1980; Bock, 1985; Fox, 1997; Hutcheson and Sofroniou, 1999; Johnson,

2009). The histogram is a standard visualization of the empirical distribution form. The proba-

bility plot, also known as probability-probability (P-P) plot or percent-percent plot, is suitable

for analyzing the skewness of a distribution, by plotting two cumulative distribution functions.

Numerical analysis of the distribution moments, such as skewness and kurtosis, is a common

rule-of-thumb for checking the normality assumption. The skewness and kurtosis for a nor-
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mal distribution are equal to zero and three, respectively. Therefore, a comparison with this

distribution is often made in practice. Additionally, normality tests such as the Kolmogorov-

Smirnov test (Smirnov, 1948), Anderson-Darling test (Anderson and Darling, 1954) and the

Shapiro-Wilk test (Shapiro and Wilk, 1965) are also widely used.

What are the alternative methods to overcome non-normality?

If any of the aforementioned techniques suggests that the data is not normally distributed,

we could move to non-normal methods or redesign the model. In this case, there are some

typically recommended solutions. The first method and perhaps the most common one is to

allow a more flexible model where the conditions imposed over the error term and independent

variables can be relaxed. This method is known as the generalized linear or generalized linear

mixed model (Nelder and Wedderburn, 1972). A second solution is to work with more robust

tests such as the Kruskal-Wallis (Kruskal and Wallis, 1952) or the Levene’s test (Levene et al.,

1960). Robust and more efficient estimators have been studied when the error term is not

normally distributed (see, for instance, Huber (1964)). Among these approaches, we find non-

parametric maximum likelihood theory (Aitkin, 1999; Agresti et al., 2004; Litière et al., 2008),

more flexible parametric distributions (Peng Zhang and Greene, 2008), marginalized mixed

effects models (Heagerty and Zeger, 2000), and h-likelihood approaches that can be adapted

to fit different distributions (Lee et al., 2004). Also possible are methods based on mixtures

of normal distributions (Lesaffre and Molenberghs, 1991) and “smooth” non-parametric fits

(Zhang and Davidian, 2001).

How can transformations help to improve normality?

The use of transformations is considered as a parsimonious alternative to complex methodolo-

gies when dealing with the departure from normality, a feature seldom observed in raw data.

A significant part of the effort put into transformations has been focused on achieving approxi-

mate normally distributed errors. To ensure normality, it is common to use a proper one-to-one

transformation on the target variable (Thoni, 1969; Hoyle, 1973). A standard practice in ap-

plied work is transforming the target variable by computing its logarithm. That means using

a transformation of the form log(y). Due to its effectiveness in turning highly right-skewed

or log-normal distributions into more symmetrical ones, it is commonly used in practice for

this purpose. Furthermore, the logarithmic transformation is used in parallel for achieving nor-

mality, homoscedasticity, and linearity (Bartlett and Kendall, 1946; Bartlett, 1947; Anscombe,

1948; Kleczkowski, 1949; Moore, 1958). However, the ease of its use and its popularity often

induce an imprudent application (Changyong et al., 2014). One drawback of the logarithmic

transformation is the lack of ability to deal with negative values. Thus, some adjustments based

on the logarithm have been proposed. A simple shifted version includes a fixed term s such that

y + s > 0. The logarithmic transformation is often recommended when dealing with substan-

tially positive skewness. For a left-skewed distribution, the log neg transformation is suggested.

It includes a fixed parameter p for which every observation of the target variable is subtracted

so that the smallest score is 1 (Tabachnick and Fidell, 2007). Furthermore, the generalized

logarithm, also known as the glog transformation allows for negative values, but it is recom-
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mended for low values rather than high ones (Durbin et al., 2002; Huber et al., 2003). Even

though it is suitable for correcting non-normality, it is more widely used as a variance stabi-

lizing transformation. Another transformation used particularly for dealing with non-negative

variables such as the non-central chi-square is suggested by Moschopoulos (1983). He bases

his work on the theory developed by Jensen and Solomon (1972), including the moments of

the distribution as transformation parameters.

Square roots and inverse transformations are commonly used for dealing with right-skewed

distributions (Bartlett, 1937). The square root is also used for dealing with data having zero

inflated problems or containing extremely small values. The cube-root transformation, also

known as the Wilson-Hilferty (Wilson and Hilferty, 1931) transformation, is particularly suit-

able for symmetrizing gamma-distributed data forms. The exponential, square, and cube root

transformations are commonly used for negative skewed data. A quasi generalization of this

problem is made in practice in the transformation exponent: right-skewed distributions tend

to be more symmetrical by applying a transformation with an exponent smaller than one, and

left-skewed distributions, with an exponent greater than one (Hoaglin et al., 2000). When com-

paring the square-root transformation with the logarithm, Garson (2012) states that the latter is

more useful in case symmetry in the central distribution is needed. Meanwhile the square root

is suggested in case symmetry in the tails is more important. Finally, in the case of negative

skewness, the reciprocal transformations may be useful as an appropriate variance stabilizing

transformation (Hoyle, 1973) for certain distributions.

The transformations mentioned so far have in common that they do not adjust to the un-

derlying data. To find a data-driven transformation, an adjustment is done by including a

data-driven transformation parameter, denoted by λ. This parameter should be estimated and

this estimate changes according to the data, the assumption violations or to a specific researcher

criteria. For instance, an advanced log-shift opt transformation used in practice (e.g. Feng et al.

(2016)) includes an optimal transformation parameter as follows y∗(λ) = log(y + λ). Tukey

(1957) proposed a family of power transformations based on monotonic functions. The general

form of this family is defined as: yλ if λ 6= 0 and log(y) if λ = 0. The power transforma-

tions are also commonly denoted as single- or one-bend transformations (Box and Cox, 1964;

Montgomery, 2008; Fink, 2009; Cohen et al., 2014). To avoid the discontinuity at λ = 0, Box

and Cox (1964) modified this family. The straightforward manner in which the interpretation

of this parameter is made makes the Box-Cox method one of the most widely used transfor-

mations. For instance, when λ = −1, it means the reciprocal transformation is needed, λ = 0

means the logarithmic transformation is recommended, λ = 1/2 implies the use of the square

root and λ = 1 suggests that no transformation is necessary. The Box-Cox transformation

is the simplest single-bend transformation (Fink, 2009) and is more appropriate when dealing

with skewed distributions than symmetric but non-normal distributions. It has been extensively

implemented in different branches of knowledge. For detailed information about renowned ap-

plications, see Draper and Cox (1969), Mills (1978), Poirier (1978), Machado and Mata (2000),

Chen (2002), Chen and Deo (2004) and Yang and Tsui (2004).

Since the Box-Cox transformation is not defined for negative values, the data must be

shifted to the positive side by incorporating a shift parameter. This method is known as the
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shifted power transformation. It overcomes the difficulties encountered in the Box-Cox trans-

formation due to the restriction y > 0. This is done by incorporating a constant, denoted by

s, for accommodating negative values of the target variable. The parameter s is chosen such

that y + s > 0. Moore (1957) studies the benefits of adding this shift parameter in the power

family of transformations. However, Hill (1963); Atkinson (1987) and Yeo and Johnson (2000)

state that shifting the data is not always an optimal way to deal with negative values. Different

modifications have been proposed in the literature to address this issue. The first proposal to

avoid this difficulty was made by Manly (1976), who proposes the Manly transformation, an

exponential power transformation family. This transformation family is considered to nearly

normalize unimodal skewed distributions, but it is not suitable for bimodal or U-shape distribu-

tions. In case the data also presents a symmetric but non-normal error distribution, the modulus

power transformation proposed by John and Draper (1980) should be used. It can manage neg-

ative values and is claimed to be effective for somewhat symmetrical or bimodal distributions.

In the same way, the neglog transformation, proposed by Whittaker et al. (2005) is developed

especially to deal with negative values. In order to avoid the non-negativity restriction of the

Box-Cox transformation, Bickel and Doksum (1981) introduced the Bickel-Docksum power

transformation which is defined on the whole real line. This transformation is especially useful

for handling kurtosis rather than skewness, in particular for leptokurtic and platykurtic dis-

tributions. However, as Yeo and Johnson (2000) point out, one should avoid the use of this

transformation when dealing with skewed data that takes negative and positive values. As

another alternative to the Box-Cox transformation, Kelmansky et al. (2013); Kelmansky and

Ricci (2017) recently proposed an extension of the glog transformation, also known as gpower

transformation. It allows for negative values, heavier tails and peaked sample modes (Tsai

et al., 2017). The work of MacKinnon and Magee (1990) proposes a scale-invariant family of

transformations, which deals with variables with zero or negative values.

Zwet (1964) emphasizes that for reaching near symmetry when the response variable has

positive and negative values, the transformation should be concave. One could say that a trans-

formation has the quality of reducing left-skewness if such a transformation is non-decreasing

convex or upward bending, and a transformation is needed to symmetrize right-skewness if

such a transformation is non-decreasing concave or downward bending. Under this motto,

different transformations have been proposed for kurtosis adjustments in order to deal with

non-normality. This is also achieved by the convex-to-concave Yeo-Johnson transformation

(Yeo and Johnson, 2000) for different ranges of λ. The transformation is convex in y for

λ > 1, and concave for λ < 1. Nevertheless, this transformation is not suitable when data has

a platykurtic, leptokurtic or bimodal form. Analogously, the power transformations family is

convex in case λ > 1 and concave when λ < 1. Following Tsai et al. (2017), transformations

that are suitable for data with a peaked mode are the signed power (Bickel and Doksum, 1981),

the modulus (John and Draper, 1980), the sinh-arcsinh (Jones and Pewsey, 2009), the gpower

(Kelmansky et al., 2013) and the hyperbolic sine (Burbidge et al., 1988). The signed transfor-

mation is convex-concave as the outcome variable changes the sign, which is an effect that is

difficult to predict. Therefore, it is recommended to use it for a kind of symmetric distribution

in order to deal with the kurtosis, rather than skewness (Zwet, 1964; Oja, 1981).
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Another difficulty of the Box-Cox transformation is the truncation on the transformation

parameter determined by λ. If λ is positive, y∗ has an upper-bound at −1
λ and if λ negative y∗

has also a lower-bound at −1
λ . Unless λ = 0 this transformation has a compatibleness problem

with the exact normality distribution. In order to deal with this problem, Yang (2006) recently

proposed the dual power transformation. It is defined only for strictly positive values. In the

case that the outcome variable is bounded above as well as below, the previous transformations

are not suitable. Therefore, the appropriate transformation based on an interval [0, b] is the

folded-power transformation (Mosteller and Tukey, 1977; Atkinson, 1982). However, if the

outcome scores are close to 0 or b the behavior would be like the Box-Cox transformation

(Cook and Weisberg, 1982). The shifted version of the dual transformation can also be applied

in practice (see, e.g., Rojas-Perilla et al. (2017)).

Besides the power transformations presented above, the multi-parameter transformation

families have been suggested in order to estimate different transformation parameters, account-

ing for scale, location, and shape (skewness and tailweight). For this purpose, Johnson (1949)

proposes three normalizing transformations, which include shape, scale, and location parame-

ters, where a system of curves represents the empirical distributions (Edgeworth, 1900). Fur-

thermore, for continuous empirical forms, this method has the particular advantage that many

distributions can be fitted into the system, which delivers a high flexibility that can be advanta-

geous for dealing with complicated data sets (George, 2007). As a special case of the Johnson

transformation, the one-parametric inverse hyperbolic sine is suitable for dealing with negative

and positive values (Burbidge et al., 1988). This transformation contains the Pearson system

of frequency curves (Pearson, 1894). These curves properly represent data which exhibit de-

partures from normality or with considerable skewness, that means non-normal forms. In con-

trast, the sinh-arcsinh transformations are applied for heavy-tailed and light-tailed distributions

(Jones and Pewsey, 2009).

As mentioned before, in many branches of knowledge, cross-sectional data are widely

used. However, little attention has been paid to the study of techniques in the literature of

linear mixed regression models, which assess or improve the validity of the multiple distri-

butional assumptions by departures from normality of the error terms expressed in Equation

1.2. In order to improve the assumptions of the model by parametrically transforming the

outcome variable in linear mixed regression models, single-bend transformations, such as the

logarithmic and square root transformations, have been applied in particular case studies (Mc-

Culloch and Neuhaus, 2001; Piepho and McCulloch, 2004; West et al., 2007; Lo and Andrews,

2015). Solomon (1985); Sakia (1988) and Lipsitz et al. (2000) have furthermore studied the

application of the Box-Cox transformation to cover all linear mixed regression models and

some longitudinal datasets, while the work of Gurka et al. (2006) formally extended the use

of the Box-Cox method for these kinds of models. Finally, as Box and Cox (1964) state, sev-

eral transformations are suitable to improve not only one model assumption, but many. This

is also expressed in Table 1.1, which contains transformations that help to achieve normality.

Additionally, it is indicated which further assumption can be often improved by these transfor-

mations. We exhaustively examine the literature on transformations and present it in Table 1.1

and subsequent tables as a condensed version of the research work.
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Table 1.1: Transformations for achieving normality

Transformation Source Formula Support N H L

Log Tukey (1977) log(y) y > 0 7 7 7

Log (shift) Box and Cox (1964) log(y + s) y ∈ R 7 7 7

Log neg Tabachnick and Fidell (2007) log(p− y) y ∈ R 7 7 7

Glog Durbin et al. (2002) log(y +
√
y2 + 1) y ∈ R 7 7 7

Moschopoulos Moschopoulos (1983)
(
y+a
µ

)b
y > 0 7

Square Root Bartlett (1937)
√
y y > 0 7 7

Square root neg Tabachnick and Fidell (2007)
√
p− y y ∈ R 7 7

Wilson-Hilferty Wilson and Hilferty (1931) y1/3 y ∈ R 7 7

Reciprocal Tukey (1977) 1
y

y 6= 0 7 7

Log-shift opt Feng et al. (2016) log(y + λ) y ∈ R 7 7 7

Folded Mosteller and Tukey (1977) yλ − (1− y)λ if λ 6= 0. y > 0 7 7

Box-Cox Box and Cox (1964)


yλ−1
λ

if λ 6= 0;

log(y) if λ = 0.
y > 0 7 7 7

Box-Cox (shift) Box and Cox (1964)


(y+s)λ−1

λ
if λ 6= 0;

log(y + s) if λ = 0.
y ∈ R 7 7 7

Manly Manly (1976)

 eλy−1
λ

if λ 6= 0;

y if λ = 0.
y ∈ R 7 7

Modulus John and Draper (1980)

Sign(y)
(|y|+1)λ−1

λ
if λ 6= 0;

Sign(y)log (|y|+ 1) if λ = 0.
y ∈ R 7

Neglog Whittaker et al. (2005) Sign(y) log(|y|+ 1) y ∈ R 7 7

Bickel-Docksum Bickel and Doksum (1981) |y|λSign(y)−1
λ

for λ > 0 y ∈ R 7 7

Gpower Kelmansky et al. (2013)


(y+
√
y2+1)λ−1
λ

if λ 6= 0;

log(y +
√
y2 + 1) if λ = 0.

y ∈ R 7

Mackinnon-Magee MacKinnon and Magee (1990) h(λy)
λ

y ∈ R 7 7

Yeo-Johnson Yeo and Johnson (2000)



(y+1)λ−1
λ

if λ 6= 0, y ≥ 0;

log(y + 1) if λ = 0, y ≥ 0;

(1−y)2−λ−1
λ−2

if λ 6= 2, y < 0;

−log(1− y) if λ = 2, y < 0.

y ∈ R 7 7

Dual Yang (2006)


(yλ−y−λ)

2λ
if λ > 0;

log(y) if λ = 0.
y > 0 7

Tukey Tukey (1957)

yλ if λ 6= 0;

log(y) if λ = 0.
y > 0 7 7

Johnson Johnson (1949) κ+ νh
(
y−ξ
η

)
y ∈ R 7 7

Sinh-arcsinh Burbidge et al. (1988) sinh[θ sinh−1(y − γ1)] y ∈ R 7

Note: Normality, homoscedasticity, and linearity are denoted as N,H,L, respectively. Additional to the notation that is used
throughout the paper, for some transformations further parameters need to be defined. The parameters s and p are fixed parameter
and chosen such that the smallest score is equal to 1. In the Moschopoulos transformation µ is the first moment of the distribution,
and a and b are determined from the first three moments of the distribution. The known fixed values that work for this transfor-
mation are b = 1/3 (Wilson and Hilferty, 1931) and b = 1/2 (Fisher, 1922a). In the transformation by MacKinnon and Magee
(1990), h(·) is a monotonically increasing function that satisfies the following properties: h(0) = 0, h‘(0) = 1 and h“(0) 6= 0.
One common function is defined as h(·) = sinh−1(y). According to Johnson (1949), η and ν are the scale parameters and
κ and ξ the location parameters. h(·) is a monotonic function of y. In the sin-arcsinh transformation, γ1 ∈ R represents the
skewness parameter and θ > 0 controls the tail weight.

19



CHAPTER 1. A GUIDELINE OF TRANSFORMATIONS IN LINEAR AND LINEAR
MIXED REGRESSION MODELS

How can we estimate the transformation parameter to normality?

In addition to the selection of a suitable transformation, different methodologies for the estima-

tion parameter have been introduced. The estimation method partly depends on which model

assumption we want to enforce. Please notice that some of the estimation methods are, so far,

only developed for the Box-Cox transformation. In general, the approaches for estimating the

optimal transformation parameter to normality are classified in maximum likelihood-based ap-

proaches (A), analytical considerations (B), robust adaptations (C), and Bayesian approaches

(D). The methods are described below and the mathematical formulation is presented in detail

for these ones, which are more commonly applied.

A: Maximum likelihood-based approaches

A.1: Maximum likelihood (ML) approach

The ML-based method is also known as the profile log-likelihood approach. It is the most com-

monly cited approach under the linear regression model and is described in detail in Box and

Cox (1964). It has been studied by Draper and Cox (1969); Andrews (1971); Atkinson (1973);

Carroll (1980) and Bickel and Doksum (1981). The goal is to find the transformation param-

eter λ for which the expected value E[y∗(λ)] is equal to Xβ meeting the model assumptions

listed in the previous chapter. If the normality assumption y∗i (λ) ∼ N(xiβ, σ
2
e) is fulfilled, the

probability density function for y∗i (λ) is written as

f(y∗i (λ)) =
1√

2πσ2
e

exp

{
− (y∗i (λ)− xiβ)2

2σ2
e

}
. (1.3)

The probability density function for the untransformed observations, and thus the likeli-

hood for the whole (transformed) model in relation to those observations, is computed as the

likelihood of Equation 1.3 multiplied by the Jacobian of the transformation, explicitly:

L(y, λ | θ) =
1

(2πσ2
e)

n
2

exp

{
− (y∗(λ)−Xβ)>(y∗(λ)−Xβ)

2σ2
e

}
J(λ,y),

where

J(λ,y) =

n∏
i=1

∣∣∣∣∂y∗i (λ)

∂yi

∣∣∣∣
is the Jacobian of the transformation from y to y∗(λ). and θ are the unknown parameters β

and σ2
e . This property comes from the transformation theorem defined as:

Theorem 1 (Transformation theorem). Let y be a continuous random variable with density

function f(y), taking values in Rn. Let T (y) = y∗ a continuous transformation T (y) : Rn −→
Rn, for which the inverse T−1(y∗) is also continuous. Suppose that the inverse of the trans-

formation is differentiable for all values of Rn and the Jacobian is not equal to zero. Then

fT (y)(y), the density function of the transformed target variable, is given by:

fT (y)(y) = f
[
T−1(y∗)

]
|J(y)|
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The maximum likelihood estimates are found in two stages. First, for fixed λ, the estimates

for β and σ2
e are computed. When the Jacobian does not depend on β or σ2

e this is the likeli-

hood for a least-square problem with response y∗(λ). Hence

β̂(λ) = (X>X)−1X>y∗(λ),

and

σ̂2
e(λ) =

y∗(λ)>Ay∗(λ)

n
=
S(λ)

n
,

where A = In −X(X>X)−1X> and S(λ) is the residual sum square in the transformed

model. Holding λ as fixed and substituting β̂(λ) and σ̂2
e(λ) into the logarithm, we obtain, apart

from a constant,

lmax(λ) = −n
2

log σ̂2
e(λ) + log J(λ,y). (1.4)

The λ that maximizes the profile log-likelihood in Equation 1.4 will be selected. For the under-

lying optimization process by using the ML estimation method, the Newton-Raphson iterative

procedure and its modifications are commonly used (Nelder and Mead, 1965; Lagarias et al.,

1998).

A.2: Restricted maximum likelihood estimation method (REML)

As mentioned before, little attention has been paid in the literature to the study of data-driven

transformations for linear mixed regression models: in particular, the improvement of the va-

lidity of model assumptions by departures from normality of both sources of randomness and

the transformation parameter estimation methods are still under research. The work of Gurka

et al. (2006) extends the use of the Box-Cox transformation under maximum likelihood theory

for the estimation of the transformation parameter to the linear mixed regression models theory.

For the estimation of λ under the linear mixed regression model presented in Equation 1.2

and described in Gurka et al. (2006), we assume that the vectors y∗i are independent and normal

distributed for some unknown λ as follows:

y∗j (λ) ∼ N(µj ,Vj) for j = 1, . . . ,m,

with

µj = Xjβ and Vj = ZjGZ
>
j +R.

where 1Ni , is a column vector of ones of size Ni and INi is the Ni ×Ni identity matrix.

Let J(λ,y) be the Jacobian of the transformation from y to y∗j (λ), defined as

J(λ,y) =

m∏
j=1

nj∏
i=1

∣∣∣∣∣dy∗ij(λ)

dyij

∣∣∣∣∣
=

m∏
j=1

nj∏
i=1

yλ−1
ij .
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The log-likelihood function in relation to the original observations is obtained by multiply-

ing the normal density by J(λ,y) as:

lML(y, λ|θ) = −n
2

log(2π)− 1

2

m∑
j=1

log|Vj |

− 1

2

m∑
j=1

[y∗j (λ)−Xjβ̂]>V −1
j [y∗j (λ)−Xjβ̂] + log J(λ,y).

The maximization process of lML(θ) leads to ML estimators of the unknown parameters θ =

(β, σ2
e ,G). However, the REML theory is recommended when more accurate estimators of the

variance components are needed (Verbeke and Molenberghs, 2000). This function is calculated

by maximizing the ML of a set of error contrasts stemming from the fixed effects design matrix

(Gurka et al., 2006). As a result, the REML function, in which the maximum possible number

of linearly independent contrasts is n− p (Harville, 1974), does not depend on β as follows:

lREML(y, λ|θ) = −n− p
2

log(2π) +
1

2
log

∣∣∣∣∣
m∑
j=1

X>j Xj

∣∣∣∣∣− 1

2

m∑
j=1

log|Vj |

− 1

2
log

∣∣∣∣∣
m∑
j=1

X>j V
−1
j Xj

∣∣∣∣∣− 1

2

m∑
j=1

[y∗j (λ)−Xjβ̂]>V −1
j [y∗j (λ)−Xjβ̂]

+ n(λ− 1)log(ȳ),

in which ȳ, is the geometric mean, defined as

ȳ =

(
m∏
j=1

nj∏
i=1

yij

)1/n

.

Bickel and Doksum (1981) studied the estimation properties of the parameters while using

the Box-Cox transformation, whereby the inference about β, σ2
u, σ

2
e is conditioned on λ = λ̂.

They conclude that the asymptotic marginal unconditional variance of β̂ can be inflated for a

fixed λ. The standard solution to this problem is to include the geometric mean of the response

variable in the denominator of the Box-Cox transformation
y∗ij(λ)

J(λ,y)1/n
, which converts it in a

scaled transformation Z(λ), whereby the unit is preserved and the interpretation is simplified,

due to the fact that the units do not change as λ changes and the conditional variance of β is

reduced. The Jacobian of this transformation is equal to one and the ML theory can be used for

the linear mixed regression model. It is defined as follows:

Z(λ) =


yλij−1

ȳλ−1λ
if λ 6= 0;

ȳlog(yij) if λ = 0,

for yij > 0. Gurka et al. (2006) recommend this scaled transformation in order to take advan-

tage of procedures for estimating λ already computationally implemented.
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B: Analytical considerations

Other analytical considerations have also been proposed in the literature as alternatives to ML-

based methods. It consists of the use of distances or divergence measures, fit tests, and distri-

bution moments (Hernandez and Johnson, 1980; Yeo and Johnson, 2000; Vélez et al., 2015).

These approaches have also been studied in the context of linear mixed regression models

(see e.g., Rojas-Perilla et al. (2017)). For some multiparameter transformations, such as the

Johnson’s System (Johnson, 1949), the method of moments of percentile points is proposed

(George, 2007; Forbes et al., 2011). It is based on a simple selection rule introduced by Slifker

and Shapiro (1980). Therefore, Chung et al. (2007) recommend the method of percentiles over

the profile log-likelihood due to its simplicity. The hyperbolic power transformation is another

example of a multi-parameter transformation. For this, the matching quantile approach (Tsai

et al., 2017) is used for estimating the transformation parameters. Finally, in case the outcome

variable is truncated, Poirier (1978) introduced a methodology as alternative of the ML method.

B.1: Estimators based on goodness of fit tests

In simple words, a goodness of fit test compares the empirical distribution, g, of a random

sample against a theoretical distribution, f . Typically, a null hypothesis, H0, is tested that

assumes that f and g are statistically equal. If the hypothesis is rejected, we say that there is

ground for believing that the sample is not f distributed. If we fail to reject H0, the hypothesis

that the sample is f distributed cannot be discarded. In the frame of the present work, f is

the density function of the normal distribution. The goodness of fit tests can be employed

to estimate the transformation paramater. The main idea is to maximize the statistic of such

tests. Rahman (1999) employs the Shapiro-Wilk test. Rahman and Pearson (2008) make use

of the Anderson-Darling test. Both focus on the Box-Cox transformation and use the Newton-

Raphson algorithm to estimate the transformation parameter. However, these methods can

also be applied to all one-parameter transformations mentioned in the present work. Yang

and Abeysinghe (2003) make use of two score tests to determine transformation parameter

for the Box-Cox transformation. Applications for multiple parameters transformations such

as the Johnson transformation need to be further studied. Asar et al. (2017) extend the work

of Rahman (1999) and Rahman and Pearson (2008) by utilizing seven goodness of fit tests,

proposing a new algorithm. For a more detailed description about their method see Asar et al.

(2017). Ruppert and Aldershof (1989) introduce an estimator for λ, σ2
e and β based on a

test which depends on the correlation of the fitted values with the squared residuals. Other

versions of this type of estimator are based on the Levene’s test and Anscombe test. Finally,

the work of Vélez et al. (2015) makes a selection of different normality type tests, classified in

regression/correlation-,empirical distribution function-,and measure of moments-based tests.

They develop a grid-search method for choosing the transformation where the combined p-

value is the highest.
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B.2: Estimators based on distribution moments: skewness and kurtosis

Skewness and kurtosis are major characteristics of the shape of distributions (Rosenthal, 2011).

The former is a measure of the degree to which a distribution departs from symmetry; if it is

negative, the left tail is long and the right short and thick. Positive values of skewness mean

the contrary: a large right tail and a stubby left tail. The normal distribution has a skewness

equal to zero. For a random variable z with mean µz and variance σ2
z the skewness is defined as

γ1(z|µz, σ2
z) = E

[(
z − µz
σz

)3
]
.

Kurtosis is a measure of the degree of “tailedness” or “peakedness” concerning the normal

distribution. A leptokurtic distribution has high kurtosis, which means that the probability

of falling in the center is greater compared to that of the normal distribution. In contrast, a

platykurtic distribution has more area, and therefore, more probability in the tails. The kurtosis

for a standard normal distribution is equal to 3. Typically, the interest lies in the excess of

kurtosis, which for the random variable z is defined as follows:

γ2(z|µz, σ2
z) =

[ (
E[z − µz]

)4(
E[(z − µz)2]

)2
]
− 3.

Even tough the skewness is considered more important than the kurtosis when dealing with

model assumption violations (Royston et al., 2011), the optimization of the last is also relevant.

The parameter of the transformation is then chosen so that the value of skewness or kurtosis for

the error term ei is as close as possible to that of the normal distribution (Carroll and Ruppert,

1987).

λ̂skew = argmin
λ
|γ1(ei)|,

and

λ̂kurt = argmin
λ
|γ2(ei)|.

where γ1(ei) is the skewness and γ2(ei) denotes the kurtosis of the unit-level error terms.

The parameter could be also selected with the help of a statistical test that accounts for

kurtosis or skewness (see, for instance, Gaudard and Karson (2007)). In the context of linear

mixed regression models, an additional problem arises as there are two independent error terms

to be considered. Therefore, a pooled skewness approach is suggested by Rojas-Perilla et al.

(2017), if skewness minimization is chosen as the target criteria. This ensures that the larger

the error term variance is, the more importance its skewness in the optimization has.

B.3: Estimators based on divergence or distance optimization

Only considering skewness may ignore many other properties of the distribution. Hence, a

measure describing the distance between two distribution functions as a total might be prefer-
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able. A few of these alternatives are based on the minimization of the Kullback-Leibler (KL)

divergence, based on Kullback (1997) and described in Yeo and Johnson (2000) and Hernandez

and Johnson (1980), and on measures of symmetry as the Kolmogorov-Smirnov (KS) and the

Cramér-von Mises (CvM) distances (Carroll, 1980; Bickel and Doksum, 1981; Carroll, 1982a;

Taylor, 1985). For this method the real distribution of the data needs to be known. The exact

formulations of the target measures are given as follows:

λ̂KL = argmin
λ

∫ +∞

−∞
f(y∗(λ)) log

[
f(y∗(λ))

φµ,σ2

]
,

with f the probability density function of the transformed target variable y∗(λ). φµ,σ2

denotes the probability density function of a normal distribution with mean µ and variance σ2.

λ̂KS = argmin
λ

sup |(F (estd)− Φ|,

λ̂CvM = argmin
λ

∫ 1

0

[
F (estd)− Φ2

]
.

F (·) denotes the empirical cumulative distribution function (ecdf) estimated on the normalized

residuals estd and Φ is the distribution function of a standard normal distribution.

C: Robust adaptations

Draper and Cox (1969) stated that the ML method is robust to non-normal error terms as

long as they are reasonably symmetric. It depends on parametric distributional assumptions

and it is not robust to outliers. Therefore, different robust adaptations are proposed in the

literature. Hinkley (1975, 1977); Hinkley and Runger (1984) and Taylor (1985) introduce and

discuss a non-parametric and symmetry-based adaptation method of the ML procedure. This

quick-choice method uses a symmetric distribution of the error terms about zero rather than the

normal, and is based on an asymmetry measure based on order statistics (Taylor, 1985). It is

also known as the Hinkley’s quick method or quantile-based method because it studies how the

quantiles of the distribution are symmetrically placed about the median. While this approach

is not sensitive to outliers and robust in case the interquartile range is used, it is an inefficient

method. Another similar quantile-based method for assessing the need of transforming data is

suggested in Velilla (1993). Leinhardt and Wasserman (1979) and Emerson and Stoto (1982)

propose the symmetrization of the quartiles around the median. However, Cameron (1984)

pointed out that the method of Emerson and Stoto (1982) is not suitable for highly skewed

data.

In order to access the accuracy of the ML estimator, Carroll (1980) and Bickel and Doksum

(1981) propose another robust modification, also studied in Carroll (1982a) and Hinkley and

Runger (1984). It generates a famous controversy in the study of transformations (see Doksum,

1984; Rubin, 1984; Johnson, 1984) and Carroll and Ruppert (1984)). They propose a robustifi-

cation against heavy-tailed distributions in case the normality assumption is not present in the

data and the Box-Cox transformation is required. This method is based on the robust estimator

defined by Huber (1981), but it is not consistent in terms of mean squared error. Please note
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that these robust adaptations are made for handling outliers only in the outcome variable and

not in the explanatory ones.

In order to find a consistent and efficient non-parametric method, Han (1987) suggests an

estimator based on the Kendall’s rank correlation (Kendall, 1938). With the aim of covering

some heavy tailed distributions, Carroll and Ruppert (1985, 1987, 1988) proposed a robust

bounded influence method based on Kruskal and Wallis (1952) to a moderate number of out-

lying points in the data. Foster et al. (2001) introduce a consistent semi-parametric estimation

method without assuming parametric assumptions on the error distribution. In general, these

robust adaptations are not suitable for heavy contamination and heteroscedasticity. Therefore,

Marazzi and Yohai (2006) derive a consistent estimation method based on the minimization

of a robust measure of residual autocorrelation with respect to a robust fit of the transformed

outcome variable. This approach is robust to outliers, even if normality and homoscedasticity

are not present in the data (Marazzi and Yohai, 2004).

C.1: A robustified maximum likelihood estimator

Carroll (1980) develop a more robust version of the profile log-likelihood estimator motivated

by a dilemma. On the one hand, as shown by Andrews (1971), the normal maximum likelihood

is usually not robust to deviations from normality or outliers. Andrews (1971) proposes a more

robust method to overcome the sensitivity to outliers of the likelihood methodology based on

the F-test of significance. On the other hand, Atkinson (1973) shows in a Monte Carlo experi-

ment that the original likelihood test proposed in Box and Cox (1964) is more powerful than the

significance method introduced by Andrews (1971). Atkinson (1973) suggests a modified ver-

sion of the ML approach that does not account for robustness. This leads to the situation where

a powerful method delivers no robust results, while a more robust method seems not to be so

powerful. Based on the Huber’s method (Huber, 1992) and the profile log-likelihood methodol-

ogy presented earlier, Carroll (1980) propose an estimator which considers not only the normal

distribution but also distributions with “normal-centre” and “exponential-tails”. The method

is powerful for these types of distributions, but also relatively robust to Andrew’s method of

significance. The likelihood function for such distributions is given by

L(λ,β, σ2
e) =

1

(2πσ2
e)

n
2

n∑
i=1

exp

{
− ρ
(
y∗i (λ)− x>i β

2σ2
e

)
+ (1− λ) log yi

}
, (1.5)

where for some k and variable z

ρ(z) =

1
2z

2 if |z| ≤ k;

k(|z| − k
2 ) if |z| > k = 0.

Typical values of k are 1.5 or 2 (Carroll, 1980). Note that if k =∞, Equation 1.5 is the normal

likelihood for the Box-Cox transformation. λ, σ2
e and β are found in several stages. For further

description of this algorithm please refer to Carroll (1980).
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D: Bayesian approaches

As mentioned before, the ML estimator is not consistent in case non-normal errors are present

and it is a non-robust methodology in the presence of outliers. Therefore, some research ef-

fort has been shifted towards alternative Bayesian estimation methods of the transformation

parameter. The paper of Box and Cox (1964) propose a Bayesian estimation method for the

transformation parameter, which uses a non-informative prior distribution of λ but is outcome-

dependent. Pericchi (1981) introduced a solution for choosing a non-outcome-dependent a

priori distribution, with a posterior log likelihood distribution similar in concept to the profile

log likelihood-based on ML theory. Additionally, Sweeting (1984) suggested the use of a non-

outcome-dependent family of non-informative priors distributions, which is closer in concept

to that proposed by Box and Cox (1964).

1.2.2.2 Transformations to achieve homoscedasticity

Why is the homoscedasticity assumption important?

In linear regression analysis, the level of variance is assumed to be constant across the range

of explanatory variables. This so-called homoscedasticity of the error term in the linear model

can be formally written as V (ei|xi1, ..., xip) = σ2
e . It means that the conditional variance of

ei, given the set of values xi1, ..., xip, is not dependent on the xs (Wilcox, 2005). On the other

hand, when the contrary occurs, we talk about heteroscedastic error terms, which can be ex-

pressed as V (ei|xi1, ..., xip) = σ2
e i. What happens when the assumption of homoscedasticity is

violated? As stated in many econometrics textbooks, the ordinary least squares (OLS) estima-

tors for the βs remain unbiased and consistent but are no longer efficient or best linear unbiased

estimator (BLUE) (Williams et al., 2013). This means, the OLS estimator does not provide the

smallest variance or the smallest standard error estimations (see Wooldridge (2000)). There-

fore, if the interest lies only in the estimation of the βs, OLS can be used. However, if the focus

is on inference, then t-tests, F -tests, and confidence intervals are no longer valid since there is a

higher probability of y lying outside the confidence interval, for example, for large values of x.

Heteroscedasticity can arise from different sources: first, as a result of a measurement error, for

instance coming from the fact that some respondents give more precise answers (Berry, 1993);

second, from misspecifications of the model, e.g., when an important variable is omitted and

thus, the error term exhibits idiosyncratic variation (Wooldridge, 2000); third, when the pop-

ulation should be clustered and thus variance changes across subpopulations (Natrella, 2013);

and fourth, if there are outliers which means one or a few observations severely affect the

non-robust variance estimator and induce (apparent) heteroscedasticity (Carroll, 1980). Some

papers related to the consequences when homoscedasticity assumptions are not satisfied are in

Cochran (1947) and Eisenhart (1947).

How can we check the homoscedasticity assumption fulfillment?

To graphically explore the homoscedastic assumption, let us suppose that we want to regress y

against a vector containing one single explanatory variable, x. If the error term is homoscedas-

tic, we would expect the set of points [x, y] to spread along the regression line on the scatter-

27



CHAPTER 1. A GUIDELINE OF TRANSFORMATIONS IN LINEAR AND LINEAR
MIXED REGRESSION MODELS

plot exhibiting the same level of variation. A visual inspection of heteroscedasticity is made

by plotting the residuals against the fitted values and the residuals versus a predictor which

is possibly generating the violation of this assumption. There is also a huge range of tests

for assessing homoscedasticity in the literature (Kirk, 1968). For detecting any linear form

of heteroscedasticity, the Glesjer, Breusch-Pagan, Goldfeld-Quandt and Cook-Weisberg tests

are commonly used. Additionaly, the White’s general test is useful when non-linear forms

of heteroscedasticity need to be proved. Other suitable tests are the Hartley’s Fmax (Hartley,

1950) and Cochran’s C (Cochran, 1941), but they are sensitive to Gaussian assumptions, and

the Bartlett’s test (Bartlett, 1937) and Levene’s test (Levene et al., 1960), among others. Ad-

ditionally, the Ramsey Regression Equation Specification Error Test (RESET) test (Ramsey,

1969) can be used for the misspecification of the model.

What are the alternative methods to overcome heteroscedasticity?

If we have tested the correctness of the assumption and found statistical support to believe that

the error term is heterosedastic, a pre-analysis should be carried out before jumping into meth-

ods to correct for heteroscedasticity. First, model misspecification should be left to field experts

for methodological issues. This is because heteroscedasticity arising from model misspecifi-

cation is not genuine heteroscedasticity, but model misspecification since, by re-specifying the

model, one could get rid of it. The need of clustering should be examined as well. It is also

recommended to remove or replace outliers, or just apply an outlier treatment and then test

for heteroscedasticity to verify if the homoscedasticity assumption is being violated by the

influence of one or a few observations.

Alternatively, if the error term exhibits heteroscedasticity, a more robust and efficient esti-

mator can be achieved via modified OLS residuals or generalized least squares (see Wooldridge

(2000)). It includes the use of feasible generalized least squares and weighted least squares re-

gression by minimizing a weighted sum of squared residuals (Berry, 1993). The downside of

the latter is that the form of the weights is often unknown. Secondly, techniques for estimating

robust standard errors can be applied. They are known as Eicker-, Huber-, White-, Eicker-

Huber-White-, heteroscedasticity-consistent-, Huber-White-standard errors or sandwich esti-

mators (Eicker, 1967; Huber, 1967; White, 1980). Thirdly and most widely used, is the appli-

cation of generalized linear regression models (Nelder and Wedderburn, 1972). These models

take specific heteroscedasticity forms into account and contain different data structures; for

instance, logistic regression for dichotomous (binary) variables or Poisson regression for count

data. Additionally, Bayesian linear regression approaches can also account for the lack of

homoscedasticity.

How can transformations help to improve homoscedasticity?

According to Johnson (1949) and based on Bartlett (1937) and Bartlett (1947), transforma-

tions might provide a fair correction for heteroscedasticity. When a functional dependence

of the variance of the outcome variable on the mean is present in the data, we may gain the

advantages of using variance-stabilizing transformations. This dependence mostly implies an

underlying distributional process and determines the form of the suitable transformation. Table
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1.2 shows different relations between these moments, the corresponding suitable transforma-

tions, some examples of appropriate distributions and the range of the outcome variable that the

transformation supports. According to Ruppert (2001), populations which have larger means

also exhibit the property of larger variances. If we denote the mean of the conditional distri-

bution of the outcome variable given a vector of explanatory variables by E(y|x) = µy(x),

then it is possible that the conditional variance Var(y|x) is a function of µy(x). This relation is

denoted by Var(y|x) = R[µy(x)] for some function R(·). Without loss of generality and fol-

lowing Ruppert (2001), if we use a transformation T (y), this relation holds the delta-method

linear approximation and is denoted as follows (Bartlett, 1947):

V ar
[
T (y)|x

]
≈
{
T
′[
µy(x)

]}2
R
[
µy(x)

]
.

The transformation T (y) will correct the variance assumptions, if
[
T
′
(y)
]2
R(y) is constant.

For instance and following Ruppert (2001), if R(y) ∝ yα, then T (y) ∝ y1−α
2 would be a

variance-stabilizing transformation, with α 6= 2. The transformations that are used most for

the issue of achieving homoscedasticity are square roots, logarithms, reciprocals, and trigono-

metrical transformations (Cohen et al., 2014). Some of these are also known as double bend

transformations, because the data sets for which these are used, are bound at both top and

bottom, such as data sets from the binomial distribution.

Bartlett (1937) proposes the use of the square root transformation to stabilize variances

that are exactly proportional to the mean, which is the case for gamma and exponential dis-

tributed data, as for such a distribution in which the variance is exactly equal to the mean,

which is the case of the Poisson distribution. In this case, α = 1, that means, g(y) ∝ y1, then

T (y) ∝ y1− 1
2 is the root square, which is the variance-stabilizing transformation for Poisson

data sets. In a later work, Bartlett (1947) and Anscombe (1948) suggest the use of
√
y + c1

type transformations, where c1 is a fixed constant. In case of a large sample size this transfor-

mation with a constant c1 is more useful to achieve a constant variance. They propose handling

heteroscedasticity by using c1 = 1/2 or c1 = 3/8, when y takes only small values or when

zeros are common in the data, respectively. Freeman and Tukey (1950) proposes a more so-

phisticated twofold transformation, which is called the Freeman-Tukey deviate or the chordal

transformation and is denoted by
√
y +
√
y + 1. This transformation is particularly suitable in

case y is very small or equal to 0. Similarly, the inverse transformation is recommended for

stabilizing the variance for observations that are mostly close to zero. It stabilizes the variance

when n > 3 (Mosteller and Bush, 1954; Mosteller and Youtz, 2006).

The negative binomial distribution is appropriate to represent for Poisson distributed data un-

der overdispersion, that means, the variance greater than the mean. For this kind of data sets

some transformations based on the logarithm and hyperbolic trigonometric functions are pro-

posed (Bartlett, 1947; Chatterjee and Hadi, 2015). For instance, some modifications of the

inverse hyperbolic sine function, such as sinh−1

√(
y+c2
k+c3

)
, are suitable for the negative bino-

mial data. While Anscombe (1948) suggests values of c2 = 3/8 and c3 = −3/4, Beall (1942)

proposes using c2 = 0 and c3 = 0. Especially recommended for small values is the adjustment
1
λ sinh−1(λ

√
y + 1/2) (Chatterjee and Hadi, 2015).

29



CHAPTER 1. A GUIDELINE OF TRANSFORMATIONS IN LINEAR AND LINEAR
MIXED REGRESSION MODELS

In order to stabilize the variance of binomial distributed data, different trigonometric trans-

formations are suggested. For instance, the inverse sine root square transformation of the form

sin−1√y, also called the angular transformation (Fisher, 1922b; Bartlett, 1937), is analogous

to the root square transformations for binary data. Thus, this variance-stabilizing transforma-

tion is widely used in practice. Some modifications based in this transformation have been

proposed according to specific values of the parameters of the distribution based on the data set

are proposed in Curtiss (1943) and Anscombe (1948). For instance, sin−1
√

y+c4
n+c5

is then suit-

able for data from the binomial distribution. Researchers commonly use c4 = c5 = 0. However

Bartlett (1937) suggests c4 = 1/2 and c5 = 0 and Anscombe (1948) improves this transfor-

mation further by setting c4 = 3/8 and c5 = 3/4. Unlike similar transformations, the arcsine

is defined for y between 0 and 1. However, research done by Wilson et al. (2013) and Warton

and Hui (2011) have warned about employing this transformation. According to Warton and

Hui (2011) one of the downsides of this transformation is that if the relation between the un-

transformed y and the independent variables xip, ..., xip is e.g., always increasing, the same

relation is not held after transformation due to the periodicity of arcsin. Sofisticated twofold

transformations are also suggested by Laubscher (1961) and Freeman and Tukey (1950). To

correct for heteroscedasticity of variables contained to a bounded interval, such as proportions

and percentages, two-bend transformations families can be appropriate. For instance, the most

common transformations are the logit, probit, Guerrero-Johnson, Aranda-Oraz, beta, angular

and arsine transformations. For detailed information about transformations for these kinds of

data sets please refer to Kruskal (1968); Atkinson (1987) and Piepho and McCulloch (2004).

This topic falls out of the scope of the present work.

The ordinary power transformations family, in which different powers of the target variable

are applied, are defined according to the functional dependence of the variance on the mean.

If the variance increases proportional to the mean on a square root scale, the stabilization is

made on a logarithmic scale (Bartlett, 1947). This is the case of the log-normal distribution.

Fisher and Yates (1949) proposed some modifications of the logarithmic transformation in

case the values are less than 10 and for larger values. For distributions with constant coefficient

of variation, such the exponential or gamma with constant shape parameter distribution, the

logarithm is also recommended (Ruppert, 2001). This transformation is generally suggested

when the range of the outcome variable is very broad but not negative (Fink, 2009). For data

from other distributions as the Gamma or Weibull distribution a variance stabilizing transfor-

mation is recently proposed by Lakhana (2014). When data is very bunched to the minimum

and maximum of the distribution the transformation presented by Fink (2009) can be used for

stretching the data. For selecting the parameters λ and k of this transformation we refer to

Fink (2009); Erickson and Nosanchuk (1977) and McNeil (1977). Additionally, if the data

presents heteroscedasticity problems and the distributional form is not clear or there are other

violations of assumptions, some of the already mentioned transformations in the beginning of

Section 1.2.2 also help to correct heteroscedasticity, since stabilizing variance and normaliz-

ing errors often goes together (Johnson, 1949). These transformations include in particular the

logarithm, gpower, Box-Cox, Johnson, Manly, and Yeo-Johnson transformations. That means,

the researcher should empirically find the most appropriate transformation that stabilizes the
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variance of the data regardless the mean value (Montgomery, 2008). Finally, transforming

both sides helps for both, stabilizing the variance and create more symmetric distributions (see

Section 1.3 for the both sides methodology).

Table 1.2: Transformations for achieving homoscedasticity
Dependence Source Formula Example Support

σ2
y ∝ µy Bartlett (1937)

√
y Poisson(λ) y ≥ 0

σ2
y ∝ µy Bartlett (1947)

√
y + c1 Poisson(λ) y ≥ −c

σ2
y ∝ µy Freeman and Tukey (1950)

√
y +
√
y + 1 Poisson(λ) y ≥ −1

σ2
y ∝ µ2y Fisher and Yates (1949) log(y) lognormal

(
µ, σ2

)
y > 0

σ2
y ∝ µ2y Fisher and Yates (1949) log10(y) lognormal

(
µ, σ2

)
y > 0

σ2
y ∝ µ2y Fisher and Yates (1949) 1

3

√
y lognormal

(
µ, σ2

)
y ≥ 0

σ2
y ∝ 2µy Freeman and Tukey (1950)

√
2y χ2(k) y ≥ 0

σ2
y ∝ 2µy Wilson and Hilferty (1931) y1/3 χ2(k) y ∈ R

σ2
y ∝ µy + λ2µ2y Bartlett (1947) λ log(y) BN

(
r, p, λ = 1√

r

)
y > 0

σ2
y ∝ µy + λ2µ2y Bartlett (1947) log(y) BN

(
r, p, λ = 1√

r

)
y > 0

σ2
y ∝ µy + λ2µ2y Bartlett (1947) λ−1 sinh−1(λ

√
y) BN

(
r, p, λ = 1√

r

)
y ≥ 0

σ2
y ∝ µy + λ2µ2y Bartlett (1947) λ−1 sinh−1

(
λ
√
y + 1

2

)
BN
(
r, p, λ = 1√

r

)
y ≥ − 1

2

σ2
y ∝ µy + λ2µ2y Beall (1942) sinh−1

√
y+c2
r+c3

BN
(
r, p, λ = 1√

r

)
y ≥ 0

σ2
y ∝ µy Ruppert (2001) log(y) BN

(
r, p, λ = 1√

r

)
y > 0

σ2
y ∝ µy Lakhana (2014)


(
√
y+1)λ

λ
if λ 6= 0;

log(
√
y + 1) if λ = 0.

Γ(α, β), Weibull(l, k) y ≥ −1

σ2
y ∝ µy Wilson and Hilferty (1931) y1/3 Γ(α, β) y ∈ R

σ2
y ∝ µy Curtiss (1943)

√
y + c1 Γ(α, β) y ≥ -c

σ2
y ∝ µy Ruppert (2001) log(y) exp(λ) y ≥ 0

σ2
y ∝ µy(1− µy) Bartlett (1937) sin−1√y Bin(n, p) y ≥ 0

σ2
y ∝ µy(1− µy) Bartlett (1937) sin−1

√
y+c4
n+c5

Bin(n, p) y ≥ 0

σ2
y ∝ µy(1− µy) Anscombe (1948)

√
n+ c6 sin−1

√
y+c4
n+c5

Bin(n, p) y ≥ 0

σ2
y ∝ µy(1− µy) Laubscher (1961)

√
n sin−1

√
y
n

+
√
n+ 1 sin−1

√
y+ 3

4

n+ 3
2

Bin(n, p) y ≥ 0

σ2
y ∝ µy(1− µy) Freeman and Tukey (1950)

√
n+ 1

2

(
sin−1

√
y

n+1
+ sin−1

√
y+1
n+1

)
Bin(n, p) y ≥ 0

σ2
y ∝ µy(1− µy) Fisher (1922b) sin−1 y Bin(n, p) 0 ≤ y ≤ 1

σ2
y ∝ µy(1− µy) Fisher (1922b) sin−1

√
y+c4
n+c5

Bin(n, p) y ∈ R

σ2
y ∝ µy(1− µy) Curtiss (1943)

√
n sin−1

√
y + c7

n
Bin(n, p) y > 0

σ2
y ∝ µy(1− µy) Curtiss (1943)

√
n log (y) Bin(n, p) y > 0

σ2
y ∝ µy(1− µy) Curtiss (1943) 1

2

√
n log

(
y

1−y

)
Bin(n, p) y > 0

σ2
y ∝ µ3y Draper and John (1981) 1√

y
- y > 0

σ2
y ∝ 1

µ
Draper and John (1981) y2 - y ∈ R

σ2
y ∝ µ2 Draper and John (1981) log(y) - y > 0

σ2
y ∝ µy Draper and John (1981)

√
y - y ≥ 0

σ2
y ∝ µ4y Draper and John (1981) 1

y
- y 6= 0

Note: e*0.1cm Note: Please note that due to lack of different parameter names and conventional definitions of the distributions in
column Example the parameter names can conflict with the notation in the rest of the paper. The parameter c1 = 1 is widely used
in practice. However, Bartlett (1937) and Anscombe (1948) recommend c1 = 1

2
and c1 = 1

3
, respectively. Beall (1942) suggests

c2 = c3 = 0 and Anscombe (1948) c2 = 3
8
, c3 = −3

4
. This author recommends c4 = 3

8
and c5 = 3

4
, meanwhile Bartlett

(1937) c4 = 1
2

and c5 = 0. However, c4 = c5 = 0 are often used in practice. Anscombe (1948) suggests c6 = 1
2

. Curtiss
(1943) suggests c7 equal to 0 or 1

2
, depending on the values of p.
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How can we estimate the transformation parameters to homoscedasticity?

In general, the approaches for estimating the optimal transformation parameter to homoscedas-

ticity are ML-based or analytical considerations. Therefore, in case a transformation for si-

multaneous correcting non-normality and heteroschedasticity is selected, then the ML-based

approaches presented already for normality can be used (see Section 1.2.2). However, Zarem-

bka (1974a) pointed out that this method is not robust in the presence of heteroscedastic error

terms. Therefore, Blaylock and Smallwood (1985) propose an alternative adaptation, the robus-

tified maximum likelihood estimator. Since it is especially useful, we explain it in detail below.

Hinkley (1985) suggests the use of an analytical likelihood-based method for analyzing local

deviations. This procedure for estimating the transformation parameter considers both the ho-

moscedasticity model violation of residuals and the lack of additivity. Ruppert and Aldershof

(1989) propose a method which attempts to deal with non-normality and heteroscedasticity.

It is based on the minimization of the correlation between the fitted values and the squared

residuals.

A.3: Robustified maximum likelihood estimator

Blaylock and Smallwood (1985) propose a more robust version of the profile log-likelihood,

which allows for unequal variances across observations, but considers all elements off the

diagonal of variance-covariance matrix Σ as zero. The functional form of σ2
e i is chosen as:

σ2
e i = exp{δw∗i (λw)},

where w is an instrumental variable upon which the error term depends, λw is the transfor-

mation parameter for w, and δ allows for different forms of heteroscedaticity. Indeed, when

δ = 0, the homoscedastic form is obtained. This means that the homoscedasticity case is nested

in the form of the variance σ2
e i. Thus, the likelihood ratio test can be employed to compare the

model with and without heteroscedasticity. The estimates for Σ, β, λ, and δ are obtained by

employing the profile log-likelihood function. In the first stage, Σ and β are estimated using a

nonlinear optimizing algorithm; afterwards, values for λ and δ are selected so that the profile

log-likelihood is maximized.

1.2.2.3 Transformations to achieve linearity and additivity

Why is the linearity assumption important?

As it is implied in its name, the linear regression is an approach to model linear relationships.

The linear regression model is linear in two senses: first, the model is linear in the variables

because each response y is expressed as a weighted sum of the independent variables where

the parameters are the weights (Dougherty, 2011); second, the model is also linear in the pa-

rameters where, this time, the independent variables are the weights. If non-linearity is present

and we decide to follow through with the use of linear techniques as in OLS, the consequences

would be misrepresenting the actual relationship. Therefore, when non-linearity occurs, it is

very likely that estimation and inference techniques based on the linearity of the model yield
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misleading conclusions. In addition to linearity, it is important that the additivity assumption

is met. This assumption ensures that the independent variables multiplied by their regressors

can be added together to provide an estimate (Berry, 1993). However, given the complexity of

many empirical relationships, it is sometimes expected that the effect of an independent vari-

able x1 on y may be influenced by a third variable, x2. This interaction not only violates the

implicit assumption of additivity, but it also becomes a practical problem since it leads to mul-

ticollinearity (Friedrich, 1982). Moreover, when a non-additive relationship takes place, and it

is not detected or is ignored, the linear regression yields unreliable results since the relationship

that is being represented fails to account for the interaction between the independent variables.

Again, as in the presence of non-linearity, estimation and inference techniques based on the

linear regression model provide non-accurate results (Williams et al., 2013).

How can we check the linearity assumption fulfillment?

A useful visual method to examine non-linearity is using scatterplots between the outcome vari-

able and the explanatory variables, which is called added variable plot, also known as partial-

regression- or adjusted plot (Atkinson, 1982). Additionally, a scatter plot of the standardized

residuals and the standardized predicted values of y is also useful. If the relationship appears

to take a line-like form, we do not need to occupy ourselves with correcting for non-linearity.

Additionally, the RESET test, a general test for functional form misspecification proposed by

Ramsey (1969, 1974) can be used as an indicator of lack of linearity.

A technique to detect non-additivity effects is the Tukey’s test (Tukey, 1949; Moore and

Tukey, 1954). As an alternative to Tukey’s test, Barry (1993) introduces a Bayesian test to

check the validity of this assumption.

What are the alternative methods to overcome non-linearity?

If the assessment tools provide evidence for non-linearity and/or non-additivity, a model re-

structuring is a possible solution. For instance, if the relation between the dependent and

independent variables seems to be curvilinear, a curve component could be added and tested

on significance (Osborne and Waters, 2012). For receiving additivity, Friedrich (1982) favors

the use of multiplicative models over dropping interactive variables to use linear regression

techniques. If non-linearity or non-additivity is still present, ridge regression, also known as

linear regularization, is particularly useful. Other alternative methods are Tikhonov regulariza-

tion, Tikhonov-Miller method, Phillips-Twomey method, constrained linear inversion method

or weight decay (Hoerl and Kennard, 1970), lasso regression (Tibshirani, 1996) and Bayesian

linear regression.

How can transformations help to improve linearity?

In general, transformations to linearize data can be divided into two classes: in one class, the

expected response is related to the independent variables by a known non-linear function; in

the other, the relationship between the expected response and the explanatory variables is not

exactly known (Cook and Weisberg, 1982). For the first class, transformations can be easily
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selected. Wood and Gorman (1971) show plots for a comprehensive number of non-linear

functions that can be transformed into linear ones. In the second class fall transformations

such as the Box-Cox transformation, which have the potential to correct non-normality, het-

eroscedasticity, and non-linearity, so that, after the data is transformed, normal theory methods

and linear regression techniques can be employed. An approach for selecting a suitable power

transformation is given by Mosteller and Tukey (1977), who introduce a trial-and-error heuris-

tic to linearize data based on the ladder of powers, called the “ladder of transformations”, as

shown in Table 1.4 and Table 1.5. This is also known as the “bulging rule” and it determines

the value of the power employed for both the outcome variable and the explanatory variables

within the model. Please follow Brown (2015) for more details about the bulging rule. Power

transformations are useful if the relationship between x and y is a simple monotone. Table

1.3 summarizes transformations for regression forms that can be linearized since the relation is

known for the simple linear regression model, and is based on Weisberg (1980); Fink (2009);

Johnson (2009) and Chatterjee and Hadi (2015). The generalization of this table for the multi-

ple regression form can be find in Fink (2009). Additionally, Box and Tidwell (1962) propose

an iterative methodology known as the Box-Tidwell transformation to linearize the relationship

between the dependent variable and the explanatory variables. It is basically based on individ-

ually finding the optimal power transformation to transform the set of explanatory variables. A

power transformation test can help to determine which variable should be transformed or not

(Brown, 2015). Finally, both sides methodology is also suitable for dealing with non-linearity

problems in the regression model (see Section 1.3). Nevertheless, one should be careful when

transforming both sides to induce linearization, since it may produce heteroscedasticity of the

error term (Carroll and Ruppert, 1988). A tentative transformation to linearize multiplicative

models is the logarithmic transformation. For non-additivity, Tukey (1949) recommends the

use of the t-score of added non-linear terms as the transformation criteria. Without loss of gen-

erality, the transformations that are suitable for correcting non-additivity have a restricted form

and the works of Elston (1961) and Anscombe and Tukey (1963) concentrate on the selection

of the power. Rocke (1993) suggests the use of the t-score as a criteria to linearize proportional

data.

Table 1.3: Transformations to achieve linearity when the relation is known for the simple linear
regression model

Reference Regression form Transformation Linear model

Weisberg (1980) y = β0x
β
1 y∗ = log y, x∗ = log x y∗ = log β0 + β1x

∗

Weisberg (1980) y = β0e
β1x y∗ = log y y∗ = log β0 + β1x

Weisberg (1980) y = β0 + β1 log x x∗ = log x y∗ = β0 + β1x
∗

Weisberg (1980) y = x
β0x−β1 y∗ = 1

y , x
∗ = 1

xx y∗ = β0 − β1x
∗

Chatterjee and Hadi (2015) y = eβ0+β1x

1+eβ0+β1x
y∗ = log

(
y

1−y

)
y∗ = β0 + β1x

Fink (2009) y = β0 + β1

(
1
x

)
x∗ = 1

x y∗ = β0 + β1x
∗

Weisberg (1980) y = 1
β0+β1x

y∗ = 1
y y∗ = β0 + β1x

Johnson (2009) y = β0 + β1
√
x x∗ =

√
x y∗ = β0 + β1x

∗

34



CHAPTER 1. A GUIDELINE OF TRANSFORMATIONS IN LINEAR AND LINEAR
MIXED REGRESSION MODELS

How can we estimate the transformation to linearity?

For the transformations that fall in the second class, the ML-based methods and analytical con-

siderations that we already introduced are equally applicable for achieving linearity. A special

approach to find the correct power when the regression form is known is given by Mosteller

and Tukey (1977), who introduce a trial-and-error heuristic to linearize data based on the ladder

of powers shown in Table 1.4 and Table 1.5. Tukey (1949) introduces the minimization of the

F -value for the degree of freedom for non-additivity as an estimation method of a transforma-

tion.

The Tukey and Mosteller estimation algorithm

As mentioned before, Mosteller and Tukey (1977) propose a graphical bulging rule for select-

ing a power transformation, which is based on power of ladders. This seeks to guide practition-

ers to simply select a linearizing relationship transformation for any random variable z. The

ladders are tabulated as follows:

Table 1.4: The ladder of powers

λi -2 -1 -0.5 0 0.5 1 2

z 1
z2

1
z

1√
z

log z
√
z z z2

They can be generalized and formally expressed as:

y∗i (λ) =



yλ1i = β0 + β1x
λ2
i if λ1, λ2 6= 0;

log yi = β0 + β1x
λ2
i if λ1 = 0, λ2 6= 0;

yλ1i = β0 + β1 log xi if λ1 6= 0, λ2 = 0;

log yi = β0 + β1 log xi if λ1, λ2 = 0.

The parameters λ1 and λ2 are chosen according to Table 1.4 and Table 1.5. Examining a

scatterplot of y against x leads us to select a power transformation based on the pattern of the

curvature. We have two options for transforming: transform y by moving up/down the ladder

or up/down the ladder for x depending on the pattern. That means in case the pattern is hollow

upward, one should go down the ladder; and if hollow downward go up the ladder.
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Table 1.5: The ladder of transformations

Pattern Transformation Parameter

y∗ = yλ1>1, x∗ = xλ2<1
λ1 up and/or λ2 down

y∗ = yλ1<1, x∗ = xλ2<1
λ1 down and/or λ2 down

y∗ = yλ1>1, x∗ = xλ2>1 λ1 up and/or λ2 up

y∗ = yλ1<1, x∗ = xλ2>1 λ1 down and/or λ2 up

Mosteller and Tukey (1977) present a simple numerical algorithm, which is explained as

follows:

1. Plot x against y.

2. Based on Table 1.4, choose λ1 and λ2 according to the shape exhibited by the points on

the scatter plot of x against y.

3. Transform y by yλ1 and x by xλ2 .

4. Plot the transformed predictor against the transformed response variable.

5. If the relationship appears to be linear: stop.

6. Otherwise, choose new values for λ1 and/or λ2 by going up or down the power ladder

based on Table 1.4.
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1.2.2.4 Parameter inference and interpretation

Does a transformation influence the inference on the model parameters?

The inference analysis is a controversial question that arises when a transformation, and es-

pecially a transformation with a transformation parameter, is used under the linear and linear

mixed regression model. One question is whether we should treat the transformation parame-

ters as fixed in case we are making inferences on the model parameters. If the transformation

does not contain a data-driven transformation parameter common model inference can be con-

ducted. In contrast, when using data-driven transformations, one point of discussion concerns

if the transformation parameter can be treated as known or not. Ruppert (2001) and Box and

Cox (1982) stated that the regression parameter estimates strongly depend on the chosen trans-

formation parameter λ. Box and Cox (1964) further pointed out that after selecting a value for

λ via e.g., ML-based methods, this should be treated as known and inference can be carried

out as usual. However, Bickel and Doksum (1981) made a remark on this by studying the joint

distribution of λ̂ and β̂. They found that when the real value of λ is unknown, the estimates

for the variance of the β̂s are inflated and highly dependent on the λ̂ estimate. Box and Cox

(1982) replied by saying that this was not only obvious, but also irrelevant, since “the gross

correlation effects would be avoided if, following [their] paper, the investigation had been con-

ducted in terms of [the normalized transformation]”. Note that the normalized transformation

is equivalent to the scaled transformation presented in Section 1.2.2. Furthermore, Hinkley and

Runger (1984) carried out a sensitivity analysis where they found that the estimates of contrast

and scale parameters are quite stable on the scale of the normalized transformation, whereas

the estimates of location parameters, such as the mean, are more dependent on the value of λ̂.

Research on the accuracy of the estimation and inference on the random effects after ap-

plying a transformation under a linear mixed regression model is still necessary. Under this

scenario, the works of Verbeke and Lesaffre (1996) and Gurka et al. (2006) discussed, in a sim-

ulated scenario, the effects of a transformation on the inference process. Gurka et al. (2006)

suggests including a correction factor from the Jacobian of the Box-Cox transformation in the

estimated coefficients.

How is the inference process on the transformation parameters?

Inference about the transformation parameters is also a fundamental step in the transforma-

tion selection process. For testing the hypothesis H0 : λ = λ0, we could use the stan-

dard likelihood-based methods for getting a likelihood ratio test. The test statistic would be

W = 2[Lmax(λ̂) − Lmax(λ)], which is chi-squared asymptotically distributed. Box and Cox

(1964) extend this theory and propose two approaches to make inferences about the parameters

after applying a transformation. In the first approach, large sample maximum likelihood the-

ory is applied, which delivers point estimates of the parameters and provides an approximate

test and confidence intervals based on the chi-squared distribution. In the second approach,

Bayesian theory is applied. For that, the prior distributions for β and σ2 are assumed to be

uniform, obtaining a posterior distribution for λ. For more details about the Bayesian method

please see Box and Cox (1964) and Jeffreys (1998).
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Following Box and Cox (1964), an approximate 100(1−α) per cent confidence interval is

Lmax(λ̂)− Lmax(λ) <
1

2
χ2
ν(α),

Lmax(λ) = −1

2
n log

[
σ̂2(λ)

]
+ log

[
J(λ, y)

]
,

where ν is the number of independent components in λ, α denotes the significance level, and

σ̂2(λ) represents the residual sum of squares in the transformed outcome variable.

In the same way, in order to test H0 : λ = λ0, Andrews (1971) proposes a test which

ignores the Jacobian of the applied transformation. However, Atkinson (1973) re-introduces the

Jacobian, developing a score-type statistic, which is not a maximum likelihood-based method.

This is also known as the Atkinson’s score statistic and was further standardized by Lawrance

(1987a,b), the result of which is called Lawrance’s statistic. Some robust versions of these tests

are proposed by Carroll (1980) and Wang (1987).

Last but not least, some studies regarding the consistency and efficiency properties, as

well as the the asymptotic variances of the estimated λ in the Box-Cox transformation, have

been published. See Bickel and Doksum (1981); Carroll and Ruppert (1981); Carroll (1982a);

Doksum and Wong (1983) and Hinkley and Runger (1984) for detailed information.

How are the model results interpreted when a transformation is applied?

One of the biggest challenges that researchers face when working with transformations is the

interpretation of the results. It implies choosing the scale in which we need to present the

results, depending on the research question. O’Hara and Kotze (2010) summarized this issue

by pointing out that transformations comes at some cost to the trade-off between accuracy and

interpretability. When working with the logarithmic transformation, an approximation helps to

obtain a meaningful interpretation of the coefficients as percentages. However, this is a feature

rarely observed when working with other non-linear transformations, such as the Box-Cox

transformation family. In the words of Box and Cox (1964), transformation parameters that are

obtained by maximum likelihood-based methods, which are widely used in practice for finding

a suitable transformation, are “useful as a guide” but “not to be followed blindly”. The selection

of transformation parameters could be made based only on the information provided by the

data. However, if a particular value for λ in the Box-Cox transformation is more convenient

regarding interpretability, the selection of the parameter could be adjusted. For instance, if the

output of an estimation suggests that λ should be equal to 0.25 one could work instead with

λ = 0 i.e., the logarithmic transformation, which has an easier interpretation, especially when

this choice is common in the specific research field.

Does the back-transforming process lead to bias in the predictions?

Researchers interested in predictions face another challenge which is to deal with the back-

transforming bias when applying non-linear transformations. In case, a back-transformation is

used for getting the values in their original measurement scale, an artificial bias comes from
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this re-transforming process. Without loss of generality:

T [E(y|x)] 6= E[T (y)|x]

for all non-linear transformations, T (·), applied on the target variable. Although this effect

is not always severe (Sakia, 1992), ignoring the magnitude of the generated bias may lead to

misleading conclusions. Therefore, several methods and empirical work for removing the back-

transforming bias after applying a power transformation, in particular, the logarithmic and Box-

Cox transformations have been proposed in the literature for the linear and the linear mixed

regression model (Neyman and Scott, 1960; Hoyle, 1973; Lee, 1982; Sakia, 1988; Rothery,

1988; Sakia, 1990, 1992; Newman, 1993; Gurka et al., 2006; da Costa and Crepaldi, 2014).

1.3 Further issues regarding to variable transformations

Additionally to the model assumptions that we discussed in the previous section, special fea-

tures in the data can interact with the transformations or have effects on the usage of transfor-

mations. Thus, this section discusses issues such as model selection, the presence of outliers,

incomplete responses, multimodal data, zero inflated data, and the range of the variable when

using transformations. Note that these issues are a selection of the most common possible

interactions. Furthermore, this section explains how to decide which variables in the model

should be transformed.

How is the model selection process under transformations?

The strategy for selecting the working model under different transformation is still under dis-

cussion. Sakia (1992) states “The selection of a transformation may be properly viewed as

model selection”. However, comparing regression models for variable selection under differ-

ent scale levels has some difficulties. The model selection criterion should be invariant to a

change of scale in the target variable, which is not the case for the Akaike information criterion

(AIC) or the Bayesian information criterion (BIC), two commonly used information criteria

for the linear and linear mixed regression models (Burnham and Anderson, 2004; Müller et al.,

2013). Therefore, the coefficients of determination and their extensions to the linear mixed

regression models are a first approximation for comparing the models in terms of general fit-

ting, since they are scale invariant. Additionally, the working model always depends on which

procedure is done first, variable or transformation selection. Some procedures that have been

implemented for the linear regression model include the combination of these two procedures

in one (Laud and Ibrahim, 1995; Hoeting and Ibrahim, 1998; Hoeting et al., 2002).

How should transformations be used in the presence of outliers?

Without loss of generality an outlier is defined as an atypical observation among a data set,

which can be representative or non-representative (Chambers, 1986). A discussion of the def-

inition of outlying observations for the linear mixed regression models can be find in Bell and
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Huang (2006) and Warnholz (2016b). Outliers are not themselves a violation of model assump-

tions. However, their presence could induce skewed distributions and heteroscedasticity that

lead to problems already examined in Section 1.2. Simply excluding an outlier is not always

the right answer since they may contain valuable information about the distribution of our data

(Belsley et al., 2005). If the presence of an outlier has a disproportionate influence on the

estimated model, an analysis with and without such observation is usually recommended.

Carroll and Ruppert (1985) state that proper transformation decision and identification of

outlying observations are interconnected. Thus, Figure 1.1 summarizes the stages in the anal-

ysis where the detection and the handling of outliers interconnects with the usage of a trans-

formation. For the detection of outliers, scatterplots between the outcome variable and the

explanatory variables or a box plot of the outcome variable can be sufficient. More method-

ologies can be found for instance in Cook and Weisberg (1982) and Barnett and Lewis (1984).

The most popular measures of influence are the Cook’s distance (Cook, 1977), the Welsch and

Kuh measure (Belsley et al., 2005) and the Hadi’s Influence Measure (Hadi, 1992). In the

case that the use of a transformation seems suitable after checking model assumptions and out-

liers are detected, a sensitivity analysis is suggested. This includes finding out if the outlying

case in the original scale is also an outlying observation in the transformed scaled. Further-

more, it is important to have an idea about how these observations can influence the need or

utility of a transformation. For instance, if the outliers cause heteroscedasticity, the deletion

of the outlier could make the usage of the transformation unnecessary. Some diagnostics for

studying the contribution of single observations on the need of transformations are presented in

Cheng (2005) and Atkinson and Riani (2012). A sensitivity analysis under a Box-Cox power

transformation model has been discussed by Bickel and Doksum (1981); Box and Cox (1982);

Hinkley and Runger (1984); Atkinson (1986) and Duan (1993). Atkinson (1986) proposes a

sensitivity analysis by eliminating outlying observations after applying a Box-Cox transfor-

mation. Atkinson (1982) studied the reduction of influential cases and outliers after applying

transformations in some examples. However, Cook and Wang (1983) proposed a method to

detect influential observations under the Box-Cox transformation that is superior to the method

of Atkinson (1982) (Cook and Wang, 1983; Sakia, 1992). Tsai and Wu (1990) and Kim et al.

(1996) studied the influence on the Jacobian of the transformation when single observations

are deleted. If the outliers influence the need of the transformation, different methods are suit-

able to treat the outliers (Hawkins, 1980; Cook and Prescott, 1981; Cook and Weisberg, 1982;

Cook and Wang, 1983; Barnett and Lewis, 1984; Hawkins et al., 1984). In a model context and

for the estimation process, different procedures have been proposed: model reformulations,

downweighting outlying observations (Rousseeuw and Leroy, 2005), use of the winsorization

method (Yale and Forsythe, 1976) and use extreme-value distributions (Withers and Nadarajah,

2007). Furthermore, there has been considerable growing interest in using robust techniques

in recent years for incorporating this effect into the model structure and fitting or bounding

outliers and influential observations (Huber, 1964; Krasker and Welsch, 1982; Hampel et al.,

1986; Rousseeuw and Van Zomeren, 1990). For instance, the M-estimation (Huber, 1964) and

the least trimmed squares (Anscombe and Guttman, 1960) are examples of robust models that

can be used when outliers are present in the data. As alternatives, it is common in practice to
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use Bayesian methods (Gelman et al., 2014) and quantile regression (Koenker, 2005).

In the other case, transformations can be useful in the presence of outliers since all infor-

mation can be kept in the data set and, at the same time, skewness and error variance can be

reduced (Osborne and Overbay, 2004). Furthermore, the rank transformation (Conover and

Iman, 1981) replaces the data for their corresponding ranks, and it can be seen as an outlying

observations handling. When a transformation is used without a previous outliers treatment,

it is recommended to use robust methods for the estimation of the transformation parameters

because the maximum likelihood theory is sensitive to outliers. In particular, Carroll (1980)

Carroll (1982b) , Carroll and Ruppert (1985), Bickel and Doksum (1981) and most recently

Marazzi and Yohai (2004) propose different robust methods for the Box-Cox transformation

and Burbidge et al. (1988) for the inverse hyperbolic sine transformation parameters. These

approaches are concerned with a modified likelihood function (see e.g. Krasker and Welsch

(1982)). Gottardo and Raftery (2009) developed a Bayesian estimation method for the Box-

Cox transformation that accounts for outlying values. Pericchi (1981) and Sweeting (1984)

study different choices of prior distributions for the Box-Cox linear model. For the same

model, Shin (2008) develops a semi-parametric estimation method. Note that all mentioned

methods only handle outliers in the outcome variable.

How do incomplete responses affect the usage of transformations?

The problem of missing data becomes a fundamental part of almost every research setting.

Rubin (1976) introduced a classification system of missing data which describes the prob-

ability of missing values in relation to the data. The missing data mechanisms are missing

completely at random (MCAR), missing at random (MAR) and missing not at random data

(MNAR). The effects of missing responses in the data set on the usage of transformations have

not yet been extensively studied. However, if it is reasonable that the missing data mechanism

is MAR, the missing values can be ignored and maximum likelihood theory can be used in

combination with a transformation (Rubin, 1976; Lipsitz et al., 2000).

How can the transformations be used when the data is multimodal?

The transformations presented in this paper most likely do not ensure the correction of assump-

tions when data is multimodal. For instance, a specific variable (e.g. gender or income) can

generate different groups in the data with distinct distributions (Bradley, 1977). Therefore,

before an appropriate transformation is selected, this effect should be removed or corrected by

including a factor as an explanatory variable in the regression model. After this, the residuals

should be unimodal. This conventional technique in general modelling theory is also a type of

transformation (Fink, 2009).

How does the range of the variable limit the choice of transformations?

One of the most important features that we have to know when choosing a transformation is

the range of the variable. Most of the transformations are not mathematically defined for zero

or negative values. In order to deal with this problem, three general solutions regarding the use
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Figure 1.1: A guide how to handle the interactions between transformations and outliers

42



CHAPTER 1. A GUIDELINE OF TRANSFORMATIONS IN LINEAR AND LINEAR
MIXED REGRESSION MODELS

of transformations have been published on this topic. Firstly, the researcher can shift the data

with a fixed constant (usually equal to one) or a fixed parameter that makes the data positive.

However, using an arbitrary parameter for making the data positive affects the analysis results

(Fletcher et al., 2005). Osborne (2002) suggests that adding a constant to the outcome variable

only changes the mean and not the other moments of the distribution, and he recommends

its use. Atkinson (1987) dedicates a whole chapter to discussing the implications of using

this family of transformations with a shifted parameter on model fitting, in particular in the

constant parameter and the estimation transformation parameter. Additionally, Hill (1963) and

Yeo and Johnson (2000) suggest that asymptotic results of maximum likelihood theory may not

hold including a shift parameter. Therefore, the second solution is to use a transformation that

includes in its functional form the possibility of using negative and non-negative responses.

Finally, Burbidge and Robb (1985) propose to shrink any zero values toward forward zero,

while holding the rest constant and applying the maximum likelihood theory.

How are the effects of many zeros in the variable on the transformation?

Data containing a substantial proportion of zeros is commonly known as a zero inflation prob-

lem or as an excess zeros problem. If this phenomenon is not correctly handled, the relation

between the conditional variance and the dependent variable is not equal, but greater. This

problem is called overdispersion and this can lead to an underestimation of the standard errors.

Furthermore, when the zero inflated problem is present, transformations may not be applicable

to achieve linearity. Another typical situation occurs when changing negative values in the out-

come variable to numbers close to zero. Magee (1988) studied the effects of this change in the

outcome variable for the Box-Cox transformation. In this case, the Jacobian of the transforma-

tion (see estimation methods in Section 1.2) usually tends to plus or minus infinity (MacKin-

non and Magee, 1990) and the transformation parameter tends to be also zero. Furthermore,

if a Box-Cox transformation is applied under this condition, the transformed variable will be

bounded from below, which is not optimal, if the aim is to deal with non Gaussian assumptions.

How can we decide which variables should be transformed?

Mosteller and Tukey (1977) propose a ladder of transformations to guide the selection of a

transformation that helps to fulfill the linearity assumption (see Section 1.2). If it becomes

evident that a serious problem in the residuals is present, a transformation in the dependent

variable is suggested. Otherwise, if the residuals are well behaved, transforming the outcome

can artificially lead to a violation of assumptions, especially to heteroscedasticity. In this case,

one or more of the explanatory variables should be transformed (Cohen et al., 2014; Brown,

2015). Box and Tidwell (1962) suggest the use of a power transformation in the explanatory

variables in order to linearize the relationship with the outcome variable. The method is known

as the Box-Tidwell transformation and seeks to find the optimal transformation parameter un-

der a Box-Cox transformation for each variable that can be transformed (e.g not for dummy

variables). The estimation process is based on maximum likelihood theory and is iterated until

convergence. Furthermore, it does not affect the variance stabilization and the Gaussian as-

sumptions of the error term distribution (Box and Cox, 1964).
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It is also possible to transform both sides of the regression model. This can be useful when

there is a fair certainty that the regression model already describes well the studied interaction,

but the assumptions over the error terms are not yet met. In this case, a transformation family

T can be applied on both sides of the equation, which leads to the transform both sides (TBS)

model:

T (yi) = T
[
f(xi, β), λ

]
+ ei,

and for f(·), the error terms are usually assumed to be additive. The transformation function

may take different functional forms. It can simply be the logarithmic transformation, but can

also be a more elaborate family of power transformations, such as the Box-Cox. For instance,

when the logarithmic transformation is applied on both sides, the level-level regression spec-

ification is known as log-log transformation. If done properly, transforming both sides makes

the estimation of β more efficient (Carroll and Ruppert, 1988). If the transformation relies

on a transformation parameter, adjustments for the estimation of this parameter are suggested.

Regarding the Box-Cox transformation, Carroll and Ruppert (1988) propose writing the max-

imum likelihood function in terms of β, σ2
e and λ, and then maximizing it by employing an

optimization technique such as a the Newton algorithm. As they also acknowledge, it is not al-

ways possible to carry out this procedure as it can become computationally expensive. Carroll

and Ruppert (1988) suggest two alternatives. One of them is known as the profile likelihood,

which is based on the same theory proposed in Box and Cox (1964). The second method is

the use of the pseudo-regression model. In terms of parsimony, Carroll and Ruppert (1988)

favor the use of the pseudo-regression model method over the profile likelihood. However,

the pseudo-regression model method can have irremediable convergence problems, and when

that happens the profile likelihood method is more reliable. Further estimation methods for

the TBS method are also studied by Ruppert and Aldershof (1989), Kettl (1991), Nychka and

Ruppert (1995) and Wang and Ruppert (1995). In order to calculate standard errors, Carroll

and Ruppert (1988) classify six techniques according to the estimation method employed for

σ2
e , λ and β and which model is fitted to the data.

1.4 Conclusions and Future Research Directions

As this review of transformations shows, the application of transformations is a helpful tool for

achieving model assumptions for the linear and linear mixed regression models. In this work,

special attention has been paid to the wide range of transformations useful for achieving model

assumptions and estimation methods that can be used for the estimation of transformations

parameters. We explored the implications of these assumptions, their importance, and the

consequences of their violation in terms of estimation and inference. Moreover, an attempt

was made to present possible solutions to correct in the case that any of these assumptions

is violated. By doing so we showed that transformations can work as a solution for some of

these violations; particularly, for non-normality, heteroscedasticity, and non-linearity. In order

to combat the misuse of transformations, this work also provides a guide for the correct and

thoughtful application.
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Because an increasing number of researchers are using the linear and linear mixed regres-

sion models, more theory of transformations for these models should be developed in future.

For instance, one drawback of transformations is still the interpretation of model results. Inter-

preting estimations in the transformed scale is not always desired, and most researchers prefer

to take decisions on the original scale. Manning (1998) summarized this issue by pointing out

that “First Bank will not cash a check for log dollars”. Therefore, further research is needed to

investigate the bias of back-transforming into the original scale an the interpretation of model

results under transformations. Nonetheless, these limitations should be seen as future oppor-

tunities. Finally, more effort should be put into the comparison of different estimations under

diverse data circumstances.
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Chapter 2

The R Package trafo for Transforming
Linear Regression Models

2.1 Introduction

To study the relation between two or more variables, the linear regression model is one of the

most employed statistical methods. For an appropriate usage of this model, a set of assumptions

needs to be fulfilled. These assumptions are, among others, related to the functional form and

to the error terms, such as linearity and homoscedasticity. However, in practical applications,

these assumptions are not always satisfied. This leads to the question of how the practitioner

can move on with the analysis in such case. One way to proceed is to conduct the analysis

ignoring the model assumption violations which is, of course, not recommended as it would

likely yield misleading results. Another solution is to use more complex methods such as

generalized linear regression models or non-parametric methods, as they might fit the data and

problem better. A third method which also constitutes the focus of the present paper is the

application of suitable transformations. Transformations have the potential to correct certain

violations and by doing so, enable to continue the analysis with the known (linear) regression

model. Due to its convenience, transformations such as the logarithm or the Box-Cox are

commonly applied in many branches of sciences; for example in economics (Hossain, 2011)

and neuroscience (Morozova et al., 2016). In order to simplify the choice and the usage of

transformations in the linear regression model, the R (R Core Team, 2017) package trafo
(Medina et al., 2017) is developed. The present work is inspired by the framework proposed in

Rojas-Perilla et al. (2017) and extends other existing R packages that provide transformations.

Many packages that contain transformations do not focus especially on the usage of trans-

formations (Venables and Ripley, 2002; Fox and Weisberg, 2011; Molina and Marhuenda,

2015; Ribeiro Jr. and Diggle, 2016; Fife, 2017). They often only include popular transfor-

mations like the logarithmic or the Box-Cox transformation family. The package car (Fox

and Weisberg, 2011) expands the selection of transformations. It includes the Box-Cox, the

basic power, and the Yeo-Johnson transformation families, and uses the maximum likelihood

approach for the estimation of the transformation parameter. An exponential transformation

proposed by Manly (1976) is provided in the package caret (Kuhn, 2008) and the multiple pa-

rameter Johnson transformation in the packages Johnson (Fernandez, 2014) and jtrans (Wang,
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2015). While package MASS (Venables and Ripley, 2002) and package car (Fox and Weis-

berg, 2011) only provide the maximum likelihood approach for the estimation of the transfor-

mation parameter for the Box-Cox family, the estimation can be conducted by a wide range of

methods in the AID package (Dag et al., 2017). Most of the provided methods are based on

goodness of fit tests like the Shapiro-Wilk or the Anderson-Darling test. However, the AID
package only contains the Box-Cox transformation.

It is noticeable that none of the above-mentioned packages helps the user in the process

of deciding which transformation is actually suitable according to his needs. Furthermore,

most packages do not provide tools to see at the first sight if the transformation improves the

untransformed model. Therefore, package trafo combines and extends the features provided

by the packages mentioned above. Additionally to transformations that are already provided

by existing packages, the trafo package includes, among others, the Bickel-Doksum (Bickel

and Doksum, 1981), Modulus (John and Draper, 1980), the neglog (Whittaker et al., 2005)

and glog (Durbin et al., 2002) transformations that are modifications of the Box-Cox and the

logarithmic transformation, respectively, in order to deal with negative values in the response

variable. Furthermore, the selection of estimation methods for the transformation parameter is

enlarged by methods based on moments and divergence measures. The main benefits of the

package trafo can be summarized as follows:

• An initial check can be conducted that helps to decide if and which transformation is

useful for the researchers needs.

• The untransformed model and a model with a transformed dependent variable as well as

two transformed models can be run simultaneously, and thus the models can be easily

compared with regard to the model assumptions.

• Extensive diagnostics are provided in order to check if the transformation helps to fulfill

the model assumptions normality, homoscedasticity, and linearity.

The remainder of this paper is structured as follows. In Section 2.2, the transformations

included in the package are presented. Section 2.3 demonstrates in form of a case study the

functionality of the package. Section 2.4 summarizes the user-defined function feature of the

package. In Section 2.5, some concluding remarks and potential extensions of the package are

discussed. Finally, Appendix .1 presents the mathematical derivations underlying the package.

2.2 Transformations and estimation methods

The equation describing and summarizing the relationship between a continuous outcome vari-

able Y and different covariates X (either discrete or continuous) is defined by yi = xTi β + ei,

with i = 1, . . . , n. This is also known as the linear regression model and is composed by a

deterministic and a random component, which rely on different assumptions. Among others,

these assumptions can be summarized as follows:

• Normality (N): The conditional distribution of Y given X follows a normal distribution.
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• Homoscedasticity (H): The conditional variance of Y given X is constant.

• Linearity (L): The conditional expectation of the outcome variable Y given the continu-

ous covariates X is a linear function in X .

As already mentioned, different approaches have been proposed for achieving these model

assumptions. Some of them include using alternative estimation methods of the regression

terms or applying more complex regression models. In this paper, we focus on defining a par-

simonious re-specification for the model, such as the usage of non-linear transformations of

the outcome variable. The transformations implemented in the package trafo basically help to

achieve normality. However, most of them simultaneously correct other assumptions (see also

Table 2.1 and Table 2.2).

The transformations can be classified into transformations without a transformation parame-

ter and data-driven transformations with a transformation parameter that needs to be estimated.

The first set of transformations presented in Table 2.1 comprises, among others, the logarithmic

transformation and some variations, which is considered due to its popularity and straightfor-

ward application. The reciprocal transformation is one of the well-known ladder of powers,

which is a family of power transformations (Tukey, 1977; Emerson and Stoto, 1983). The

Table 2.1: Transformations without transformation parameter

Transformation Source Formula Support N H L

Log (shift) Box and Cox (1964) log(y + s) y ∈ R 7 7 7

Glog Durbin et al. (2002) log(y +
√
y2 + 1) y ∈ R 7 7 7

Neglog Whittaker et al. (2005) Sign(y) log(|y|+ 1) y ∈ R 7 7

Reciprocal Tukey (1977) 1
y y 6= 0 7 7

data-driven transformations presented in Table 2.2 are dominated by the Box-Cox transforma-

tion and its modifications or alternatives, e.g. the modulus or Bickel-Doksum transformation.

However, more flexible versions of the logarithmic transformation, as the log-shift opt or the

Manly transformation which is an exponential transformation, are also included in the package

trafo.

Both tables provide information about the range of the dependent variable that is supported

by the transformation. Some transformations are only suitable for positive values of y. This

is generally true for the logarithmic and Box-Cox transformations. However, in case that the

dependent variable contains negative values, the values are shifted by a deterministic shift s

such that y + s > 0 by default in package trafo. Furthermore, the tables emphasize which

assumptions the transformation helps to achieve. These are general suggestions and the actual

success always also depends on the data. For specific properties of each transformation we

refer to the original references.

Since the transformations in Table 2.2 contain transformation parameters that need to be es-

timated, package trafo contains different methodologies for this estimation. The benefit of

each estimation method depends on the research analysis and the underlying data. They can be

summarized as follows:
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Table 2.2: Data-driven transformations

Transformation Source Formula Support N H L

Box-Cox (shift) Box and Cox (1964)

{
(y+s)λ−1

λ
if λ 6= 0;

log(y + s) if λ = 0.
y ∈ R 7 7 7

Log-shift opt Feng et al. (2016) log(y + λ) y ∈ R 7 7 7

Bickel-Docksum Bickel and Doksum (1981) |y|λSign(y)−1
λ

for λ > 0 y ∈ R 7 7

Yeo-Johnson Yeo and Johnson (2000)


(y+1)λ−1

λ
if λ 6= 0, y ≥ 0;

log(y + 1) if λ = 0, y ≥ 0;
(1−y)2−λ−1

λ−2
if λ 6= 2, y < 0;

−log(1− y) if λ = 2, y < 0.

y ∈ R 7 7

Square Root (shift) Emerson and Stoto (1983)
√
y + s y ∈ R 7 7

Square Root (shift) as Rojas-Perilla et al. (2017)
√
y + λ y ∈ R 7 7

Manly Manly (1976)

{
eλy−1
λ

if λ 6= 0;

y if λ = 0.
y ∈ R 7 7

Modulus John and Draper (1980)

{
Sign(y)

(|y|+1)λ−1
λ

if λ 6= 0;

Sign(y) log (|y|+ 1) if λ = 0.
y ∈ R 7

Dual Yang (2006)

{
(yλ−y−λ)

2λ
if λ > 0;

log(y) if λ = 0.
y > 0 7

Gpower Kelmansky et al. (2013)

{
(y+
√
y2+1)λ−1
λ

if λ 6= 0;

log(y +
√
y2 + 1) if λ = 0.

y ∈ R 7

• Maximum likelihood theory

• Distribution moments optimization: Skewness or kurtosis

• Divergence minimization: Following Kolmogorov-Smirnov (KS), Cramér-von-Mises

(KM) or Kullback-Leibler (KL) measurements

The maximum likelihood estimation method finds the set of values for the transformation pa-

rameter that maximizes the likelihood function of the dataset under the selected transformation.

This is a standard approach that is also implemented in several of the mentioned R packages

(Venables and Ripley, 2002; Fox and Weisberg, 2011). However, since the maximum like-

lihood estimation is rather sensitive to outliers, the skewness or kurtosis optimization might

be preferable for the estimation of the transformation parameter in the presence of such out-

liers. These methods are especially favorable when it is important in the analysis to meet these

moments. For instance, skewness minimization should be used when it is important to get a

symmetric distribution. Additionally, if the focus lies on comparing the whole distribution of

the transformed data with a normal distribution, and not only some moments, different diver-

gence measures as the KS, KM or KL can be used. For all estimation methods a lambda range

on which the functions are evaluated needs to be proposed. Therefore, default values are set

for the predefined transformations.

Since the user can only decide if the transformation is helpful by checking the above men-

tioned assumptions, the package trafo contains a wide range of diagnostic checks. A smaller

selection is used in the fast check that helps to decide if a transformation might be useful. Ta-

ble 3 summarizes the implemented diagnostic checks that are simultaneously returned for the

untransformed and a transformed model or two differently transformed models and indicates
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Table 2.3: Diagnostic checks provided in the package trafo

Assumption Diagnostic check Fast check

Normality Skewness and kurtosis X
Shapiro-Wilk test X
Quantile-quantile plot
Histograms

Homoscedasticity Breusch-Pagan test X
Residuals vs. fitted plot
Scale-location

Linearity Scatter plots between y and x X
Observed vs. fitted plot

which diagnostics are conducted in the fast check. Additionally, plots are provided that help to

detect outliers such as the Cook’s distance plot and influential observations by the residuals vs

leverage plot.

Another feature of the package trafo is the possibility of defining a customized transformation.

Thus, a user can also use the infrastructure of the package for a transformation that suits the

individuals needs better than the predefined transformations. However, in this version of the

package trafo the user needs to define the transformation and the standardized transformation

in order to use this feature.

2.3 Case Study

In order to show the functionality of the package trafo, we present in form of a case study the

steps a user faces when checking the assumptions of the linear model. For this illustration, we

use the data set called University from the R package Ecdat (Croissant, 2016). This data

set contains variables about the equipment and costs of university teaching and research and

can be obtained as follows:

R> library(Ecdat)

R> data(University)

A practical question for the head of a university could be how study fees (stfees) raise the

universities net assets (nassets). Both variables are metric. Thus, a linear regression could

help to explain the relation between these two variables. A linear regression model can be

conducted in R using the lm function.

R> linMod <- lm(nassets ˜ stfees, data = University)

The features in the package trafo that help to find a suitable transfomation for this model and to

compare different models are summarized in Table 2.4 and illustrated in the next subsections.

2.3.1 Finding a suitable transformation

It is well known that the reliability of the linear regression model depends on assumptions.

Amongst others, normality, homoscedasticity, and linearity are assumed. In this section, we
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Table 2.4: Core functions of package trafo

Function Description

assumptions() Enables a fast check which transformation is suitable.
trafo lm() Compares the untransformed model with a transformed model.

trafo compare() Compares two differently transformed models.
diagnostics() Returns information about the transformation and different

diagnostics checks in form of tests.
plot() Returns graphical diagnostics checks.

focus on presenting how the user can decide and assess, if and which, transformations help to

fulfill these model assumptions. Thus, a first fast check of these model assumptions can be used

in the package trafo in order to find out if the untransformed model meets these assumptions

or if using a transformation seems suitable. The fast check can be conducted by the function

assumptions. This function returns the skewness, the kurtosis and the Shapiro-Wilk test for

normality, the Breusch-Pagan test for homoscedasticity and scatter plots between the dependent

and the explanatory variables for checking the linear relation. All possible arguments of the

function assumptions are summarized in Table 2.5. In the following, we only show the

returned normality and homoscedasticity tests. The results are ordered by the highest p value

of the Shapiro-Wilk and Breusch-Pagan test.

R> assumptions(linMod)

The default lambdarange for the log shift opt transformation

is calculated dependent on the data range. The lower value is

set to -2035.751 and the upper value to 404527.249

The default lambdarange for the square root shift

transformation is calculated dependent on the data range. The

lower value is set to -2035.751 and the upper value to

404527.249

Test normality assumption

Skewness Kurtosis Shapiro_W Shapiro_p

logshiftopt -0.4201 4.0576 0.9741 0.2132

boxcox -0.4892 4.2171 0.9621 0.0527

bickeldoksum -0.4892 4.2171 0.9621 0.0527

gpower -0.4892 4.2171 0.9621 0.0527

modulus -0.4892 4.2171 0.9621 0.0527

yeojohnson -0.4892 4.2171 0.9621 0.0527

dual -0.4837 4.2180 0.9619 0.0519

sqrtshift 0.6454 5.2752 0.9504 0.0139

log -1.1653 5.1156 0.9140 0.0004

neglog -1.1651 5.1150 0.9140 0.0004
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glog -1.1653 5.1156 0.9140 0.0004

untransformed 2.4503 12.7087 0.7922 0.0000

reciprocal -3.7260 19.0487 0.5676 0.0000

Test homoscedasticity assumption

BreuschPagan_V BreuschPagan_p

modulus 0.1035 0.7477

yeojohnson 0.1035 0.7477

boxcox 0.1035 0.7476

bickeldoksum 0.1036 0.7476

gpower 0.1035 0.7476

dual 0.1128 0.7369

logshiftopt 0.1154 0.7341

neglog 0.7155 0.3976

log 0.7158 0.3975

glog 0.7158 0.3975

reciprocal 1.6109 0.2044

sqrtshift 5.4624 0.0194

untransformed 9.8244 0.0017

Following the Shapiro-Wilk test, the best transformation to fulfill the normality assumption

is the log-shift opt transformation followed by the Box-Cox, Bickel-Doksum, gpower, modulus

and Yeo-Johnson transformation. For improving the homoscedasticity assumption, all trans-

formations help except the square root (shift) transformation. As mentioned before, default

values for the lambda range for all transformations are predefined and these are used in this

fast check. Since the default values for the log-shift opt and square root (shift) transformation

depend on the range of the response variable, the chosen range is reported in the return. The

Manly transformation is not in the list since the default lambda range for the estimation of the

transformation parameter is not suitable for this data set. For such a case, the user can change

the lambda range for the transformations manually. Similarly, the user can change the estima-

tion methods for the transformation parameter. For instance, if symmetry is of special interest

for the user the skewness minimization might be a better choice than the default maximum like-

lihood method. In this study case all assumptions are equally important. Thus, we choose the

Box-Cox transformation for the further illustrations even though some other transformations

would be suitable as well.

2.3.2 Comparing the untransformed model with a transformed model

For a more detailed comparison of the transformed model with the untransformed model, a

function called trafo lm (for the arguments see Table 2.6) can be used as follows:

R> linMod_trafo <- trafo_lm(linMod)
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Table 2.5: Arguments of function assumptions

Argument Description Default

object Object of class lm.
method Estimation method for the transformation parameter. Maximum likelihood

std Normal or scaled transformation. Normal
... Addtional arguments can be added, especially for changing Default values of

the lambda range for the estimation of the parameter, e.g. lambda range of
manly lr = c(0.000005,0.00005) each transformation

The Box-Cox transformation is the default option such that only the lm object needs to be given

to the function. The object linMod trafo is of class trafo lm and the user can conduct

the methods print, summary and plot in the same way as for an object of class lm. The

difference is that the new methods simultaneously return the results for both models, the un-

transformed model and the transformed model. Furthermore, a method called diagnostics

helps to compare results of normality and homoscedasticity tests. In the following, we will

show the return of the diagnostics method and some selected plots in order to check the

normality, homoscedasticity and the linearity assumption of the linear model.

R> diagnostics(linMod_trafo)

Diagnostics: Untransformed vs transformed model

Transformation: boxcox

Estimation method: ml

Optimal Parameter: 0.1894257

Residual diagnostics:

Normality:

Pearson residuals:

Skewness Kurtosis Shapiro_W Shapiro_p

Untransformed model 2.4503325 12.708681 0.7921672 6.024297e-08

Transformed model -0.4892222 4.217105 0.9620688 5.267566e-02

Heteroscedasticity:

BreuschPagan_V BreuschPagan_p

Untransformed model 9.8243555 0.00172216

Transformed model 0.1035373 0.74762531

The first part of the return shows information from the applied transformation. As cho-

sen, the Box-Cox transformation is used with the optimal transformation parameter around

0.19 which is estimated using the maximum likelihood approach that is also set as default.

The optimal transformation parameter differs from 0, which would be equal to the logarith-

mic transformation, and 1, which means that no transformation is optimal. The Shapiro-Wilk
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(a) Normal Q-Q plots of the error terms.
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Figure 2.1: Selection of diagnostic plots obtained by using plot(linMod trafo). (a)
shows Normal Q-Q plots error terms of the untransformed and the transformed model. (b)
shows the residuals against the fitted values of the untransformed and the transformed model.
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Figure 2.2: Selection of obtained diagnostic plots by using plot(linMod trafo). (a)
shows the scatter plot of the untransformed net assets and the study fees (b) shows scatter plot
of the transformed net assets and the study fees. The numbers specify the correlation coefficient
between the dependent and independent variable.

test rejects normality of the residuals of the untransformed model but it does not reject nor-

mality for the residuals of the transformed model on a 5% level of significance. Furthermore,

the skewness shows that the residuals in the transformed model are more symmetric and the

kurtosis is closer to 3, the value of the kurtosis of the normal distribution. The results of the

Breusch-Pagan test clearly show that homoscedasticity is rejected in the untransformed model

but not in the transformed model. These two findings can be supported by diagnostic plots

shown in Figure 2.1.

R> plot(linMod_trafo)

In order to evaluate the linearity assumption, scatter plots of the dependent variable against the

explanatory variable can help. Figure 2.2 shows that the assumption of linearity is violated in

the untransformed model. In contrast, the relation between the transformed net assets and the

study fees seems to be linear. As demonstrated above, the user can receive diagnostics for an

untransformed and a transformed model with only a little more effort in comparison to fitting

the standard linear regression model without transformation. While we only show the example
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Table 2.6: Arguments of function trafo lm

Argument Description Default

object Object of class lm.
trafo Selected transformation. Box-Cox
lambda Estimation or a self-selected numeric value. Estimation
method Estimation method for the transformation parameter. Maximum likelihood

lambdarange Determines lambdarange for the estimation of the Default lambdarange
transformation parameter. for each transformation.

std Normal or scaled transformation. Normal
custom trafo Add customized transformation. None

with the default transformation, the user can also easily change the transformation and the

estimation method. For instance, the user could choose the log-shift opt transformation with

the skewness minimization as estimation method.

R> linMod_trafo2 <- trafo_lm(object = linMod, trafo =

+ "logshiftopt", method = "skew")

2.3.3 Compare two transformed models

The user can also compare different transformations with regard to meet the model assump-

tions. In many present-day applications, the logarithm is often used without longer considera-

tions about its usefulness. In order to compare the logarithm, e.g., with the selected Box-Cox

transformation, the user needs to specify two objects of class trafo as follows:

R> boxcox_uni <- boxcox(linMod)

R> log_uni <- logtrafo(linMod)

The utility of trafo objects is twofold. First, the user can use the functions for each trans-

formation in order to simply receive the transformed vector. The print method gives first

information about the vector and the method as.data.frame returns the whole data frame

with the transformed variable in the last column. The variable is named as the dependent

variable with an added t.

R> head(as.data.frame(boxcox_uni))

nassets stfees nassetst

1 3669.71 2821 19.71248

2 12156.00 4037 26.07723

3 185203.00 17296 47.24867

4 323100.00 18800 53.08840

5 32154.00 9314 32.42140

6 41669.00 7388 34.31882

Second, the objects can be used to compare linear models with differently transformed

dependent variable using function trafo compare. The arguments of this functions are

shown in Table 2.7. The user creates an object of class trafo compare by:
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Table 2.7: Arguments of function trafo compare

Argument Description Default

object Object of class lm.
trafos List of objects of class trafo.

std Normal or scaled transformation. Normal

R> linMod_comp <- trafo_compare(object = linMod,

+ trafos = list(boxcox_uni, log_uni))

For this object, the user can use the same methods as for an object of class trafo lm. In this

work, we only want to show the return of method diagnostics.

R> diagnostics(linMod_comp)

Diagnostics of two transformed models

Transformations: Box-Cox and Log

Estimation methods: ml and no estimation

Optimal Parameters: 0.1894257 and no parameter

Residual diagnostics:

Normality:

Pearson residuals:

Skewness Kurtosis Shapiro_W Shapiro_p

Box-Cox -0.4892222 4.217105 0.9620688 0.0526756632

Log -1.1653028 5.115615 0.9140135 0.0003534879

Heteroscedasticity:

BreuschPagan_V BreuschPagan_p

Box-Cox 0.1035373 0.7476253

Log 0.7158162 0.3975197

The first part of the return points out that the Box-Cox transformation is a data-driven trans-

formation with a transformation parameter while the logarithmic transformation does not adapt

to the data. Furthermore, we can see that normality is rejected for the model with a logarithmic

transformed dependent variable, while it is not rejected when the Box-Cox transformation is

used. The violation of the homoscedasticity assumption can be fixed by both transformations.

2.4 Customized transformation

An additional user-friendly feature in the package trafo is the possibility of using the frame-

work also for self-defined transformations. In the following we show this option for the glog

transformation.
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In a first step, the transformation and the standardized or scaled transformation need to be

defined. The mathematical expression of these two functions is presented in the Appendix .1.2.

R> glog_trafo <- function(y) {

+ yt <- log(y + sqrt(yˆ2 + 1))

+ return(y = yt)}

R> glog_std <- function(y) {

+ zt <- log(y + sqrt(yˆ2 + 1)) *

+ sqrt(geometric.mean(1 + yˆ2))

+ return(zt = zt)}

Second, the user inserts the two functions as a list argument to the trafo lm function. Fur-

thermore, the user needs to specify for the trafo argument if the transformation is without a

parameter ("custom wo") or with one parameter ("custom one"). The glog transforma-

tion does not rely on a transformation parameter.

R> linMod_custom <- trafo_lm(linMod, trafo = "custom_wo",

+ custom_trafo = list(glog_trafo = glog_trafo,

+ glog_std = glog_std))

One limitation of this feature is the necessity to insert both the transformation and the scaled

transformation since the latter is often not known. Furthermore, the framework is only suitable

for transformations without and with only one transformation parameter.

2.5 Conclusions and Future Research Directions

Even though the development in computing enables the use of complex methods nowadays,

transformations are still a parsimonious way to meet model assumptions in a linear regres-

sion model. In the Section 2.3, we demonstrated how the package trafo helps the user to

decide easily if and which transformation is suitable to fulfill the model assumptions normal-

ity, homoscedasticity and linearity. To the best of our knowledge trafo is the only R package

that supports this decision process. Furthermore, the package trafo provides an extensive col-

lection of transformations usable in linear regression models and a wide range of estimation

methods for the transformation parameter. In future versions, we plan to enlarge this collection

constantly, also for other types of data, e.g, count data. Additionally, more of the methods that

are available for the class lm could be developed for objects of class trafo lm. We would

also like to expand the infrastructure for linear mixed regression models.
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.1 Likelihood Derivation of the Transformations

.1.1 Log (shift) transformation

Let J(y) denote the Jacobian of a transformation from yi to y∗i . In order to obtain z∗i , the

log (shift) transformation, given by y∗i
J(y)1/n

, and for simplicity, we use a modification of the

definition of the geometric mean, denoted by ȳLS. Therefore, the Jacobian, the scaled, and the

inverse of the log (shift) transformation are given bellow.

The log (shift) transformation presented in Table 2.1 is defined as:

y∗i = log(yi + s).

In case, the shifted and fixed parameter s would not be necessary, the standard logarithm

function (logarithmic transformation with s = 0) is applied.

The modification of the definition of the geometric mean for this transformation is:

ȳLS =

[
n∏
i=1

yi + s

] 1
n

.

Therefore, the expression of the Jacobian is defined as:

J(y) =

n∏
i=1

dy∗i
dy

=

n∏
i=1

1

yi + s

= ȳ−nLS .

The scaled transformation is given by:

z∗i = log(yi + s)ȳLS .

The inverse function of the log (shift) transformation is denoted as:

f(yi) = log(yi + s)

xi = log(yi + s)

yi = exi − s

⇒ f−1(yi) = eyi − s.

.1.2 Glog transformation

Let J(y) denote the Jacobian of a transformation from yi to y∗i . In order to obtain z∗i , the glog

transformation, given by y∗i
J(y)1/n

, and for simplicity, we use a modification of the definition of

the geometric mean, denoted by ȳGL. Therefore, the Jacobian, the scaled, and the inverse of

the glog transformation are given bellow.
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The glog transformation presented in Table 2.1 is defined as:

y∗i = log
(
yi +

√
y2
i + 1

)
if λ = 0.

The modification of the definition of the geometric mean for this transformation is:

ȳGL =

[
n∏
i=1

1 + y2
i

] 1
n

.

Therefore, the expression of the Jacobian is defined as this defined for the inverse hyperbolic

sine (arsinh) function:

J(y) =
n∏
i=1

dy∗i
dy

=
n∏
i=1

1

yi +
√
y2
i + 1

(
1 +

2yi

2
√
y2
i + 1

)

=

n∏
i=1

1

yi +
√
y2
i + 1

(
yi +

√
y2
i + 1√

y2
i + 1

)

=
n∏
i=1

1√
y2
i + 1

= ȳ
−n
2
GL .

The scaled transformation is given by:

z∗i = log
(
yi +

√
y2
i + 1

)
ȳ

1
2
GL.

The inverse function of the glog transformation is denoted as:

f(yi) = log
(
yi +

√
y2
i + 1

)
xi = log

(
yi +

√
y2
i + 1

)
exi − yi =

√
y2
i + 1

(exi − yi)2 = y2
i + 1

ex
2
i − 2exiyi = 1

yi = −(1− ex2i )
2exi

⇒ f−1(yi) = −(1− ey2i )
2eyi

.
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.1.3 Neglog transformation

Let J(y) denote the Jacobian of a transformation from yi to y∗i . In order to obtain z∗i , the

scaled neglog transformation, given by y∗i
J(y)1/n

, and for simplicity, we use a modification of the

definition of the geometric mean, denoted by ȳNL. Therefore, the Jacobian, the scaled, and the

inverse of the neglog transformation are given bellow.

The neglog transformation presented in Table 2.1 is defined as:

y∗i = sign(yi) log (|yi|+ 1) .

The modification of the definition of the geometric mean for this transformation is:

ȳNL =

[
n∏
i=1

(|yi|+ 1)

] 1
n

.

Therefore, the expression of the Jacobian comes to:

J(y) =
n∏
i=1

dy∗i
dy

=
n∏
i=1

sign(yi)
1

|yi|+ 1

= sign
( n∏
i=1

yi

)( n∏
i=1

|yi|+ 1

)−1

= sign
( n∏
i=1

yi

)
ȳ−nNL.

The scaled transformation is given by:

z∗i = sign(yi) log (|yi|+ 1) sign
( n∏
i=1

yi

)
ȳNL.

The inverse function of the neglog transformation is denoted as:

f(yi) = sign(yi) log (|yi|+ 1)

xi = sign(yi) log (|yi|+ 1)

|yi| = esign(xi)xi − 1

⇒ f−1(yi) = ±
[
esign(yi)yi − 1

]
.

.1.4 Reciprocal transformation

Let J(y) denote the Jacobian of a transformation from yi to y∗i . In order to obtain z∗i , the

reciprocal transformation, given by y∗i
J(y)1/n

, and for simplicity, we use a modification of the

definition of the geometric mean, denoted by ȳR. Therefore, the Jacobian, the scaled, and the

inverse of the reciprocal transformation are given bellow.
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The reciprocal transformation presented in Table 2.1 is defined as:

y∗i =
1

yi
.

The definition of the geometric mean is:

ȳR =

[
n∏
i=1

yi

] 1
n

.

Therefore, the expression of the Jacobian is defined as:

J(y) =
n∏
i=1

dy∗i
dy

=
n∏
i=1

− 1

y2
i

= −ȳ−2n
R .

The scaled transformation is given by:

z∗i = − 1

yi
ȳ2
R.

The inverse function of the reciprocal transformation is denoted as:

f(yi) =
1

yi

xi =
1

yi

yi =
1

xi

⇒ f−1(yi) =
1

yi
.

.1.5 Box-Cox (shift) transformation

y∗i (λ) =


(yi+s)

λ−1
λ if λ 6= 0 (A);

log(yi + s) if λ = 0 (B).

Box-Cox (shift) transformation case (A)

Let J(λ, y) denote the Jacobian of a transformation from yi to y∗i (λ). In order to obtain z∗i (λ),

the scaled Box-Cox (shift)(A) transformation, given by y∗i (λ)

J(λ,y)1/n
, and for simplicity, we use a

modification of the definition of the geometric mean, denoted by ȳBC. Therefore, the Jacobian,

the scaled, and the inverse of the Box-Cox (shift)(A) transformation are given bellow.
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The Box-Cox (shift)(A) transformation presented in Table 2.2 is defined as:

y∗i (λ) =
(yi + s)λ − 1

λ
if λ 6= 0.

In case, the shifted and fixed parameter s is not necessary for making the dataset positive,

the standard Box-Cox transformation (with s = 0) is applied.

The definition of the geometric mean is:

ȳBC =

[
n∏
i=1

yi + s

] 1
n

.

Therefore, the expression of the Jacobian comes to:

J(λ,y) =

n∏
i=1

dy∗i (λ)

dy

=

n∏
i=1

λ(yi + s)λ−1

λ

=

n∏
i=1

(yi + s)λ−1

= ȳ
n(λ−1)
BC .

The scaled transformation is given by:

z∗i (λ) =
(yi + s)λ − 1

λ

1

ȳλ−1
BC

.

The inverse function of the Box-Cox (shift)(A) transformation is denoted as:

f(yi) =
(yi + s)λ − 1

λ

xi =
(yi + s)λ − 1

λ

yi = (λxi + 1)
1
λ − s

⇒ f−1(yi) = (λyi + 1)
1
λ − s.

Box-Cox (shift) transformation case (B)

This case is exactly equal to the log (shift) case.

.1.6 Log-shift opt transformation

Let J(λ, y) denote the Jacobian of a transformation from yi to y∗i (λ) to y∗i (λ). In order to

obtain z∗i (λ), the log-shift opt transformation, given by y∗i (λ)

J(λ,y)1/n
, and for simplicity, we use a

modification of the definition of the geometric mean, denoted by ȳLSO. Therefore, the Jacobian,

the scaled, and the inverse of the log-shift opt transformation are given bellow.
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The log-shift opt transformation presented in Table 2.2 is defined as:

y∗i (λ) = log(yi + λ).

The modification of the definition of the geometric mean for this transformation is:

ȳLSO =

[
n∏
i=1

yi + λ

] 1
n

.

Therefore, the expression of the Jacobian is defined as:

J(λ,y) =

n∏
i=1

dy∗i (λ)

dy

=

n∏
i=1

1

yi + λ

= ȳ−nLSO.

The scaled transformation is given by:

z∗i (λ) = log(yi + λ)ȳLSO.

The inverse function of the log-shift opt transformation is denoted as:

f(yi) = log(yi + λ)

xi = log(yi + λ)

yi = exi − λ

⇒ f−1(yi) = eyi − λ.

.1.7 Bickel-Docksum transformation

Let J(λ, y) denote the Jacobian of a transformation from yi to y∗i (λ). In order to obtain z∗i (λ),

the scaled Bickel-Docksum transformation, given by y∗i (λ)

J(λ,y)1/n
, and for simplicity, we use a

modification of the definition of the geometric mean, denoted by ȳBD. Therefore, the Jacobian,

the scaled, and the inverse of the Bickel-Docksum transformation are given bellow.

The Bickel-Docksum transformation presented in Table 2.2 is defined as:

y∗i (λ) =
|yi|λsign(yi)− 1

λ
if λ > 0.

The modification of the definition of the geometric mean for this transformation is:

ȳBD =

[
n∏
i=1

|yi|

] 1
n

.
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Therefore, the expression of the jacobian comes to:

J(λ,y) =
n∏
i=1

dy∗i (λ)

dy

=
n∏
i=1

sign(yi)λ|yi|λ−1

λ

= sign
( n∏
i=1

yi

)( n∏
i=1

|yi|
)λ−1

= sign
( n∏
i=1

yi

)
ȳ
n(λ−1)
BD .

The scaled transformation is given by:

z∗i (λ) =
|yi|λsign(yi)− 1

λ

1

sign
(∏n

i=1 yi

)
ȳ

(λ−1)
BD

.

The inverse function of the Bickel-Docksum transformation is denoted as:

f(yi) =
|yi|λsign(yi)− 1

λ

xi =
|yi|λsign(yi)− 1

λ

|yi| =
[
sign(xi)(xiλ+ 1)

] 1
λ

⇒ f−1(yi) = ±
[
sign(yi)(yiλ+ 1)

] 1
λ .

.1.8 Yeo-Johnson transformation

y∗ij(λ) =



(yi+1)λ−1
λ if λ 6= 0, yi ≥ 0 (A);

log(yi + 1) if λ = 0, yi ≥ 0 (B);

− (1−yi)2−λ−1
2−λ if λ 6= 2, yi < 0 (C);

−log(1− yi) if λ = 0, yi < 0 (D).

Yeo-Johnson transformation case (A)

This case is exactly equal to the Box-Cox (shift) case (A), with s = 1.

Yeo-Johnson transformation case (B)

This case is exactly equal to the log (shift) case, with s = 1.

Yeo-Johnson transformation case (C)

Let J(λ, y) denote the Jacobian of a transformation from yi to y∗i (λ). In order to obtain z∗i (λ),

the Yeo-Johnson(C) transformation, given by y∗i (λ)

J(λ,y)1/n
, and for simplicity, we use a modifi-
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cation of the definition of the geometric mean, denoted by ȳYC. Therefore, the Jacobian, the

scaled, and the inverse of the Yeo-Johnson(C) transformation are given bellow.

The Yeo-Johnson(C) transformation presented in Table 2.2 is defined as:

y∗i (λ) = −(1− yi)2−λ − 1

2− λ
if λ 6= 2 and yi < 0.

The modification of the definition of the geometric mean for this transformation is:

ȳY C =

[
n∏
i=1

1− yi

] 1
n

.

Therefore, the expression of the Jacobian comes to:

J(λ,y) =

n∏
i=1

dy∗i (λ)

dy

=

n∏
i=1

(2− λ)(1− yi)1−λ

2− λ

=

n∏
i=1

(1− yi)1−λ

= ȳ
n(1−λ)
Y C .

The scaled transformation is given by:

z∗i (λ) = −(1− yij)2−λ − 1

2− λ
ȳ
n(1−λ)
Y C .

The inverse function of the Yeo-Johnson(C) transformation is denoted as:

f(yi) = −(1− yi)2−λ − 1

2− λ

xi = −(1− yi)2−λ − 1

2− λ
−xi(2− λ) = (1− yi)2−λ − 1

yi = 1−
[
− xi(2− λ) + 1

] 1
2−λ

⇒ f−1(yi) = 1−
[
− yi(2− λ) + 1

] 1
2−λ .

Yeo-Johnson transformation case (D)

Let J(y) denote the Jacobian of a transformation from yi to y∗i . In order to obtain z∗i , the Yeo-

Johnson(D) transformation, given by y∗i
J(y)1/n

, and for simplicity, we use a modification of the

definition of the geometric mean, denoted by ȳYD. Therefore, the Jacobian, the scaled, and the

inverse of the Yeo-Johnson(D) transformation are given bellow.

The Yeo-Johnson(D) transformation presented in Table 2.2 is defined as:

y∗i = − log(1− yi).
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The modification of the definition of the geometric mean for this transformation is:

ȳY D =

[
n∏
i=1

1− yi

] 1
n

.

Therefore, the expression of the Jacobian is defined as:

J(λ,y) =
n∏
i=1

dy∗i
dy

=
n∏
i=1

1

1− yi

= ȳ−nY D.

The scaled transformation is given by:

z∗i = − log(1− yi)ȳY D.

The inverse function of the Yeo-Johnson(D) transformation is denoted as:

f(yi) = − log(1− yi)

xi = − log(1− yi)

yi = −e−xi + 1

⇒ f−1(yi) = −e−yi + 1.

.1.9 Square root-shift opt transformation

Let J(λ, y) denote the Jacobian of a transformation from yi to y∗i (λ). In order to obtain z∗i ,

the square root-shift opt transformation, given by y∗i (λ)

J(λ,y)1/n
, and for simplicity, we use a mod-

ification of the definition of the geometric mean, denoted by ȳSR. Therefore, the Jacobian, the

scaled, and the inverse of the square root-shift opt transformation are given bellow.

The square root-shift opt transformation presented in Table 2.2 is defined as:

y∗i (λ) =
√
yi + λ.

The definition of the geometric mean is:

ȳSR =

[
n∏
i=1

yi + λ

] 1
n

.
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Therefore, the expression of the Jacobian is defined as:

J(λ,y) =
n∏
i=1

dy∗i
dy

=
n∏
i=1

− 1

2
√
yi + λ

=
1

2
ȳ
−n
2
SR .

The scaled transformation is given by:

z∗i = − 1

yi
ȳ2
SR.

The inverse function of the square root-shift opt transformation is denoted as:

f(yi) =
√
yi + λ

xi =
√
yi + λ

yi = x2
i − λ

⇒ f−1(yi) = y2
i − λ.

.1.10 Manly transformation

y∗i (λ) =

 eλyi−1
λ if λ 6= 0 (A);

yi if λ = 0 (B).

Manly transformation case (A)

Let J(λ, y) denote the Jacobian of a transformation from yi to y∗i (λ). In order to obtain z∗i (λ),

the scaled Manly(A) transformation, given by y∗i (λ)

J(λ,y)1/n
, and for simplicity, we use a modifi-

cation of the definition of the geometric mean, denoted by ȳM. Therefore, the Jacobian, the

scaled, and the inverse of the Manly(A) transformation are given bellow.

The Manly(A) transformation presented in Table 2.2 is defined as:

y∗i (λ) =
eλyi − 1

λ
if λ 6= 0.

The modification of the definition of the geometric mean for this transformation is:

ȳM =

[
n∏
i=1

eyi

] 1
n

=
[
e
∑n
i=1 yi

] 1
n

= eȳ.
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Therefore, the expression of the Jacobian comes to:

J(λ,y) =
n∏
i=1

dy∗i (λ)

dy

=
n∏
i=1

λeλyi

λ

=

(
n∏
i=1

eyi

)λ
= ȳλnM

= eλnȳ.

The scaled transformation is given by:

z∗i (λ) =
eλyi − 1

λ

1

ȳλM

=
eλyi − 1

λ

1

eλȳ
.

The inverse function of the Manly(A) transformation is denoted as:

f(yi) =
eλyi − 1

λ

xi =
eλyi − 1

λ

λxi + 1 = eλyi

yi =
log(λxi + 1)

λ

⇒ f−1(yi) =
log(λyi + 1)

λ
.

Manly transformation case (B)

The dataset remains exactly equal.

.1.11 Modulus transformation

y∗i (λ) =

sign(yi)
(|yi|+1)λ−1

λ if λ 6= 0 (A);

sign(yi) log (|yi|+ 1) if λ = 0 (B).

Modulus transformation case (A)

Let J(λ, y) denote the Jacobian of a transformation from yi to y∗i (λ). In order to obtain z∗i (λ),

the scaled modulos(A) transformation, given by y∗i (λ)

J(λ,y)1/n
, and for simplicity, we use a modifi-

cation of the definition of the geometric mean, denoted by ȳMA. Therefore, the Jacobian, the

scaled, and the inverse of the modulus(A) transformation are given bellow.
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The modulus(A) transformation presented in Table 2.2 is defined as:

y∗i (λ) = sign(yi)
(|yi|+ 1)λ − 1

λ
if λ 6= 0.

The modification of the definition of the geometric mean for this transformation is:

ȳMA =

[
n∏
i=1

|yi|+ 1

] 1
n

.

Therefore, the expression of the Jacobian comes to:

J(λ,y) =
n∏
i=1

dy∗i (λ)

dy

=

n∏
i=1

sign(yi)λ(|yi|+ 1)λ−1

λ

= sign
( n∏
i=1

yi

)( n∏
i=1

|yi|+ 1

)λ−1

= sign
( n∏
i=1

yi

)
ȳ
n(λ−1)
MA .

The scaled transformation is given by:

z∗i (λ) = sign(yi)
(|yi|+ 1)λ − 1

λ

1

sign
(∏n

i=1 yi

)
ȳ

(λ−1)
MA

.

The inverse function of the modulus(A) transformation is denoted as:

f(yi) = sign(yi)
(|yi|+ 1)λ − 1

λ

xi = sign(yi)
(|yi|+ 1)λ − 1

λ

|yi| =
[
sign(xi)λ+ 1

] 1
λ − 1

⇒ f−1(yi) = ±
[(

sign(yi)λ+ 1
) 1
λ − 1

]
.

Modulus transformation case (B)

This case is exactly equal to the neglog transformation case.

.1.12 Dual power transformation

y∗i (λ) =


yλi −y

−λ
i

2λ if λ > 0 (A);

log(yi) if λ = 0 (B).
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Dual power transformation case (A)

Let J(λ, y) denote the Jacobian of a transformation from yi to y∗i (λ). In order to obtain z∗i (λ),

the scaled dual power(A) transformation, given by y∗i (λ)

J(λ,y)1/n
, and for simplicity, we use a mod-

ification of the definition of the geometric mean, denoted by ȳDA. Therefore, the Jacobian,

the scaled, and the inverse of the dual power(A) transformation are given bellow. The dual

power(A) transformation presented in Table 2.2 is defined as:

y∗i (λ) =
yλi − y

−λ
i

2λ
if λ > 0.

The modification of the definition of the geometric mean for this transformation is:

ȳDA =

[
n∏
i=1

(
yλ−1
i + y−λ−1

i

)] 1
n

.

Therefore, the expression of the Jacobian comes to:

J(λ,y) =

n∏
i=1

dy∗i (λ)

dy

=

n∏
i=1

λyλ−1
i + λy−λ−1

i

2λ

=
1

2
ȳnDA.

The scaled transformation is given by:

z∗i (λ) =
yλi − y

−λ
i

2λ

2

ȳDA
.
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The inverse function of the dual power(A) transformation is found by solving the quadratic by

completing the square as:

f(yi) =
yλi − y

−λ
i

2λ

xi =
yλi − y

−λ
i

2λ

2λxi = yλi − y−λi

2λxi = yλi −
1

yλi

2λxi =
y2λ
i − 1

yλi

2λxiy
λ
i = y2λ

i − 1

1 + λ2x2
i = y2λ

i − 2λxiy
λ
i + λ2x2

i

1 + λ2x2
i = (yλi − λxi)2√

1 + λ2x2
i + λxi = yλi

yi =
[√

1 + λ2x2
i + λxi

] 1
λ

⇒ f−1(yi) =
[√

1 + λ2y2
i + λyi

] 1
λ
.

Dual power transformation case (B)

This case is exactly equal to the Box-Cox (shift) transformation, case (B).

.1.13 Gpower transformation

y∗i (λ) =


(
yi+
√
y2i+1

)λ
−1

λ if λ 6= 0 (A);

log
(
yi +

√
y2
i + 1

)
if λ = 0 (B).

Gpower transformation case (A)

Let J(λ, y) denote the Jacobian of a transformation from yi to y∗i (λ). In order to obtain z∗i (λ),

the gpower(A) transformation, given by y∗i (λ)

J(λ,y)1/n
, and for simplicity, we use a modification of

the definition of the geometric mean, denoted by ȳGA. Therefore, the Jacobian, the scaled, and

the inverse of the gpower(A) transformation are given bellow.

The gpower(A) transformation presented in Table 2.2 is defined as:

y∗i (λ) =

[
yi +

√
y2
i + 1

]λ
− 1

λ
if λ 6= 0.

The modification of the definition of the geometric mean for this transformation is:
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ȳGA =

[
n∏
i=1

(
yi +

√
y2
i + 1

)λ−1
1 +

yi√
y2
i + 1

] 1
n

.

Therefore, the expression of the Jacobian comes to:

J(λ,y) =
n∏
i=1

dy∗i (λ)

dy

=
n∏
i=1

λ
(
yi +

√
y2
i + 1

)λ−1(
1 + 2yi

2
√
y2i+1

)
λ

= ȳnGA.

The scaled transformation is given by:

z∗i (λ) =

[
yi +

√
y2
i + 1

]λ
− 1

λ

1

ȳGA
.

The inverse function of the gpower(A) transformation is denoted as:

f(yi) =

[
yi +

√
y2
i + 1

]λ
− 1

λ

xi =

[
yi +

√
y2
i + 1

]λ
− 1

λ

λxi + 1 =
[
yi +

√
y2
i + 1

]λ
(λxi + 1)

1
λ = yi +

√
y2
i + 1[

(λxi + 1)
1
λ − yi

]2
=
[√

y2
i + 1

]2

(λxi + 1)
2
λ − 2yi(λxi + 1)

1
λ + y2

i = y2
i + 1

−yi(λxi + 1)
1
λ =

1− (λxi + 1)
2
λ

2

yi = −

[
1− (λxi + 1)

2
λ

2(λxi + 1)
1
λ

]

⇒ f−1(yi) = −

[
1− (λyi + 1)

2
λ

2(λyi + 1)
1
λ

]
.

Gpower transformation case (B)

This case is exactly equal to the glog transformation case.

73



Part II

Transformations in the Context of
Small Area Estimation
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Chapter 3

From Start to Finish: A Framework
for the Production of Small Area
Official Statistics

3.1 Introduction

Small area (or domain) estimation has been and still is a very fertile area of theoretical and ap-

plied research in official statistics. Although the term domain is more general as it may include

non-geographic dimensions, the term small area estimation (SAE) is the established one. We

shall follow the custom in this paper and use the terms area and domain interchangeably. In the

last decades an increasing number of national statistical institutes (NSIs) and other organisa-

tions across the world have recognised the potential of producing small area (SA) statistics and

their use for informing policy decisions. Some SA estimates have gained accreditation as na-

tional official statistics. Two examples in the UK are the annual set of unemployment estimates

for unitary authorities and local authority districts (UALADs) by gender and age groups, and

the estimates of average income for electoral wards. Other organisations and research groups

have promoted the use of SAE techniques via the development of new methodologies and com-

putational tools available for public use. An excellent example is the work by the World Bank

(WB) and the use of its software PovMap (The World Bank, 2013). In collaboration with

country teams, the WB has used SAE techniques for producing poverty maps in more than

twenty developing countries. This is perhaps the most widespread application of SAE to date.

Case studies can be found in The World Bank (2007).

Over time users’ needs have surpassed the limits of what can be achieved with traditional

SAE methods. Nowadays in addition to simple linear statistics such as averages and propor-

tions, users request the estimation of more complex indicators, for example measures of depri-

vation and inequality. Meeting the increasing complexity of users’ needs requires specialised

methodology and software beyond conventional survey operations within NSIs. This has cre-

ated opportunities for closer collaboration between researchers and NSIs and for transferring

research into practice. Given the fast development of SAE methods and software researchers

(or analysts) and users of small area statistics can benefit from having practical guidelines for
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the SAE process. This can help to improve the understanding of what is achievable and to en-

sure that the methods adopted or developed are appropriate for the actual users’ needs. In this

paper we propose a framework based on three broadly defined stages, namely (i) specification,

(ii) analysis/adaptation and (iii) evaluation, which are summarised in Figure 3.1. A description

of user needs, the available data and existing SAE methods are the most important inputs to

the first, specification, stage. With the help of the analyst, the user defines a set of possible

target geographies and indicators and identifies potential existing small area methods that are

applicable given the available data. These are the necessary inputs for the second stage.

The second stage, analysis and adaptation, is where the estimators are developed. In our

view it is helpful if this process is governed by the principle of parsimony. That is, one should

be looking to use the simplest possible method that achieves acceptable precision. Parsimony

may be defined in terms of a hierarchy of estimation methods in increasing order of complex-

ity. It is always possible to start by producing initial estimates that are easy to compute as

part of the usual survey process within an NSI without involving explicit modelling or addi-

tional data sources. This can include direct, synthetic and composite estimators (see Section

3.3.1). Typically, these estimators can be improved by the use of standard unit/area level mod-

els (see Section 3.3.2). Clearly this is a more complex step as it involves model building and

diagnostics. Finally, elaborations of the model may include use of transformations, correlated

random effects over time and space, non-normal random effects and robust estimators, semi or

non-parametric model specifications. The principle of parsimony dictates that such endeavour

should only be introduced to overcome specific shortcomings which have been identified in the

more basic methods, and the potential improvement must be weighed against the extra com-

plexity and possible drawbacks. While such a definition of parsimony is not exact, we believe

it provides a useful framework for guiding the process of producing small area estimates.

The aim of the third stage, evaluation, is to evaluate the multiple sets of estimates produced

at the previous stage. This involves both uncertainty assessment and method evaluation (see

Sections 3.4.1 and 3.4.2). Hopefully, the SAE process is finalised provided that at least one

set of estimates is considered of acceptable precision. It is common practice for NSIs to have

guidelines about precision thresholds for publishing estimates. Such thresholds can be used to

define the basis of what is acceptable. However, what constitutes acceptable precision should

also be defined relatively by comparing a range of methods in terms of precision gains, sensi-

tivity to underlying model assumptions, additional investment in resources for implementing

the methods and subsequent operational costs and risks. If after following these steps no set

of acceptable small area estimates is found, the process may need to return to the specification

stage for defining alternative geographies, target indicators and/or data sources.

To keep a practical focus it is important to illustrate the application of the proposed frame-

work using real data. The data we use in this paper come from Mexico. While being one of the

largest economies in Latin America, according to the World Bank Mexico is also among the

most unequal countries in the world. Developing policies against deprivation therefore requires

a detailed description of the spatial distribution of income deprivation and inequality. The Na-

tional Council for the Evaluation of Social Development Policy (CONEVAL Consejo Nacional

de Evaluación de la Polı́tica de Desarrollo Social) is responsible for estimating measures of
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Data
availability

Specification

User needs SAE methods

Targets of estimation
& geography

Initial choice of
methods (& software)

Analysis & Adaptation

Preliminary estimates
(possibly multiple sets)

Evaluation

Is any set of
estimates

satisfactory?

Final estimates
&

uncertainty measures

yes

Propose new
specification

(additional datasets)

no

Figure 3.1: Framework for the production of SA statistics: Stages of the project are repre-
sented by blocks. Inputs and outputs of each stage are represented by ellipses. Decisions to be
made are represented by diamonds. Arrows indicate the direction of the relationship. Text in
parenthesis indicates optional items

poverty, social deprivation and inequality in Mexico. Furthermore, the general social develop-

ment law (LGDS Ley General de Desarrollo Social) requires measures at the national and state

levels to be obtained every two years and measures at the municipal level every five years. For

the purposes of empirical analysis in this paper we use a sample from the household income

and expenditure survey, ENIGH (Encuesta Nacional de Ingreso y Gasto de los Hogares) and

a large sample of census micro-data. Both datasets are produced by the National Institute of

Statistics and Geography (INEGI Instituto Nacional de Estadı́stica y Geografı́a) and were pro-

vided to the authors by CONEVAL. In the present paper we shall illustrate the SAE process for

estimating linear and non-linear indicators based on continuous outcomes, recognising that in

practice discrete and categorical variables may also be of interest.

The paper is structured as follows. Sections 3.2 - 3.4 describe the three stages of the SAE

process, one for each stage. Section 3.5 provides a review of open source software for SAE. In

Section 3.6 we conclude the paper with some final remarks and comments on open areas for

research.
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3.2 Specification

In this section we describe the elements of the first stage in our framework. This includes

specifying the user needs, the targets of estimation, the target geography and reviewing the

data sources available and their geographical coverage.

3.2.1 Specify user needs: Targets of estimation and target geography

Sample surveys are designed to provide estimates with acceptable precision at national and

specific sub-national levels but usually have insufficient sizes to allow for precise estimation

at lower levels of aggregation. An important task at this stage is the specification of the target

level of geography and the targets of estimation, which will impact upon all the subsequent SAE

process. It is very tempting for the user to target a geography that is unrealistically low. As we

will see later, doing so will affect the methods and the assumptions required for computing the

estimates and evaluating their precision. It is also becoming increasingly common that the user

is interested in more than simple linear indicators such as averages and proportions, and aims

for more complex, non-linear indicators, for example estimating the percentiles of the income

distribution locally. As will be explained in the next section, increasing the complexity of the

targets of estimation increases the granularity of the data one needs to have access to. Hence,

the recommended approach is to start from a relatively high level of geographical aggregation,

at which direct estimation with acceptable precision is supported by the survey data, and move

on to more disaggregated levels of geography after assessing the feasibility of producing small

area estimates at each level in turn. It would be ideal if a level can be chosen which both

serves the user needs and is well supported by the data available. Sometimes, however, the

user may have a non-negotiable target level of geography - as is the case in Mexico - dictated

by specific policy needs or predetermined by law. Even in this case, it is still the responsibility

of the statistician to explain to the user the consequences of the different choices and the extent

to which the results will depend on finding a good enough predictive model for the level of

interest.

Besides the target level of geography and the targets of estimation, the most important

properties of the estimation method also need to be clarified. For instance, whether the user is

more interested in cross-sectional estimates or estimates of change over time will affect both

the data required and the models used. For purposes such as fund allocation, policy evaluation

and monitoring, it may be important to pay attention to the various ensemble characteristics of

the estimates such as the range, the rank and order statistics. The standard approach to deriving

model-based small area estimates is to minimise the squared prediction error for each given

area subject to unbiased prediction. This is intuitive for area-specific cross-sectional estimation

but is generally not optimal if there are other properties that are more important to the actual

use of the small area estimates. A clear understanding of the most desirable properties of the

estimates is therefore necessary in order to ensure that the user needs are served in the best

possible way.
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3.2.2 Data availability and geographical coverage

Identifying what data are needed affects not only the estimation results but also the workload

of staff at NSIs and similar organisations. Small area estimation is a prediction problem and

typically relies on the use of survey data and data from the census or administrative/register data

sources. The census data contain auxiliary information that is potentially correlated with the

target variable and can be used to improve the estimation. Access to census and administrative

data sources is usually challenging due to confidentiality constraints. Commonly, access to

census aggregate (area/domain) level data is possible but access to census micro-data may not

be possible. The question is how the type of census data available affects small area estimation.

If the user is interested in estimating linear statistics, for example small area averages, access to

area level census or administrative data will be sufficient for small area estimation. To illustrate

this, suppose we have data on an outcome variable yik and a set of covariates xik for individuals

i in domains k. The target of estimation is the domain average and for now let us assume that

estimation is assisted by a regression model with model parameters β. An estimator of the

small area average is defined as follows,

ˆ̄θk = N−1
k

 nk∑
i=1

yik +

Nk∑
i=nk+1

xTikβ̂

 , (3.1)

where nk (Nk) denotes the sample (population) size in domain k and xTik is the transpose of

the vector xik. The first summation in (3.1) is computed by using the survey data in domain k,

assuming that sample data are available in the domain. The second summation in (3.1) repre-

sents the out-of-sample model predictions. It is easy to see that in order to compute (3.1), there

is no need to have access to covariate micro-data. Instead, access to domain-level totals
Nk∑
i=1
xik

will be sufficient. If the interest is however in estimating non-linear indicators, then access to

census or administrative micro-data is needed. Access to such data is very challenging and

has implications for staff resources, in for example ensuring appropriate use of the data and

respecting confidentiality constraints. Hence, the complexity of the targets of estimation de-

termines the data requirements for small area estimation. Although the illustration of methods

in this paper assumes the availability of census/administrative micro-data for covariates, it is

important to discuss briefly what options are available when such data are not available. One

possibility is to assume a model for the observed covariates and impute the missing values from

that model (e.g. Sverchkov and Pfeffermann, 2004). With many covariates this might be too

cumbersome and Pfeffermann and Sikov (2011) develop a simple non-parametric alternative

that is shown to work well. An alternative approach would be to use area level models. Fabrizi

and Trivisano (2016) consider hierarchical Bayes approaches to fitting area level models for

estimating non-linear indicators. Schmid et al. (2017) present a first attempt to use sources of

big data, in particular mobile data, as covariate information in area level models. We believe

that researchers should invest more effort on developing methodologies and software that can

be used when population micro-data for the covariates are not available or are available only

for a sample from the target population.

It is also necessary to examine the data coverage at the specified level of geography. The
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analyst should explore whether sample observations are available for every small area and also

check the distribution of the sample size across areas. For example, if many of the target areas

have no sample data (out-of-sample areas), the user must realise that small area estimation will

heavily rely on model assumptions. Even when data are available for every domain one may

still decide to use models in an attempt to improve the precision of direct estimation. Deciding

whether to use models and which model to use is a complex process which is governed by a

trade-off between improved efficiency and dependence on model assumptions. Our recommen-

dation is for users to be open to alternative methodologies and for researchers to place emphasis

on diagnostic analysis for evaluating small area estimates. The process of model building will

be illustrated later in the paper.

3.2.3 Illustration using the ENIGH data

In this case the targets of estimation and the required geography are specified by the LGDS

(see Section 3.1). The Mexican government is interested in estimates of proportions and to-

tals of social and economic deprivation, as well as more complex, non-linear, indicators such

as estimates of the Gini coefficient (Gini, 1912; Ceriani and Verme, 2012) and income ratio.

Methodologists in CONEVAL have access to micro-data from the most recent census and sur-

vey data from the ENIGH. Hence, the estimation of the target indicators specified by the LGDS

is feasible at least in principle.

Let us now look in more detail at the data available and their geographic coverage. Mex-

ico is divided into 32 federal entities (states). The State of Mexico (EDOMEX Estado de

México) has the highest population density, and is also regarded by the United Nations Devel-

opment Programme (UNDP) as being one of the states that most contribute to inequality in

Mexico. EDOMEX is made up of 125 municipalities, which by their geographical and demo-

graphic characteristics are further grouped into 16 districts. The pilot data we have available

were provided by CONEVAL and come from the 2010 ENIGH survey and the 2010 census in

EDOMEX. The ENIGH survey data comprise 2748 households in 58 out of 125 municipali-

ties. The census micro-data covers all EDOMEX municipalities. The survey and census data

sources include a large number of socio-demographic variables, many of which are common

and are measured in similar ways in both datasets. Total equivalised household income is an

example of a variable that is available in the ENIGH survey but not in the census.

For the ENIGH survey more than 50% of municipalities are out-of-sample, making di-

rect estimation for these municipalities impossible. For in-sample municipalities, the median

sample size is 21 households and the mean is 47.4 households. The case here illustrates the

situation where the user has a non-negotiable target geography predetermined by legal require-

ments, which clearly poses challenges for estimation. On the one hand, the use of SAE methods

can be justified if (a) they can produce municipal estimates that are more efficient than direct

estimates and (b) they can produce acceptable estimates for non-sampled municipalities. On

the other hand, it is important that the analyst carefully communicates the potential impact of

model assumptions and appropriately evaluates the methods and the estimates.
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3.3 Analysis/Adaptation

The second stage in small area estimation involves the analysis of the data and the adaptation of

the models. As explained earlier, in our view the process should be governed by the principle

of parsimony. Section 3.3.1 presents a triplet of small area estimates described in the Eurostat

document ESSnet SAE (2012). As we shall explain, these estimators can always be obtained as

by-products of the original sample survey estimation set-up without any additional modelling

effort. Ideally this triplet of estimates should be provided by the user to the analyst as an input

to the analysis and adaption stage but this is hardly ever the case. The analyst will most likely

need to extend the triplet of estimates, by developing suitable models for small area estimation,

both to improve the method of estimation and to be able to handle more complicated target

parameters. Sections 3.3.2 and 3.3.3 use the ENIGH data to describe and illustrate the core

activities of analysis and adaption including the relevant issues of how to use a model for

prediction, model building, model testing, diagnostic analysis and finally adaptations of the

model that are informed by the diagnostic analysis.

3.3.1 Initial triplet of estimates

The initial triplet of estimates for the small area parameter θk are the direct, synthetic and

composite estimates. The direct estimator, denoted by θ̂Directk , uses only the data from area k,

so it is available only for an in-sample area. For areas with small sample sizes we expect that

the direct estimator will have low precision. The synthetic estimator, denoted by θ̂Synthetick ,

uses the data from a broader area that includes area k and so it can be derived for any out-of-

sample area as well. Use of a synthetic estimator reduces uncertainty but at the cost of possibly

introducing bias. Let us make things more specific and distinguish between two situations

of standard design-based sample survey estimation. The first is when no auxiliary data are

available and the estimation is based on the design weights directly. For example, let θ̄k be the

area population mean. The Hajek-Brewer Ratio estimator is defined by

ˆ̄θDirectk =
( nk∑
i=1

yik/πik
)
/
( nk∑
i=1

1/πik
)
, (3.2)

where πik is the corresponding sample inclusion probability (Hájek, 1958; Brewer, 1963). A

synthetic estimator of the mean ˆ̄θSynthetick is given similarly, based on the sub-sample from a

broad area including area k, denoted by θ̂Synthetick = θ̂ , where θ̂ is a broad area estimate. The

second situation is when auxiliary data are available, in which case the estimation is based on

model-assisted weights (Särndal et al., 1992), denoted by wik, for unit i in area k. In this case

the direct estimator of the area population mean is given by

ˆ̄θDirectk,GREG =
1

Nk

nk∑
i=1

wikyik,

where wik = gik/πik, and gik = 1+(X−
∑

k

∑nk
i=1 xik/πik)

T (
∑

k

∑nk
i=1 xikx

T
ik/πik)

−1xik,

andX is the population total of xik. A synthetic estimator θ̂Synthetick = x̄Tk β̂ is obtained by the

linear model E(yik|xik) = xTikβ, with β̂ = (
∑

k

∑nk
i=1 xikx

T
ik/πik)

−1(
∑

k

∑nk
i=1 xikyik/πik)
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and x̄k = N−1
k

Nk∑
i=1
xik. One approach to reconciling the possibly large bias of a synthetic

estimator and the possibly large variance of a direct estimator is to define a composite estimator,

which is a linear combination of the two. This defines the last estimator in the triplet of initial

estimators:

θ̂Compositek = αkθ̂
Direct
k + (1− αk)θ̂Synthetick , (3.3)

for some chosen coefficient αk ∈ [0, 1], where by definition αk = 0 for any out-of-sample

area.

There are several choices of αk for the composite estimator (3.3), including the James-

Stein estimator that uses a common α in all areas, and the area-specific minimizer of the mean

squared error (MSE). The latter is not very practical and Rao and Molina (2015) discuss dif-

ferent approaches for selecting αk. One alternative approach is to define αk as a function of

the domain sample size such that for domains with larger sample size a higher weight is given

to the direct estimator. It is worth noting that the composite estimator appears more intuitive

for target parameters that are linear statistics of the {yik}, like domain averages. However,

estimators of more complex statistics for example percentiles of the domain-specific distribu-

tion function and non-linear indicators have recently attracted some interest in the small area

literature (Tzavidis et al., 2010; Alfons and Templ, 2013). Regardless of how the initial triplet

of estimates is produced, it provides useful input to the analysis and adaptation stages and

possibly to the specification stage too.

The initial triplet estimates would certainly be more useful if some appropriate measure

of the associated uncertainty can be produced in addition. However, it can be challenging to

obtain a stable estimate of the potential bias of the synthetic and composite estimator, as we

shall discuss in Section 3.4. At the very minimum, the direct estimates need to be analysed

and their uncertainty quantified as this will offer an indication of the improvement required for

producing small area estimates. It is common that the analyst will subsequently consider the use

of more complex model-dependent SAE methods. In this case juxtaposing the direct, synthetic

and composite estimates provides a tangible appreciation of the between-area variation of the

target parameter, i.e. the heterogeneity across the areas, as well as possibly the predictive power

of the auxiliary variables already in use.

3.3.2 Use of models for small area estimation

Small area estimation is one of the areas in survey sampling where the use of models is widely

accepted as necessary. Model-based methods assume a model for the population and sample

data and construct optimal predictors of the target parameters under the model. The term

predictor instead of estimator is conventionally used as, under the model, the target parameters

are assumed to be random. Here we describe how to use a model to estimate both linear and

non-linear small area parameters of interest. In Section 3.3.3 we describe model building,

diagnostic analysis and model adaptations in more detail.

Users of small area statistics in Mexico are interested in the estimation of key income-

related indicators such as the Head Count Ratio (HCR) and the Gini coefficient. To this set

we add average income, which is also of interest for NSIs. The most widely used approaches
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for estimating non-linear indicators require the use of unit-level survey data for the outcome

variable and the covariates, and unit-level census micro-data for the covariates. Area-level

models for non-linear indicators have been proposed in the literature (Fabrizi and Trivisano,

2016) but these models lie outside the scope of the present paper.

Two predominant approaches for estimating non-linear indicators are the World Bank method

(Elbers et al., 2003) and the Empirical Best Predictor (EBP) method (Molina and Rao, 2010).

To start with both methods make use of a unit-level nested error regression model (Battese

et al., 1988). The response variable is a welfare variable that is only available in the survey, e.g.

income or consumption. The explanatory variables, used for modelling the welfare variable,

are available both in the survey and in the census datasets. After the model is fitted using the

survey data, the estimated model parameters are combined with census micro-data to form unit-

level synthetic census predictions of the welfare variable. The synthetic values of the welfare

variable along with a defined poverty line are then used for estimating non-linear indicators,

for example the HCR or the Gini coefficient. Linear statistics such as average income can also

be estimated by using the same synthetically generated values.

Let us first describe the EBP approach, before we provide a brief discussion of the similari-

ties and differences from the World Bank method. Under the EBP approach census predictions

of the welfare outcome are generated by using the conditional predictive distribution of the

out-of-sample data given the sample data. The starting point is the following unit-level nested

error regression model,

yik = xTikβ + uk + εik, uk ∼ N(0, σ2
u); εik ∼ N(0, σ2

ε ), (3.4)

where uk denotes the domain random effect. A random effect is necessary when the covariates

we include in the model do not fully explain the between-domain variability. Assuming nor-

mality for the unit-level error and the domain random effects, the conditional distribution of

the out-of-sample data given the sample data is also normal. The synthetic values of the wel-

fare variable for the entire area population (of size Nk) are then generated from the following

model,

y∗ik = xTikβ+ ũk+u∗k+ε∗ik, u
∗
k ∼ N(0, σ2

u×(1−γk)); ε∗ik ∼ N(0, σ2
ε ); γk =

σ2
u

σ2
u + σ2

ε
nk

, (3.5)

where ũk = E(uk|ys) is the conditional expectation of uk given the sample data ys. In (3.5),

xTikβ + ũk is the conditional mean of yik in the population given the sample data, whereas

u∗k + ε∗ik are simulated from the conditional normal distribution of yik for the units outside

the sample. Implementation of (3.5) requires replacing the unknown quantities β, σu, σε, with

estimates and simulating L synthetic populations of the welfare outcome, y∗. Linear and non-

linear indicators are computed in each domain k for each replication and the estimates are

averaged over L. A moderate number of Monte-Carlo simulations, L = 50 or L = 100, is

used in practice. MSE estimation for model-based small area estimation will be discussed in

Section 3.4.1. For now we notice that evaluation of the uncertainty both for in-sample and

out-of-sample domains is usually performed using parametric bootstrap under (3.4) and (3.5).

Alternatively, protection against model misspecification can be offered by wild bootstrap. In
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this case bootstrap for the unit level error term uses the empirical distribution of scaled residuals

instead of a normal distribution.

We now briefly compare the World Bank and EBP methods. Although both methods use a

nested error regression model, one key difference in practice is that in the World Bank method

it is common to specify the random effect at a much finer geography (cluster) level (indexed

by l) whereas in the EBP method the random effect is specified at the domain level. A second

key difference is that the EBP method simulates population realisations of the outcome from

the estimated conditional distribution (3.5) whereas the World Bank method simulates from the

marginal distribution,

y∗il = xTilβ + u∗l + ε∗il, u
∗
l ∼ N(0, σ2

u); ε∗il ∼ N(0, σ2
ε ), (3.6)

with all parameters replaced by their estimates. We now distinguish two cases. When clusters

coincide with the target domains, Molina and Rao (2010) demonstrate the superior perfor-

mance of the EBP method for in-sample domains. For out-of-sample domains the predicted

random effect uk and the shrinkage factor γk in (3.5) are both zero by default so that (3.5)

reduces to (3.6) and the two methods yield the same estimates. Next, consider the more com-

mon case where clusters and target domains do not coincide. Since in most applications the

between-domain variation tends to be small compared to the between-household variation, the

conditional distribution (3.5) may not differ much from the unconditional distribution, as long

as the variance of ũk is small compared to the total variance of yik − xTikβ. Meanwhile, since

the World Bank method is applied at the cluster level, it is possible to capture much of the vari-

ability beyond the between-household variability at the cluster level, provided relevant cluster

level covariates are included in the fixed part of the model (3.4). Moreover, the use of the

conditional distribution (3.5) may be impossible in most of the clusters due to the absence of

sample units. The World Bank method is then well suited in practice, despite the use of the

marginal distribution (3.6). Having said this, Marhuenda et al. (2017) recently proposed EBP

methodology that allows for a two-fold nested error regression model that can accommodate

both cluster and domain random effects.

3.3.3 Model building, residual diagnostics and transformations in practice

Before considering model-based estimation, an assessment of initial estimates produced with

the ENIGH data is necessary for motivating the use of more complex methods. The data

provider did not supply the initial triplet of estimates described in Section 3.3.1. Produc-

ing appropriate sets of initial estimates and their corresponding coefficients of variation (CV)

would require access to data about the sampling design beyond our reach. The analysis below,

obtained using the function direct of the sae package in R (Molina and Marhuenda, 2015),

attempts to replicate such initial estimates in a way that can inform the subsequent stages of

the process. Figure 3.2 (left) presents point estimates of average equivalised household income

at the municipality level calculated from the ENIGH survey data using the final weights sup-

plied. Figure 3.2 (right) shows estimated CVs, obtained under the assumption of a single-stage

Poisson sampling of households in each municipality, with first order inclusion probabilities
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given by the inverse of the final weights. The assumption of single stage Poisson sampling is

made for convenience. We expect the CVs estimated under this assumption to be overly op-

timistic considering that the actual sampling design of the ENIGH includes stratification and

two stages of selection, and has a design effect around 3.3 for the income variable (ENIGH,

2010). However, even under this optimistic scenario it can be seen that, with the exception of

few municipalities, the CVs are clearly above usual publication thresholds of 20%− 25%. No-

tice also that direct estimates cannot be produced for the out-of-sample municipalities (white

coloured areas). Hence, in order to satisfy the current user needs we should explore the use of

model-based methods.

2000
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10000

Point Estimates

0.0
0.1
0.2
0.3
0.4
0.5

CVs

Figure 3.2: Direct estimates of average household equivalised income and CVs in EDOMEX
municipalities

The use of models aims to improve the precision of small area estimates by making optimal

use of the data available. Hence, model building, model diagnostics, sensitivity analysis and

validation take central stage in model-based small area estimation. There is no single approach

to model building. Here we describe some best practice guidelines one could follow, and

illustrate these guidelines for estimating income related indicators with the ENIGH data.

Model-based estimation requires the use of a model that usually includes area random ef-

fects. However, before discussing the use of random effects, the most important step in building

the model remains the specification of the fixed effects part. Ideally, one should aim to explain

as much between-domain variation as possible by using the available covariates so that ran-

dom effects can potentially be avoided in the spirit of parsimony. A reasonable starting point

for building the model is therefore to use a standard regression model with uncorrelated er-

rors. Alternatively, if one suspects that despite the inclusion of covariates there is unexplained

between-domain variability which can affect inference for the regression parameters, the an-

alyst can consider a regression model with correlated errors for example, an exchangeable

correlation structure in the simplest case. In order to decide whether to include a covariate in

the fixed part of the model one can use simple t-statistics -computed using the correct variance

under the model- or information criteria, for example the Akaike or the Bayesian Information

Criteria (AIC, BIC) computed under the standard linear model with uncorrelated errors. In the

case of the ENIGH data and following the recommendation by the data provider (CONEVAL),

y is defined to be the total household per capita income (ictpc) measured in Mexican pesos,

which is the current monetary and non-monetary income of households adjusted by equivalent
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scales and economies of scales. Using the AIC and a standard linear regression model the fol-

lowing covariates that are available both in the survey and census data have been identified as

good predictors of ictpc:

1. Percentage of employees older than 14 years in the household;
2. Highest degree of education completed by the head of household;
3. Social class of the household;
4. Percentage of income earners and employees in the household;
5. Total number of communication assets in the household;
6. Total number of goods in the household.

To investigate whether the use of a mixed effects model is necessary, we estimated a linear

model with an exchangeable correlation structure using generalized least squares (GLS) (Pin-

heiro and Bates, 2000). The model is estimated in R with function gls within the nlme package

(Pinheiro et al., 2017). The class of GLS models contains the standard linear model that as-

sumes independence as a special case. Therefore, given the fixed effects, the standard linear

model is nested within the model with exchangeable correlation structure and a likelihood-

ratio test or other information criteria can be used to decide whether the latter fits the data

better. First, we compared the GLS with an exchangeable correlation structure against a stan-

dard linear model where both models included only an intercept term. This allows us to quan-

tify how much of the between-municipality variability is explained by the model covariates.

We conclude that the model with exchangeable correlation structure fits the data better than the

standard linear model (AIC for GLS with an exchangeable correlation structure: 54239 vs. AIC

for the standard linear model: 54275). One could also use a likelihood-ratio test for comparing

the two models which produces a p-value for testing. The value of this test statistic is 37.52,

with a p-value 4.521 · 10−10, which provides evidence of significant unobserved heterogeneity

between municipalities. Care must be taken with using a likelihood-ratio test when a parameter

like a random effects variance is on the boundary of the parameter space (see e.g. Snijders and

Bosker, 2012). In the second step the GLS and standard linear regression models with the set of

six covariates identified above were compared against each other. The AIC and the likelihood-

ratio test (p-value: 0.029) suggest that the model with the exchangeable correlation structure

fits the data marginally better (AIC for GLS with an exchangeable correlation structure: 53077

vs. AIC for the standard linear model: 53079). The difference between these AIC values is

very small, indicating that the covariates we included in the model explain a substantial part of

the between municipalities variability. In particular, the intra cluster correlation (ICC) for the

empty GLS model is 0.054 and for the GLS model that includes the six significant predictors it

reduces to 0.015. In light of the marginally better fit of the GLS model, the benefits of a random

effects model are likely to be small. We discuss this in Section 3.4 where we compare indirect

and regression synthetic estimates. Although not used in the case study, model selection and

testing procedures under the random effects model have been proposed in the literature. Here

we refer to the use of a conditional AIC criterion (Vaida and Blanchard, 2005) that accounts

for the prediction of random effects in selecting covariates to be included in the model. We

further refer to a test for the inclusion of random effects proposed by Datta et al. (2011). The
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authors show that if random effects are not needed and are removed from the model, the preci-

sion of point and interval estimators is improved. Additional testing procedures are proposed

by El-Horbaty (2015) and reviewed by Pfeffermann (2013).

After the best possible set of covariates has been identified, the inclusion or not of random

effects has been decided and the model has been fitted, the next step in model selection uses

residual diagnostics and assessment of the predictive power of the model. Despite the inclu-

sion of a number of significant covariates, the model may have low predictive power. The user

must remember that SAE is concerned with prediction and not with discovering associations

and causal mechanisms between the explanatory variables and the outcome. Hence, assessing

the overall predictive power of the model is important. One can use simple measures such as

the coefficient of determination (R2) of the model without random effects. Alternative, com-

puter intensive methods such as cross-validation can be used. Cross-validation is mentioned

by Pfeffermann (2013) and consists of leaving some areas out of the model fitting process and

comparing model-based predictors for these areas with corresponding design-based estimates.

For example, one may use as a validation benchmark design-based estimates for larger areas

which can be trusted. For residual diagnostics we propose the use of graphical diagnostics such

as normal Q-Q plots of the residuals (unit-level and domain-level) for checking the model as-

sumptions and plots of standardised residuals against fitted values for testing the assumptions

of constant variance. If residual diagnostics indicate that the model assumptions hold, the ana-

lyst can proceed to the production of point and MSE estimates. However, in most applications

some adaptations of the model will be needed.

To illustrate the use of diagnostic analysis and model adaptation let us focus on the EBP

method we described in Section 3.3.2 which relies on the normality of the residual terms.

Figure 3.3 shows normal Q-Q plots of household-level and municipal-level residuals (random

effects) obtain by fitting model (3.4) to income, using the six covariates we identified above and

including municipality-specific random effects. There are notable departures from normality.

This can be seen both from the shape of the normal Q-Q plots and from Table 3.1 where the

skewness and kurtosis of the two sets of residuals are clearly different from that expected for

normal data.
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Figure 3.3: Normal Q-Q plots for household-level residuals (left) and municipal-level residuals
(right) obtained from the model that uses raw income as the response variable

87



CHAPTER 3. A FRAMEWORK FOR THE PRODUCTION OF SMALL AREA OFFICIAL
STATISTICS

When residual diagnostics indicate that there are departures from normality, the analyst

has several options. The first option is to use alternative parametric specifications that are more

realistic. In the case of income data two possible distributions are the Pareto distribution or

the Generalised Beta distribution of the second kind. The complication with using alterna-

tive distributions is that the analyst may need to develop new estimation and inference theory

for each new application. Alternative semi-parametric approaches to model-based small area

estimation have also been proposed (Weidenhammer et al., 2014). Use of semi-parametric

methods also requires new theory and additional training for the users. There is also a large

body of literature on extensions of the nested error regression model to better handle real data

challenges. Examples include outlier robust estimation (Datta and Lahiri, 1995; Ghosh et al.,

2008; Sinha and Rao, 2009; Chambers et al., 2014; Fabrizi et al., 2014), models with non-

parametric instead of linear signal specification (Opsomer et al., 2008; Ugarte et al., 2009) and

models that extend the covariance structure of the model by allowing for spatially correlated

domain random effects (Pratesi and Salvati, 2009; Schmid et al., 2016) or for complex variance

structures (Jiang and Nguyen, 2012). An option- when diagnostic analysis shows departures

from the model assumptions- and one that is based on the principle of parsimony is to find a

transformation of the data such that the normality assumptions of the EBP are met. Doing so

means that the analyst can keep using standard estimation tools and software for small area

estimation. The challenge in this case is in finding the most appropriate transformation. This

adds another layer of complexity to the model building process. We now discuss the use of

transformations in some detail as an example of adapting the model. This is something we

encourage prospective users to explore before deciding to use more complex models.

The papers by Elbers et al. (2003) and Molina and Rao (2010) considered the use of a

logarithmic or a logarithmic-shift transformation, which are popular for income data. A better

approach is to use data-driven transformations with optimally chosen parameters. Data-driven

transformations may offer better predictive power and hence small area estimates with im-

proved precision. For an illustration using the ENIGH data we consider the log-shift -with

an optimally chosen shift- and on the Box-Cox transformation (Box and Cox, 1964; Gurka

et al., 2006). One key difference between the logarithmic and these additional transformations

is that in the latter case the choice of transformation is adaptive i.e. driven by the data. This

is achieved by a transformation parameter, denoted by λ, which must be estimated. The log-

arithmic transformation is then a special case of this family of transformations when λ = 0.

Denoting by Tλ(yik) the transformed outcome, the log-shift transformation is defined by

Tλ(yik) = log(yik + λ). (3.7)

The Box-Cox transformation is defined by

Tλ(yik) =

{
(yik+c)λ−1
κλ−1λ

, λ 6= 0

κ log(yik + c), λ = 0
, (3.8)

for yik > −c, where c is a fixed parameter, which makes the data positive to enable the use of

the Box-Cox transformation and κ is the geometric mean of yik (Box and Cox, 1964; Gurka
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et al., 2006). This is an example of a scaled transformation. Conditional on κ, the Jacobian

of the transformation is 1. Using the scaling by the geometric mean allows for the use of the

likelihood function under the nested error regression model and as a result standard software

for fitting this model with the transformed data can be used. This is consistent with the prin-

ciple of parsimony. Different approaches have been proposed in the literature for estimating

the optimal transformation parameter in linear models. These methods are mainly based on

maximum-likelihood theory. However, little attention has been paid to the use of these tech-

niques with linear mixed models. Gurka et al. (2006) used Box-Cox transformations based on

restricted maximum likelihood theory for the estimation of the power transformation parameter

in linear mixed models. In addition, the minimization of a measure of the asymmetry such as

the skewness of the residuals for the log-shift transformation has been discussed by Feng et al.

(2016). An empirical approach for choosing λ in (3.7) is to define a grid of values for λ, fit the

nested error regression model by using each of the transformed outcomes Tλ(yik) and select

the transformation that makes distribution of the residuals as close as possible to normal. Note,

however, that here we deal with two sets of residuals and to our knowledge there is no formal

approach to defining the distance from normality. Recent work by Rojas-Perilla et al. (2017)

studies the use of different scaled transformations and estimation methods for λ in small area

estimation. A general algorithm for implementing the EBP method with power transformations

is as follows:

1. Define a parameter interval for λ;
2. Set λ to a value inside the interval;
3. Maximize the restricted log-likelihood function with respect to the vector of model pa-

rameters conditional on the fixed value of λ;
4. Repeat 3 and 4 until the value of λ that maximises the likelihood is found;
5. Apply the EBP method with the chosen value of λ.
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Figure 3.4: Shift parameter for the log-shift transformation (left) and optimal λ for the Box-
Cox transformation (right)

Using the ENIGH data we apply the EBP method with three transformations for the outcome,

namely log, log-shift and scaled Box-Cox. Figure 4.2 on the right shows the graphical repre-

sentation of the maximization of the restricted maximal log-likelihood on a grid λ ∈ [−2; 2]
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Figure 3.5: Normal Q-Q plots for household-level residuals and municipal-level residuals un-
der three transformations for income

in the case of the Box-Cox transformation. In this case the optimal λ is approximately equal

to 0.17. A similar graph on the left shows the shift parameter that minimises the skewness of

the household-level error term. The resulting parameter is equal to 319.52. The question is

whether the use of the transformations identified above improve the diagnostic analysis and the

predictive power of the model. We start with comments on the normal Q-Q plots (Figure 3.5)

and the distribution of the residuals in Table 3.1. For municipality random effects, all three

transformations offer a good approximation to normality (see also Table 3.1). The picture is

different for household-level. In particular, the household-level residuals under the log model

show severe departures from normality. The situation is clearly improved when using the log-

shift and power transformations (see also Table 3.1) with the log-shift transformation leading

to less extreme and more symmetrical tails than the other transformations.

In order to assess the assumption of homoscedasticity, we produce plots of the fitted values

(x-axis) against the standardised residuals (y-axis) obtained by fitting model (3.4) using the

raw income data (left) and the Box-Cox power transformation (right) in Figure 3.6. It can

be observed that using transformations helps to stabilise the variance of the residuals. The

corresponding plots for the log and the log-shift transformations are similar.

The proportion of variability explained under each model is quantified by the coefficients

of determination R2 summarised in Table 3.1. Note that as R2 is computed based on the

transformed outcomes, the R2 values are not directly comparable. As pointed out before,

using the raw values of income in the EBP nested error regression model produces clearly

unsatisfactory normal Q-Q plots and a R2 equal to 31%. The use of transformations improves

the predictive power of the model for the transformed variables.

Based on the results from the diagnostic analysis we conclude that two transformations,
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Table 3.1: Coefficients of determination, skewness and kurtosis for household-level residuals
and municipal-level residuals of the working models for EBP with and without transformations

Household-level residuals Municipal-level residuals

Transformation Skewness Kurtosis Skewness Kurtosis R2

Without 10.10 177.00 2.09 9.87 0.31
Log -2.71 26.50 -0.60 3.52 0.43

Log-shift 0.00 4.91 -0.24 3.03 0.51
Box-Cox -0.24 7.95 -0.12 3.00 0.49
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Figure 3.6: Standardized household-level residuals against fitted values without (left) and with
Box-Cox transformation (right) for income

namely log-shift with shift parameter λ = 319.52 and Box-Cox with λ = 0.17 provide a better

approximation to normality than the logarithmic transformation or the no transformation cases,

albeit not perfect. In particular, the symmetry of the distribution of the residuals is improved

but the tails of this distribution remain heavier than those of the standard normal one. The

following questions are raised at this stage. How important is the choice of transformation

in small area estimation? Does the improvement in the predictive power of the model with

transformation and less severe departures from the model assumptions translate to more precise

small area estimates on the original scale? Is the choice of transformation equally important

for parameters associated with the centre of the distribution and parameters associated with

tails of the distribution? We attempt to address these questions in Section 3.4 that presents

an evaluation framework for SAE. For now, we comment on Figure 3.7 that show maps of

point estimates of average income, Gini coefficients and HCR for municipalities in EDOMEX

produced by the EBP approach using different transformations.

The maps for average income, Gini coefficient and HCR clearly indicate regional differ-

ences. As mentioned before, EDOMEX has 125 municipalities which by their geographic

and demographic characteristics are grouped into 16 districts. The maps of the estimated

income-based indicators for all transformations suggest intra-regional differences of poverty

and inequality within and between the districts. Estimates of average income and HCR show

that some of the wealthiest districts are concentrated in the central-east and northern zones of

EDOMEX. The most unequal municipalities are located in the central and south-west parts
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Figure 3.7: Map of municipal estimates of average income, Gini coefficients and HCR in
EDOMEX using the EBP method under the log, log-shift and Box-Cox transformations

of EDOMEX. There are, however, some differences in the maps of point estimates produced

with different transformations. Estimates of average income appear not to be affected by the

choice of transformation. The same holds true to a large extent for estimates of HCR. On

the other hand, estimates of the Gini coefficient appear to be more sensitive to the choice of

transformation. These results suggest that the user should be very careful with the choice of

transformation as this can have an impact on point estimation especially when interest is in

non-linear indicators that depend on the entire distribution. We will return to this discussion at

the end of Section 3.4.

3.4 Evaluation

The small area estimates are a set of numbers of identical definition and simultaneous in-

terest. Evaluating the small area estimates is a relevant question for which there are hardly

any definitive answers. For example, whether to measure the uncertainty using a design or

a model-based MSE causes lively debates among researchers and practitioners. Comparing

sets of optimal small area estimates produced under alternative models and deciding whether

one set is better than another can be also a challenging task. Assessing ensemble properties

of small area estimates such as the range or ranks of the estimates is relevant topic which has

been largely overlooked. A detailed discussion on evaluation is beyond the scope of this paper.

Our approach below is to describe some aspects of evaluation, which we believe should be

taken into consideration in any application. In particular, we highlight the distinction between

uncertainty assessment and method evaluation, which in our experience is a matter that is often
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either misunderstood or overlooked. The purposes of each and the most common uses in SAE

are described in Section 3.4.1 and 3.4.2, respectively. Some illustrations with the ENIGH data

are given in Section 3.4.3.

3.4.1 Uncertainty assessment

Let θk be the target parameter of area k, for k = 1, ...,m. Let θ = {θ1, ..., θm} be the collection

of them. Let θ̂k be the estimator of θk and θ̂ the collection of them. We assume that one is

equally interested in all elements of θ and cannot fix only on one particular θk, or a few of

them, and disregard how estimators perform in the rest of the areas.

The first question for uncertainty assessment is, “what is the target of estimation?”, which

refers back to the specification of the problem. Generally speaking, in small area estima-

tion one may distinguish between the area-specific and ensemble targets of θ. An ensem-

ble characteristic of θ is defined by using all θk’s. For example, let θ̄w =
∑m

k=1Nkθk/N

be the population mean, where Nk is the population size in area k and N =
∑m

k=1Nk, or

let G =
∑m

k=1(θk − θ̄)2/(m − 1) be the dispersion (i.e. population variance) of θ, where

θ̄ =
∑m

k=1 θk/m. Other examples include the range, the order statistics and the ranks of θ.

Although the various ensemble target parameters may be very important for purposes such as

benchmarking, subgroup analysis, fund allocation, evaluation and monitoring (see e.g. Ghosh,

1992; Shen and Louis, 1998), area-specific prediction seems to have been the focus in the ma-

jority of applications. The most common uncertainty measure for area-specific prediction is

MSE. Below we explain the three types of MSE in use after which interval estimation will be

briefly described.

Let yk denote generically all the observed data in area k, for k = 1, ...,m. Let y =

{y1, ..., ym} be the collection of them. Given a population model for θ, the (unconditional)

MSE is given by E[(θ̂k − θk)2], where the expectation is over both θ and y. Prasad and Rao

(1990) develop a second-order accurate analytic MSE estimator under the linear mixed model,

which corrects the bias of the direct plug-in MSE estimator. Jackknife methods have been de-

veloped for the same purpose under a wider range of models (Jiang et al., 2002). Bootstrap

(most commonly parametric) is more generally applicable, especially if either the target pa-

rameter or the performance measure is non-differentiable (Hall and Maiti, 2006; Pfeffermann

and Correa, 2012), such as when the target parameter is a population quantile.

Using bootstrap is particularly relevant for uncertainty estimation of indicators such as the

Gini coefficient and the HCR. For example, for the EBP method described in Section 3.3.2,

simple unconditional MSE estimation uses the following parametric bootstrap, where the un-

known model parameters are replaced by their estimates and treated as fixed. Generate B

bootstrap populations using the fitted marginal model (3.6). Compute the population value of

the target parameter from each bootstrap population, denoted by θ∗k. From each bootstrap pop-

ulation select a bootstrap sample and compute bootstrap estimates of the target parameter, θ̂∗k,

by using the same method as used with the original sample. Finally, compute the average of

the B squared bootstrap errors – defined as the difference between θ̂∗k and θ∗k – as an estimate

of the unconditional MSE. Notice that the procedure here is not second-order accurate, unlike

the more sophisticated, but more computer intensive, bootstrap methods cited above. In case
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of using a transformation, the bootstrap populations are generated using the model fitted to

the transformed data but MSE estimates are computed at the end by back-transforming to the

original scale. Estimation of the transformation parameter λ should be implemented for each

bootstrap sample, hence capturing the variability due to its estimation.

According to Booth and Hobert (1998), the conditional MSE of prediction (CMSEP) is

given by E[(θ̂k − θk)2|yk], where the corresponding within-area yk is held fixed, and the pairs

(uj , yj) are independent across the areas, for j = 1, ...,m. They argue particularly for its use

under the generalised linear mixed models, and elaborate their approach in terms of the linear

predictor. When the model parameters are known, denoted by ψ, the best predictor is θ̃k =

E(θk|yk;ψ), and the only natural measure of its uncertainty is the CMSEP that reduces to the

variance V (θk|yk;ψ). When the model parameters are estimated, denoted by ψ̂, the CMSEP

is decomposed into two terms V (θk|yk;ψ) and E[(θ̂k− θ̃k)2|yk;ψ], where θ̂k = E(θk|yk; ψ̂).

The first term is evaluated with respect to uk given yk, and the second one with respect to

ψ̂ that varies only with the rest yj’s, for j 6= k, given yk, where uk and ψ̂ are conditionally

independent (Booth and Hobert, 1998). Lohr and Rao (2009) propose a second-order accurate

jackknife estimator of the conditional MSE. For a practical example, Zhang (2009) applies the

CMSEP to estimates of small area compositions subjected to informative missing data.

The third type of MSE we describe is given by E[(θ̂k − θk)2|θ], where only the observed

data y are allowed to vary but the values of θ are treated as fixed. The key difference from

the two types of MSE above is that the set of small area parameters θ are now held fixed, and

for this reason one may refer to this MSE as the finite-population (FP) MSE. There are several

variations of the FP-MSE in practice, where θ may either be the actual population values

or the theoretical values under a model, and the MSE may be evaluated with respect to the

sampling design or a model for y|θ. The FP-MSE becomes the well-known design-based MSE,

when θ are population quantities such as the area means and y vary according to the sampling

design (e.g. Rivest and Belmonte, 2000). Often, however, simplifying assumptions are adopted,

e.g. by assuming area-stratified simple random sampling with the observed area sample sizes

treated as fixed, because one may not have access to the details required to implement the

sampling design. Chambers et al. (2011) calculate the FP-MSE under the model for y|θ,

where θ are the theoretical area means rather than the population area means. Notice that these

authors use the term “conditional” MSE, where it is the θk’s that are treated as fixed not yk
as under the CMSEP. Finally, because the FP-MSE is a small area parameter itself, unbiased

estimation is unstable whether it is with respect to the sampling design or model. Hence, one

needs to treat the estimation of FP-MSE as a small area estimation problem in its own right.

Deciding which MSE to use is important. Tukey’s remark on this matter is that one should

“focus on the questions, not models” (Discussion of Nelder, 1977). There are times when the

target parameter θk is of a theoretical nature. It is then quite appropriate to consider the uk’s as

random variables, and to use the unconditional MSE or the CMSEP as the uncertainty measure.

For instance, in life expectancy calculation one would first smooth the actual known death rates,

which could only make sense if one considers the actual population death rate as an estimate

of some unknown hypothetical parameter called mortality rate. But there are also many other

situations, such as when θk is the area unemployment rate, where it is clearly defined as a
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descriptive statistic of the given population. One can still treat uk as a random effect in order

to achieve a sensible bias-variance trade-off, e.g. using model (4) to motivate a choice of αk
in the composite estimator (3.3). Without introducing the random effects model, one would

have to resort to other means for deriving αk. However, we believe that while it is inferentially

consistent to report the model-based MSE here, which treats θ as random, one is entitled to

question its relevance when θk is a descriptive statistic and the assumption E(uk) = 0 may be

doubtful for a given k. In such a case, the FP-MSE is attractive for many survey practitioners.

However, as explained above, the estimation of the FP-MSE needs to be treated as a small area

problem in its own right.

Finally, interval estimation may be considered in addition to MSE estimation. Let Ck =

(θ̂kL, θ̂kU ) be an interval estimator of θk, where θ̂kL < θ̂kU . The simplest procedure is to set

the bounds such as θ̂k ± 1.96 · ˆMSE(θ̂k)
1/2, aimed at the 95% nominal confidence level. See

Pfeffermann (2013, Section 6.2) for a review of interval estimation methods. Let δk = 1 if

θk ∈ Ck and 0 otherwise. Analogously to the unconditional MSE, the unconditional coverage

of Ck is given by ςk = E(δk) = P (θk ∈ Ck), where both θ and y are allowed to vary.

Similarly, one can speak about conditional coverage ofCk given byE(δk|yk), and FP-coverage

given by E(δk|θ). Notice that any model-based Ck that treats θk as random can have rather

erratic area-specific FP-coverage compared to the nominal level of confidence. Zhang (2007)

defines ς =
∑m

k=1E(δk|θ)/m to be the FP simultaneous coverage of all Ck, each aimed at

the same nominal confidence level. For the population from which the sample is selected,

this gives the proportion of area parameters that are expected to be covered by their interval

estimates without specifying which areas these are. It is shown that, asm increases, ς converges

to the nominal level, provided the underlying population model of θ is correct.

3.4.2 Method evaluation

In the previous section we described different uncertainty measures. In addition to measuring

the uncertainty associated with θ̂ under the assumed model, an analyst may be interested in

method evaluation. This might include comparing different point estimators, assessing how a

MSE estimator performs in reality when approximations are used in its derivation, or assessing

how a small area estimator behaves under departures from the underlying model assumptions.

Method evaluation is generally a different matter from uncertainty assessment.

As we describe below, broadly speaking method evaluation can be design-based or model-

based. It is also possible to combine both sources of uncertainty, where the distribution of

θ follows from a population model and the distribution of y from the sampling design. The

evaluation can be performed analytically provided the required closed-form expressions can

be derived. More often, both design-based and model-based simulation studies are used for

method evaluation.

Conducting a design-based simulation study is very common in practice. Indeed, it is hard

to imagine that an NSI will produce any small area statistics on a regular basis without validat-

ing the design-based performance of the adopted method under realistic conditions. Typically,

a census or similar population dataset is fixed as the population from which samples are re-

peatedly taken. When such population data are unavailable, there are various proposals in
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the literature on how one can generate a pseudo-population for the in-sample areas from the

sample data at hand (e.g. Sverchkov and Pfeffermann, 2004). However, a model will be neces-

sary in order to generate a pseudo-population for the out-of-sample areas. For each simulated

sample, a given estimation method is applied to obtain a replicate set of small area estimates.

Within a design-based simulation study different estimation methods or models can be directly

compared to each other in terms of their design-based performances. We consider this to be a

suitable approach for method evaluation, which establishes how a method is expected to per-

form over repeated sampling from a finite population, regardless of whether the underlying

model is correct or not. Using the ENIGH data in Section 3.4.3 we provide a detailed descrip-

tion of how one can design and implement a design-based simulation that mimics the design

and characteristics of the survey data.

Unlike in a design-based simulation study, where the different estimation methods are sub-

jected to the same sampling variation and the population may be based on real data, model-

based method evaluation generally requires the use of a model for generating the population.

This is common when researchers develop new methods and they are interested in evaluating

the properties of estimators. The design of model-based studies requires careful thinking about

the choice of the evaluation model used for generating the population. A general question is

whether it is meaningful to compare directly the MSE of an estimator θ̂kA of θk derived under

modelMA to that of another estimator θ̂kB of θk under modelMB , which may involve different

random effects or correlation structure. Notice that it is always possible to evaluate the MSE of

θ̂kA under model MB even though the estimator is motivated and computed under model MA

and vice versa. Since the MSE of θ̂kA will differ according to whether the evaluation model

is MA or MB , there is a need to level the ground in order to avoid misleading comparisons.

One may, for example, carry out simulation of both θ̂kA and θ̂kB under the model MB if MA is

nested in MB . When MA and MB are not nested in each other but are from the same class of

models, one may use for the evaluation a model MC which encompasses both. But it may not

be obvious how to find an encompassing model when MA and MB belong to different classes

of models.

It should be mentioned that, in addition to the methods described above, there are sev-

eral informal evaluation approaches that are of relevance to practitioners, such as compatibility

with external data, evaluation by subject-matter experts, bias and goodness of fit diagnostics,

as described in Brown et al. (2001). Finally, a set of small area estimates is expected to be

numerically consistent and more efficient than unbiased direct estimates. One can compare the

aggregated area estimates to the corresponding direct estimates for the same purpose. If aggre-

gated model-based (indirect) estimates do not agree with the corresponding direct estimates, an

analyst can use benchmarking techniques to achieve consistency. Benchmarked small area es-

timates offer an attractive property for NSIs (see Ghosh and Steorts, 2013; Pfeffermann, 2013;

Pfeffermann et al., 2014, for a discussion on benchmarking methods). A more challenging

issue is benchmarking of aggregated ensemble properties, such as the population quantiles,

which can be derived from the collection of within-area quantiles.
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3.4.3 Illustrating aspects of SAE evaluation using the ENIGH data

In this section we illustrate some of the aspects of SAE evaluation we discussed in Sections

3.4.1 and 3.4.2. In particular, using the results of model selection and diagnostics we described

in Section 3.3.3, we present results for the estimation of average household equivalised income,

HCR and Gini coefficients for municipalities with the original sample in EDOMEX. We then

show how the analyst can prepare a design-based simulation study that can be used for method

evaluation. We discuss how the design-based simulation results can guide the production of the

final set of SAE estimates.

Analysis with the original sample

Table 3.2 presents summaries over municipalities of point, root MSE (RMSE) and CV esti-

mates computed using the original data supplied to us by CONEVAL and estimated MSEs

under the assumed model. To start with, direct estimation is not considered because survey

data cover only part of the target geography and - as we discussed in Section 3.3.3 - direct

estimates have higher than acceptable estimated CVs. Results are presented separately for in-

sample and out-of-sample areas. For in-sample areas we produce estimates using four versions

of the EBP method i.e. with untransformed income and three transformations (Log, Log-shift

and Box-Cox). For out-of-sample areas we use the four above-mentioned versions of the EBP,

which in this case corresponds to synthetic estimation. MSE estimates are obtained by using

the parametric bootstrap under the unit-level mixed models (see Section 3.4.1) and different

transformations. The synthetic estimates are produced under the marginal model (3.6).

The results in Table 3.2 show that the EBP Log-shift and EBP Box-Cox produce small area

estimates that are clearly more efficient than the corresponding estimates produced with the

untransformed income model and more efficient than the log-income model. Hence, using the

methods suggested by model building and diagnostic analysis results in estimates with better

efficiency. It is also clear that failing to use transformations, when needed, has an impact

on point estimation. The impact of transformations on point estimation is less pronounced

for indicators that relate to the centre of the income distribution (average income) than for

non-linear indicators such as the HCR and the Gini coefficient. However, even for average

income, failing to transform has a substantial effect on the efficiency of the estimates. These

results illustrate the importance of model diagnostics in SAE. A final comment about these

results relates to MSE estimation. MSE estimates are produced by computing the parametric

bootstrap estimator with the original sample. Parametric bootstrap relies on the belief that

the model assumptions (after transformation) are met. In reality there are always departures

from the model assumptions, the risk of which is uncontrollable for the out-of-sample areas in

particular. One question is whether departures can have an impact on MSE estimation. Another

question is whether the impact of model misspecification on MSE estimation is different for

linear and non-linear indicators. The question becomes relevant when looking at the RMSE

estimates for the Gini coefficient which are quite small. Evaluating MSE estimation subject to

model misspecification is not easy. Using evaluation methods such as design or model-based

simulations is essential. However, this can be very computer intensive because it requires

bootstrap techniques to be embedded within a Monte-Carlo simulation framework. We discuss
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this issue again in the next section.

Table 3.2: One sample analysis of income data. Median of point estimates, estimated RMSEs
and CVs over municipalities in EDOMEX

Municipalities 58 In-sample 67 Out-of-sample

Indicator Mean HCR Gini Mean HCR Gini

Point Estimates EBP 2730 0.380 0.949 2042 0.436 1.261
EBP Log 2699 0.363 0.477 2244 0.439 0.474
EBP Log-shift 2600 0.329 0.433 2151 0.409 0.432
EBP Box-Cox 2617 0.336 0.435 2171 0.409 0.440

RMSE EBP 449.2 0.040 0.177 523.4 0.048 0.400
EBP Log 249.7 0.039 0.011 256.1 0.050 0.013
EBP Log-shift 202.3 0.036 0.010 209.3 0.048 0.011
EBP Box-Cox 185.2 0.034 0.010 188.4 0.043 0.011

CV EBP 0.163 0.104 0.187 0.251 0.114 0.313
EBP Log 0.095 0.108 0.024 0.111 0.119 0.027
EBP Log-shift 0.080 0.112 0.022 0.095 0.122 0.025
EBP Box-Cox 0.071 0.103 0.022 0.085 0.110 0.025

Method evaluation using design-based simulation

In Section 3.4.3 above the MSE was calculated under the model estimated based on the ENIGH

survey data. Naturally the user might be interested in knowing how the estimates will be

affected if the model assumptions do not hold. Using design-based method evaluation that

does not depend on the model assumptions can help with investigating this. We now illustrate

an approach for setting up a design-based simulation that involves repeated sampling from a

fixed population.

In a design-based simulation the first and possibly the most important step is deciding

how to generate the fixed population from which we draw repeated samples. Sverchkov and

Pfeffermann (2004) suggest generating a pseudo-population by using the sample data. In some

cases a variable that is highly correlated with the target variable is available in the census. This

is the case with the census data from Mexico for which we identified variable inglabpc - earned

per capita income from work as being highly correlated with the variable of interest ictpc,

which is only available in the survey data. Variable inglabpc does not have the desired income

definition and this is why SAE using ictpc is needed. However, for the purposes of method

evaluation we are interested in using a variable that has similar distributional characteristics

as the target variable and inglabpc can play this role. A first reason as to why we decided

not to include inglabpc as a covariate in our small area model is because we wanted to use

this variable for evaluation purposes. A second reason is that we wanted to illustrate method

evaluation in a situation where the covariates explain a moderate part of the variance. Table

3.3 presents summary statistics for inglabpc (used in the design-based simulation) and ictpc

(used in the one sample analysis). The distribution of both variables is similar and the total per-

capita income ictpc is generally higher compared to per-capita income from work inglabpc.

In fact, if anything, the census variable inglabpc is even more skewed than the survey variable
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ictpc, which seems reassuring with respect to the robustness of the evaluation using the census

variable. Our design-based simulation will be based on repeated sampling from the Mexican

census micro-data and modelling of proxy household income inglabpc.

Table 3.3: Summary statistics over municipalities

Min. 1st Qu. Median Mean 3rd Qu. Max.
inglabpc (census) 0 1000 1700 2717 3000 100000
ictpc (survey) 0 1310 2142 3243 3518 98070
Population size 394 2759 6852 24820 16440 349100
Sample size 3 17 21 47.4 42 527

From the fixed population we independently drew T = 500 samples. The samples are

selected by using a single-stage stratified random sampling with strata defined by the 58 in-

sample municipalities in the ENIGH survey. The number of households in each in-sample

municipality is the same as the number of households in the ENIGH survey. This leads to a

sample size of 2748 households with 58 in-sample municipalities and 67 out-of-sample munic-

ipalities as is the case with the ENIGH survey. Summary statistics of the sample and population

sizes -over municipalities- are provided in Table 3.3.

Using each sample selected from the fixed population we compute estimates of average

equivalised household income from work, HCR and Gini coefficient. For in-sample areas we

calculate the direct estimator (3.2), the EBP based on different transformations and the World

Bank estimator (Section 3.3.2), which is denoted by WB in Table 3.4. As we mentioned in

Section 3.3.2, for out-of-sample areas and when domains coincide with clusters, the EBP and

the World Bank method coincide. All the models use the same six covariates identified in

Section 3.3.3. The R2 from linear regression models under different transformations (log, log-

shift and Box-Cox) is around 40 − 50% over the 500 samples, which is consistent with the

results we obtained with the original sample.

The performance of these estimators is evaluated by computing the relative bias (RB) and

root mean squared error (RMSE) given by

Relative Bias(θ̂k) =
1

T

T∑
t=1

θ̂tk − θk
θk

; RMSE(θ̂k) =

√√√√ 1

T

T∑
t=1

(
θ̂tk − θk

)2
,

where θ̂k is generic notation to denote an estimator of the target parameter in municipality k, θk
denotes the true population parameter in municipality k and t is an index for repeated sampling

with T = 500 in this case. We further report CV as an additional performance indicator.

Table 3.4 reports the results split by the 58 in-sample and the 67 out-of-sample municipal-

ities. The table presents median values of RMSE, relative bias and CV over municipalities. In

line with the model diagnostics and the one sample analysis, the performance of the EBP es-

timates without transformation is inferior to the EBP estimates with transformations (log-shift

and Box-Cox) for all indicators. The design-based simulation results confirm that transforma-

tions are necessary for improved small area estimation. As expected, the direct estimator is less

efficient than model-based estimators, which justifies the use of indirect methods in this case.
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Table 3.4: Performance of predictors over municipalities in design-based simulations

Municipalities 58 In-sample 67 Out-of-sample

Indicator Mean HCR Gini Mean HCR Gini

RMSE EBP 180.2 0.095 0.497 210.6 0.073 0.846
EBP Log 187.5 0.049 0.026 216.3 0.061 0.032
EBP Log-shift 156.6 0.038 0.022 200.7 0.062 0.031
EBP Box-Cox 171.7 0.045 0.025 212.6 0.060 0.032
WB 188.2 0.093 0.486 — — —
WB Log 160.7 0.054 0.026 — — —
WB Log-shift 159.4 0.041 0.022 — — —
WB Box-Cox 168.5 0.051 0.025 — — —
Direct 543.6 0.097 0.083 — — —

RB [%] EBP 2.39 34.77 109.6 11.28 -0.69 152.6
EBP Log 2.96 12.54 3.89 12.43 -5.27 2.25
EBP Log-shift 0.93 6.49 0.08 11.19 -9.86 -0.21
EBP Box-Cox 1.98 11.18 2.32 11.91 -6.60 1.09
WB 2.79 34.45 110.1 — — —
WB Log 1.84 16.65 3.89 — — —
WB Log-shift 0.80 9.59 0.10 — — —
WB Box-Cox 1.41 14.67 2.35 — — —
Direct -0.13 -0.35 -7.92 — — —

CV EBP 0.082 0.262 0.534 0.109 0.179 0.693
EBP Log 0.078 0.145 0.058 0.112 0.146 0.071
EBP Log-shift 0.073 0.123 0.048 0.107 0.166 0.068
EBP Box-Cox 0.076 0.137 0.056 0.110 0.154 0.071
WB 0.088 0.260 0.530 — — —
WB Log 0.072 0.174 0.058 — — —
WB Log-shift 0.078 0.144 0.049 — — —
WB Box-Cox 0.074 0.161 0.055 — — —
Direct 0.239 0.291 0.203 — — —

A closer look at the EBP-based results with transformations shows that the EBP Log-shift and

the EBP Box-Cox perform somewhat better compared to the EBP Log in terms of bias and

efficiency for all indicators. This indicates that the log-shift and the Box-Cox transformations

adapt better to the shape of the underlying distribution, which appears to be consistent with

the results we obtained from diagnostic analysis (Section 3.3.3). Comparing the EBP Box-

Cox and the EBP log-shift in detail we note that in general neither transformation has superior

performance over the other. Additional (model-based) simulation studies are necessary for

comparing the performance of the Box-Cox transformation and the log-shift transformation.

However, this is beyond the scope of the present paper but we refer to some research in this

direction by Rojas-Perilla et al. (2017). For in-sample areas we note that the WB estimates

are somewhat less efficient than the EBP estimates. On the one hand, despite the relatively

small between-area variability, including random effects is recommended for the in-sample

municipalities. This can be seen from the increased biases of synthetic estimation for the out-

of-sample areas. On the other hand, the relatively small difference between the WB and EBP
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estimates highlights the importance of building a model that has a good fixed effects predictor.

Doing so is of course also critical for the out-of-sample areas.

It is important to evaluate the performance of MSE estimators. Formal evaluation requires

using parametric bootstrap with each of the 500 samples, which is very computer intensive and

beyond the scope of the present paper. Nevertheless, practitioners must be particularly careful

when using parametric MSE estimation methods and, in our view, they should always employ

design-based method evaluation.

Finally we would like to give an illustration of informal evaluation. Comparing model-

based estimates with corresponding design-based estimates for aggregated geographical levels

can provide an indication about the quality of model-based estimates. As the Gini coefficient

cannot be split into a weighted sum of sub-area Gini coefficients, we focus on average income.

The State of Mexico consists of 125 municipalities and 16 districts. The maximum sample size

in a district is 749 households, the minimum is 18 households, the mean is 172 households

and the median is 150 households per district. As the sample size is still quite small for some

districts, we compare model-based estimates with design-based estimates only for 13 districts

for which design-based estimates have a CV below 30%. Figure 3.8 shows point estimates

for district-level average household equivalised income using the direct estimator (black line)

and the EBP estimators with log (blue line), log-shift (orange line) and Box-Cox (red line)

transformations. The direct estimates are produced by using the district-specific samples. In

contrast, the district-specific model-based estimates are aggregated from the corresponding

municipality level estimates. For the aggregation we used weights defined by Ni/N , where Ni

denotes the municipality population size. On the x-axis, districts are ordered by the CVs of

the direct estimates (descending order from left to right). We observe that for districts where

the direct estimates are more unreliable (left part of the plot), the model-based estimates are

further from the direct estimates whereas for districts where the design-based estimates are

more reliable (right part of the plot), the EBP Box-Cox and EBP Log-shift tend to be closer

to the direct estimates. The correlation between the direct and the EBP Box-Cox and EBP

Log-shift estimates is also slightly higher than the correlation between the direct and the EBP

Log estimates. We should emphasise that this is an informal approach to evaluating the quality

of model-based estimates and there is no rule of thumb as to what is an acceptable level of

correlation between model and design-based estimates. An alternative is to average the direct

estimates and the corresponding model-based estimates over the smallest 8 districts, and the

largest 8 districts, and compare the numbers, as an indication of the potential bias. The use of

cross-validation, where some areas are left out of fitting the model and model-based estimates

for these areas are compared with design-based estimates, offers a more structured approach to

evaluation.

3.5 An Update on SAE Software

In this section we provide a update on the availability of SAE software. Although from an

applied point of view many NSIs have a preference for software such as SAS, most of the

recent developments in SAE are implemented in the open-source software R (R Core Team,
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Figure 3.8: Estimates for average household equivalised income at district level.

2017) via R packages.

A comprehensive review of relevant software is included in the CRAN task view on Official

Statistics and Survey Methodology (Templ, 2015) with specific categories on Complex Survey

Designs, Small Area Estimation and Microsimulations. In particular, the section on Complex

Survey Designs includes packages, like survey (Lumley, 2012) and sampling (Tillé and Matei,

2012) that can be used for point and variance estimation of direct estimators of means, totals,

ratios, and quantiles under complex survey designs. Package laeken by Alfons and Templ

(2013) provides functions for the estimation of different poverty and inequality indicators such

as the at-risk of poverty-rate, Gini coefficient and quintile share ratio and the corresponding

estimates of the variance. The sae package by Molina and Marhuenda (2015) can be used

for computing synthetic and composite estimators and for implementing SAE with unit-level

and area (Fay-Herriot) models that allow for complex correlations structures. A code in R for

computing EBP estimates we discussed in Section 3.3.2 that includes an option for using the

transformations discussed in the present paper, visualization and export of the results to Excel

is proposed in the package emdi by Kreutzmann et al. (2018). Collections of R functions for

implementing a wide range of SAE methods are available in the documentations of National

and European funded research projects. Here we refer to the BIAS project (BIAS, 2005) which

includes code for the unit-level EBLUP and spatial EBLUP with correlated random effects

(Pratesi and Salvati, 2009). The SAMPLE project (SAMPLE, 2007) also provides a very wide

range of code for implementing parametric, semi-parametric and outlier-robust small area esti-

mation and allows for models with spatial and temporal correlations. We refer to Molina et al.

(2010) for additional details. Small area estimation from a Bayesian perspective is provided

in the packages hbsae (Boonstra, 2012) and BayesSAE (Shi and with contributions from

Peng Zhang, 2013). It is also important to mention two packages namely, simPop (Meindl

et al., 2016) and saeSim (Warnholz and Schmid, 2016) that support the prospective user in the

setup of design- or model-based simulations that enable method evaluation at the evaluation

stage.

In addition to software written in R, alternative SAE software is also available. The World
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Bank provides open-source software for poverty estimation called PovMap (The World Bank,

2013). PovMap implements the small area estimation procedure developed in Elbers et al.

(2003) and is stand-alone software solution. The European funded project EURAREA (2001)

delivered SAS codes for the computation of direct and indirect small area methods. For ad-

ditional procedures in SAS we refer to Mukhopadhyay and McDowell (2011). Finally, all

methods discussed in the paper are implemented by computationally efficient algorithms using

R. The codes are available from the authors upon request.

3.6 Conclusions and Future Research Directions

In this paper we propose a general framework for the production of SA statistics and illustrate

the SAE process in practice. As part of this framework we have touched upon three inter-

related topics, namely specification of the problem, analysis of the data/ adaptation of the

model, and method evaluation. While much can be said for each of these three areas, it is the

interplay between them that provides the key to the successful application of SAE methods.

There are no clear-cut ways of trading between them in a formal manner and mastering a

balance between these three stages is in many ways the wisdom of applied statistics, which

holds true also for SAE. We have illustrated some practical ways of keeping this balance.

It is shown that specifying a sensible geography and defining targets of estimation that are

supported by the data available are the first important steps for successful SAE. Careful model

building using the principle of parsimony, model diagnostics and model adaptations are crucial

steps for improving estimation without the need for additional data sources. Finally, obtaining

uncertainty measures of good quality and designing method evaluation studies are of paramount

importance for reassuring the users especially if interest is in using the estimates for official

purposes, for example in the design of policy interventions. SAE is of course a large research

area and hence it is not possible to capture all of its aspects in a single paper. Production of

SA statistics with discrete outcomes and use of area level models are not covered although the

proposed framework can be applied in most cases.

Nevertheless, there are questions that remain unresolved and which we would like to raise

at this stage. Within the context of sample surveys there exists currently an apparent contrast

between the prevalent preference for design-based approaches to statistics at the higher levels of

aggregation and model-based approaches at the lower levels. This seems to imply that at some

intermediate level of aggregation the choice between the two approaches may be somewhat

blurred. Where are these intermediate levels of aggregation? Is it possible to develop a coherent

framework for the different levels in the aggregation hierarchy? Should benchmarking towards

aggregate-level estimates of acceptable quality actively drive the development of SAE methods

or should benchmarking, as often it is, remain a side issue that one only pays attention to at the

last stage of estimation?

Both area-specific and ensemble properties of a set of small area estimates are undoubtedly

of interest. This is a distinctive feature of SA statistics in comparison to the national estimate

that is a single number. Small area estimation is a simultaneous rather than a point estimation

problem. Multi-purpose (multiple-goal) SAE aims to provide a compromise in a theoretical
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manner. However, the usefulness of such an approach can only be explored together with users

if the solution is to have an impact in practice. Can users ever be ready or willing to accept

multiple sets of estimates, each optimal for a particular purpose? How can one avoid or limit

the misuses of a particular set of estimates in practice? For now we leave these questions open,

hoping that they will inform future discussions.
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Chapter 4

Data-driven Transformations in Small
Area Estimation

4.1 Introduction

Model-based methods for small area estimation (SAE) are now widely used in practice for

producing reliable estimates of linear and non-linear indicators for areas/domains with small

sample sizes. Examples of indicators that are estimated by using model-based methods include

poverty (income deprivation) and inequality measures such as the head count ratio, the poverty

gap and the income quintile share ratio. Two popular small area methods in this case are the em-

pirical best predictor (EBP), proposed by Molina and Rao (2010) and the World Bank method,

proposed by Elbers et al. (2003). Both approaches are based on the use of unit-level linear

mixed regression models. Although estimation of complex indicators can be also implemented

with area-level linear mixed regression models (Fabrizi and Trivisano, 2016; Schmid et al.,

2017), in this paper we focus on unit-level linear mixed regression models. In the original pa-

per, Molina and Rao (2010) assumed that the error terms of the linear mixed regression model

follow a Gaussian distribution. In case the model error terms significantly deviate from normal-

ity, the EBP estimator can be biased. What are the options available to the data analyst when the

normality assumptions are not met? One option is to formulate the EBP under alternative and

more flexible parametric assumptions. Graf et al. (2014) study an EBP method under the gen-

eralized beta distribution of the second kind (GB2), whereas Diallo and Rao (2014) propose

the use of skewed-normal distributions in applications with income data. One complication

with using the EBP under alternative parametric distributions is that new tools for estimation

must be developed and training for the data analyst is needed. In addition, misspecification of

the model assumptions is still possible. Another option when the Gaussian assumptions are

not satisfied is to use a methodology that minimizes the use of parametric assumptions. For

instance, Elbers and van der Weide (2014) proposed an EBP method based on normal mixture

models. With this method the distribution of the error terms is described by normal mixtures.

Weidenhammer et al. (2014) recently proposed a method that aims at estimating the quantiles

of the empirical distribution function of the data. The estimation of the quantiles is facilitated

by a nested error regression model using the asymmetric Laplace distribution for the unit-level

error terms as a working assumption. The estimation of the random effects can be made com-
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pletely non-parametric by using a discrete mixture proposed by Marino et al. (2016). Another

option, and the one we study in this paper, is to find an appropriate transformation such that

the model assumptions (in this paper the Gaussian assumptions of the EBP method) hold. The

aim is to find transformations that (a) are data-driven and optimal according to some criterion

and (b) can be implemented by using standard software. To the best of our knowledge, the use

and choice of transformations in SAE has not been extensively studied or it has been studied

in fairly ad-hoc manner. Elbers et al. (2003) and Molina and Rao (2010) suggested the use of

logarithmic-type transformations for income data. However, are such transformations the most

appropriate choice? Can alternative transformations offer improved estimation? In order to

answer these research questions, the paper investigates data-driven transformations for small

area estimation.

The choice of transformations when modelling income-type outcomes - as is the case with

poverty mapping applications - presents different challenges. Transformations should be suit-

able for dealing with unimodal, leptokurtic and positively skewed data that may include zero

and negative values. Besides the logarithmic transformation and its modifications (e.g. the

log-shift transformation) a popular family of data-driven transformations that includes the log-

arithmic one as a special case is the Box-Cox family (Box and Cox, 1964). Since the Box-Cox

transformation is not defined for negative values, when negative values are present, the data

must be shifted to the positive range. Another difficulty with the use of the Box-Cox trans-

formation is the truncation on the transformation parameter described later in Section 4.4. A

solution to this problem can be offered by using of the dual power transformation. Although ex-

tensive literature on the use of transformations exists, see for example, John and Draper (1980),

Bickel and Doksum (1981) and Yeo and Johnson (2000) among others. In this paper we focus

on three types of transformations, namely log-shift, Box-Cox and dual power transformations.

In addition to selecting the type of transformation, estimating the transformation parameter

adds another layer of complexity. To the best of our knowledge the use of transformations

in recent applications of SAE has employed visual residual diagnostics for finding a suitable

transformation parameter. In this paper we propose a structured, data-driven approach for

estimating the transformation parameter. In particular, we introduce maximum likelihood and

residual maximum likelihood methods for estimating the transformation parameter under the

linear mixed regression model following Gurka et al. (2006). Alternative estimation approaches

based on the minimization of distances (Cramér, 1928; Chakravarti and Laha, 1967) and on the

minimization of the skewness (Carroll and Ruppert, 1987) are also discussed.

We study how the performance of the EBP method is affected by departures from normal-

ity and how data-driven transformations can assist with improving the validity of the model

assumptions and estimation. Emphasis is given to the estimation of poverty and inequality in-

dicators due to their important socio-economic relevance and policy impact. We further study

whether the impact of departures from Gaussian assumptions is different depending on the tar-

get of estimation. For instance, departures from normality may have lesser impact on estimates

of median income compared to estimates indicators that are more sensitive in the data distri-

bution. The estimation for the latter indicator heavily depends on the entire distribution of the

data. A parametric bootstrap for mean squared error (MSE) estimation under transformation is
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studied and a wild-type bootstrap that may offer protection in the presence of departures from

the Gaussian assumptions after transformations is also proposed.

The rest of the paper is structured as follows. The EBP approach is introduced in Section

4.2. Section 4.3 presents the survey data we use in this paper and makes the case, via the use

of residual diagnostics, for using transformations. In Section 4.4 selected transformations are

introduced and extended for their use with model-based SAE methods under the linear mixed

regression model. This section includes the theoretical details about the choice of an appro-

priate scale and estimation of the transformation parameter. MSE estimation is discussed in

Section 4.5. In Section 4.6 the proposed methods are applied to data from Guerrero in Mexico

for estimating a range of deprivation and inequality indicators and corresponding estimates of

uncertainty. In Section 4.7 the proposed methods are further evaluated by realistic - for income

data - model-based simulations. Section 4.8 summarizes the main findings and outlines further

research.

4.2 The Empirical Best Prediction (EBP) Method

Let U denote a finite population of size N partitioned into D areas or domains (representing

the small areas) U1, U2, . . . , UD of sizes N1, . . . , ND, where i = 1, . . . , D refers to the ith

area. Let yij be the target variable defined for the jth individual belonging to the ith area, with

j = 1, . . . , Ni. Denote by X = (x1, . . . ,xp)
T the design matrix containing p explanatory

variables and define by s as the set of sample units, with si the in-sample units in area i and

by r be the set of non-sampled units, with ri the out-of-sample units in area i. Let ni denote

the sample size in area i with n =
∑D

i=1 ni. Hence, we define by yi a vector with population

elements of the target outcome for area i partitioned as yTi =
(
yTis,y

T
ir

)
, where yis and yir

denote the sample elements s and the out-of-sample elements r in area i respectively. Let

us now describe in more detail the EBP approach by Molina and Rao (2010), which is the

methodology we focus on in this paper. Under this approach census predictions of the target

outcome are generated by using the conditional predictive distribution of the out-of-sample

data given the sample data. The point of departure is the standard parametric unit-level linear

mixed regression model, which is also known as the unit-level nested error regression model.

This is defined by Battese et al. (1988) as:

yij = xTijβ + ui + eij , ui
iid∼ N(0, σ2

u) and eij
iid∼ N(0, σ2

e), (4.1)

where ui, the area-specific random effects, and eij , the unit-level error, are assumed to be

independent. Assuming normality for the unit-level error and the area-specific random effects,

the conditional distribution of the out-of-sample data given the sample data are also normal. A

Monte Carlo approach is used to obtain a numerically efficient approximation to the expected

value of this conditional distribution as follows:

1. Use the sample data to obtain β̂, σ̂2
u, σ̂

2
e and the weighting factors γ̂i = σ̂2

u

σ̂2
u+

σ̂2e
ni

.

2. For l = 1, . . . , L:
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(a) Generate v(l)
i

iid∼ N
(
0, σ̂2

u(1 − γ̂i)
)

and e(l)
ij

iid∼ N
(
0, σ̂2

e

)
and obtain a pseudo-

population of the target variable by:

yij
(l) = xTijβ̂ + ûi + v

(l)
i + e

(l)
ij ,

where the predicted random effect ûi is defined as ûi = E(ui|yis).

(b) Calculate the indicator of interest I(l)
i in each area.

3. Finally, take the mean over the LMonte Carlo runs in each area to obtain a point estimate

of the indicator of interest:

ÎEBPi =
1

L

L∑
l=1

I
(l)
i .

As is common in real applications, some areas are out-of-sample. For those areas, we cannot

estimate an area-specific random effect, and hence the corresponding area-specific random

effect is set equal to zero. Synthetic values of the outcome for the out-of-sample areas are then

generated under the linear mixed regression model as follows:

yij
(l) = xTijβ̂ + u

(l)
i + e

(l)
ij ,

with u
(l)
i

iid∼ N
(
0, σ̂2

u

)
and e

(l)
ij

iid∼ N
(
0, σ̂2

e

)
. Finally, a parametric bootstrap - under the

assumed model - is used for the MSE estimation. This is discussed in some detail in Section 4.5.

Assuming normality for the error terms is a convenient assumption as allows the conditional

distribution of yr|ys to be derived. However, in applications that involve modelling an income-

type outcome, as is the case in this paper, assuming normality is unrealistic. If our primary

target is to develop a methodology that can easily be used in practice, finding appropriate data

transformations is important.

4.3 The Guerrero Case Study: Data Source and Initial Analysis

In this section, we describe the data sources used in the application and provide a motivation

for the use of transformations. The case study was carried out in the open-source software R
(R Core Team, 2017).

The data used in this paper come from Mexico, which has one of the largest economies in

Latin America and is still among the most unequal countries in the world (The World Bank,

2017). For tailored policies against deprivation it is necessary to have a detailed description of

the spatial distribution of inequality and income deprivation. According to the general social

development law in Mexico, the National Institute of Statistics and Geography (INEGI) has

to provide measures at the national, state and municipal-levels. For carrying out the analysis

in this paper, the statistical and geographical information was provided by INEGI through the

Household Income and Expenditure Survey (ENIGH) 2010 and the National Population and

Housing Census of 2010. Looking in more detail at the data available and their geographic

coverage, Mexico is divided into 32 federal entities (states). The state Guerrero has been

considered by the World Bank to be one of the entities that mostly contributes to inequality
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in Mexico, presenting a high inequality in human development (Bedoya et al., 2013). Addi-

tionally, according to the United Nations Development Programme (UNDP), this region has

one of the highest rates of poverty and lack of infrastructural development (Tortajada, 2006).

Guerrero comprises 81 administrative divisions, known as municipalities. From the 81 munic-

ipalities 40 municipalities with 1611 households are in-sample (in the sample of the ENIGH

survey), leaving the remaining 41 municipalities out-of-sample. For the in-sample municipali-

ties the maximum sample size in a municipality is 511, the minimum is 9 and the median is 24

households. Note that more than 30% of the sample is from a single municipality, the capital

(Chilpancingo de los Bravo).

The survey and census data include a large number of socio-demographic variables, which

are common and are measured similarly in both data sources. The total household per capita

income (hciw, measured in pesos) is a variable recorded for households and is available in

the survey but not in the census. We used this variable as a proxy that best approximates

the living standard in Guerrero and as the outcome variable in our models. Socio-economic

variables available for the households both in the survey and census data are used as explanatory

variables. The underlying linear mixed regression model (4.1) of the EBP has two levels,

households and municipalities. The variables available in the survey and census data, which

are identified by using Bayesian information criterion (BIC) as good predictors of hciw, are

described in Table 4.1. From now on, the working model is assumed to be known and fixed.

Table 4.1: Description of the explanatory variables used in the working model

Determinant Variable
Occupation 1) Indicator if the head of household and the spouse are employed

2) Type of household occupation
3) Total number of employees older than 14 years in a household
4) Percentage of employees older than 14 years in a household

Sources of income 5) Indicator of a household receiving remittances
Socioeconomic level 6) Availability of assets in the household

7) Total number of goods in the household
Education 8) Average standardized years of schooling (by age and sex)

within the household relative to the population

The next step after the identification of a possible set of covariates is assessing the predic-

tive power of the model. Nakagawa and Schielzeth (2013) propose the use of two coefficients

of determination suitable for linear mixed regression models: (a) the marginal R2
m, which is a

measure for the variance explained by fixed effects and (b) the conditionalR2
c , which measures

the variance explained by both, the fixed and random effects. Without using any transforma-

tion, these measures are both around 34% and the corresponding intraclass correlation (ICC)

under the model is 0.02.

In order to explore the validity of the Gaussian assumptions underlying the linear mixed

regression model, it is common practice to perform normality tests and some residual diag-

nostics. The p-values of the Shapiro-Wilk (S-W) test statistic are equal to 2.2 · 10−16 for the

household-level and 0.002 for the municipal-level. These results indicate that the null hypoth-

esis of normality for both terms is rejected. As normality tests like Shapiro-Wilk have some
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problems we also present some visual approaches in addition. Figure 4.1 presents the Normal

probability quantile-quantile (Q-Q) plots for household-level and municipal-level residuals. As

expected, in the case of using the non-transformed hciw variable, the shape of the Q-Q plots

is clearly different from what would be expected under normality. In addition, the analysis of

skewness and kurtosis for both error terms is also informative. The skewness and kurtosis for a

Normal distribution are equal to zero and three, respectively. The skewness and kurtosis of the

household-level are equal to 7.980 and 110.700, and for the municipal-level equal to 1.298 and

5.596. These results indicate severe departures from the Gaussian assumptions when modelling

the non-transformed income.
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Figure 4.1: Q-Q plots of the household- and municipal-level error terms

4.4 Use of Transformations

In order to get closer to normality, it is common to use a one-to-one transformation T (yij) =

y∗ij of the target variable. The application of the natural logarithmic transformation, which is

a popular choice for income data, leads in many cases from right-skewed to more symmetric

distributions. This is the most frequently used transformation in different research fields for

dealing with non-normality due to its simplicity. However, can an alternative transformation

with data-driven parameter λ, Tλ(yij) = y∗ij(λ), possibly offer small area estimates with im-

proved precision?

The structure of the section is as follows. In Section 4.4.1 we introduce the EBP approach

with data-driven transformations. In Section 4.4.2 we propose likelihood-based approaches for

estimating the transformation parameter, λ, in general and discuss three particular subcases -

the log-shift, Box-Cox and dual power transformations - in detail. Finally, in Section 4.4.3 we

discuss alternative to likelihood-based approaches for estimating the transformation parameter.
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4.4.1 EBP under transformations

In order to apply the EBP method by using transformations, the linear mixed regression model

is re-defined as follows:

y∗ij(λ) = xTijβ + ui + eij , ui
iid∼ N

(
0, σ2

u

)
and eij

iid∼ N
(
0, σ2

e

)
. (4.2)

The EBP approach under transformations can be re-written as follows:

1. Select a transformation and obtain Tλ(yij) = y∗ij(λ).

2. Use the transformed sample data to obtain β̂, σ̂2
u, σ̂

2
e and calculate the weighting factors,

γ̂i = σ̂2
u

σ̂2
u+

σ̂2e
ni

.

3. For l = 1, . . . , L:

(a) Generate v(l)
i

iid∼ N
(
0, σ̂2

u(1 − γ̂i)
)

and e(l)
ij

iid∼ N
(
0, σ̂2

e

)
and obtain a pseudo-

population of the target variable by:

yij
∗(l) = xTijβ̂ + ûi + v

(l)
i + e

(l)
ij .

(b) Back-transform y∗
(l)

ij to the original scale y
(l)

ij = T−1
λ

(
y∗

(l)

ij

)
.

(c) Calculate the indicator of interest I(l)
i in each area.

4. Finally, take the mean over the L Monte Carlo generations in each area to obtain an

estimate of the indicator of interest:

ÎEBPi =
1

L

L∑
l=1

I
(l)
i .

4.4.2 Likelihood-based approach for estimating λ

For estimating the transformation parameter λ, the linear mixed regression model defined in

(4.2) is used. Assume that the transformed vectors y∗i are independent and normally distributed

for some unknown λ,

y∗i (λ) ∼ N(µi,Vi) for i = 1, . . . , D,

where

µi = Xiβ and Vi = σ2
u1Ni1

′
Ni + σ2

eINi ,

with 1Ni a column vector of ones of size Ni and INi the Ni × Ni identity matrix, the vector

of unknown model parameters is θT = (β, σ2
u, σ

2
e , λ). The log-likelihood function under the

111



CHAPTER 4. DATA-DRIVEN TRANSFORMATIONS IN SMALL AREA ESTIMATION

model is defined as follows:

lML(y∗, λ|θ) = −n
2

log(2π)− 1

2

D∑
i=1

log |Vi|

− 1

2

D∑
i=1

[y∗i (λ)−Xiβ̂]TV −1
i [y∗i (λ)−Xiβ̂].

The log-likelihood function in relation to the original observations is obtained by multiplying

the normal density by the log of the Jacobian of the transformation from yi to y∗i (λ). The

Jacobian J(λ,y) is defined as
∏D
i=1

∏ni
j=1

∣∣∣∣∣dy∗ij(λ)

dyij

∣∣∣∣∣ and is incorporated as follows:

lML(y, λ|θ) = −n
2

log(2π)− 1

2

D∑
i=1

log |Vi|

− 1

2

D∑
i=1

[y∗i (λ)−Xiβ̂]TV −1
i [y∗i (λ)−Xiβ̂] + log J(λ,y).

The maximization of lML(y, λ|θ) produces maximum likelihood (ML) estimates of the un-

known parameters θ. However, in the theory of linear mixed regression models, when interest

focuses on accurate estimators of the variance components, restricted maximum likelihood

(REML) theory is recommended (Verbeke and Molenberghs, 2000). The REML is defined as

follows:

lREML(y, λ|θ) = −n− p
2

log(2π) +
1

2
log

∣∣∣∣∣
D∑
i=1

XT
i Xi

∣∣∣∣∣− 1

2

D∑
i=1

log |Vi|

− 1

2
log

∣∣∣∣∣
D∑
i=1

XT
i V

−1
i Xi

∣∣∣∣∣
− 1

2

D∑
i=1

[y∗i (λ)−Xiβ̂]TV −1
i [y∗i (λ)−Xiβ̂] + log J(λ,y). (4.3)

To take advantage of existing algorithms for fitting mixed linear regression models, we use

a scaled transformation defined by
y∗ij(λ)

J(λ,y)
1
n

= z∗ij(λ). The Jacobian of the scaled transforma-

tion is equal to 1 and hence standard software for mixed models can be used for maximizing

lREML(z∗, λ|θ). The use of scaled transformations aids the implementation of the methods in

practice. However, appropriate scaling factors must be developed depending on the type of

transformation used.

Although the theory is applicable to data-driven transformations in general, we focus on

three types of transformations, namely log-shift, Box-Cox and dual power transformations as

particular subcases. The log-shift transformation (Yang, 1995) extends the logarithmic trans-

formation by including the transformation parameter λ as follows:

y∗ij(λ) = log(yij + λ).
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When λ = 0, a logarithmic transformation is obtained. The Box-Cox transformation (Box and

Cox, 1964) is defined as follows:

y∗ij(λ) =


(yij+s)

λ−1
λ if λ 6= 0,

log(yij + s) if λ = 0,

where s denotes a fixed parameter such that yij + s > 0. If λ = 0, the logarithmic trans-

formation is then a special case and if λ = 1, the data are only shifted. One difficulty with

the Box-Cox type transformations is the long-standing truncation, i.e. y∗ij(λ) is bounded, from

below by 1
λ if λ > 0 and from above by −1

λ if λ < 0. This is the key motivation for the third

type of transformation. The dual power transformation, introduced by Yang (2006), is defined

as follows:

y∗ij(λ) =


(yij+s)

λ−(yij+s)
−λ

2λ if λ > 0,

log(yij + s) if λ = 0,

where s is defined as in the case of the Box-Cox transformation.

The corresponding Jacobian used in (4.3) and scaled versions of the log-shift, Box-Cox

and dual power transformations are presented in Table 4.2. For more details we refer to the

developments in Appendix .1.

Table 4.2: Jacobian and scaled data-driven transformations for log-shift, Box-Cox and dual

Transformation Jacobian J Scaled transformation z∗ij(λ)

Log-Shift
∏D
i=1

∏ni
j=1(yij + λ)−1 J

−1
n log(yij + λ)

Box-Cox
∏D
i=1

∏ni
j=1 y

λ−1
ij

J
−1
n

(yij+s)
λ−1

λ , if λ 6= 0

J
−1
n log(yij + s) if λ = 0

Dual
∏D
i=1

∏ni
j=1((yij+s)

λ−1+(yij+s)
−λ−1)

2
J
−1
n

(yij+s)
λ−(yij+s)

−λ

2λ , if λ 6= 0

J
−1
n log(yij + s) if λ = 0

4.4.3 Alternative approaches for estimating λ

The ML and REML approaches introduced in 4.4.2 rely on parametric assumptions that may be

influenced by outliers in the data. The kurtosis and skewness are crucial features for defining

the shape of a normal distribution and a proximity measure can be minimized in order to find

a transformation parameter under which the empirical distribution of residuals has skewness

and kurtosis as close as possible to zero and three respectively. In general, skewness is consid-

ered more important than kurtosis, therefore, minimizing the skewness is an approach already

considered in the literature (Royston et al., 2011) for linear models as follows:

λ̂skew = argmin
λ

|Seλ |,

113



CHAPTER 4. DATA-DRIVEN TRANSFORMATIONS IN SMALL AREA ESTIMATION

where Seλ is the skewness and σ2
eλ

denotes the variance of the unit-level error terms. Note

that the index λ is used to emphasize that the skewness and the variance parameters depend on

the transformation parameter. In the context of linear mixed regression models, an additional

problem arises as there are two independent error terms to be considered. We propose a pooled

skewness approach that uses a weight w to ensure that the larger the error term variance σ2
eλ

is, the more weight its skewness will have in the minimization. Let Suλ be the skewness and

σ2
uλ

be the variance of the area-specific random effects ui of the linear mixed regression model.

The estimation criteria in the pooled skewness approach is defined as follows:

λ̂poolskew = argmin
λ

(
w|Seλ |+ (1− w)|Suλ |

)
,

where w =
σ̂2
eλ

σ̂2
uλ

+ σ̂2
eλ

.

Considering only the skewness may ignore other properties of the distribution. Hence, a mea-

sure describing the distance between two distribution functions is another alternative. Two

distance measures, the Kolmogorov-Smirnov (KS) and the Cramér-von Mises (CvM) are used,

λ̂KS = argmin
λ

sup |Fn(·)− Φ(·)|,

λ̂CvM = argmin
λ

∫ ∞
−∞

[Fn(·)− Φ(·)]2 φ(·),

where Fn(·) is the empirical cumulative distribution function estimated by using the normal-

ized residuals, Φ(·) is the distribution function of a standard normal distribution and φ(·) its

density. The impact of using alternative approaches for estimating λ is studied in a model-based

simulation study in Section 4.7.3.

4.5 MSE Estimation Under Transformations

Estimating the MSE of small area estimates is a challenging problem. In the case of the

EBP Molina and Rao (2010) propose a parametric bootstrap procedure following González-

Manteiga et al. (2008). In this section we propose two bootstrap schemes for estimating the

MSE under transformations. These bootstrap MSE estimators are extended to capture the ad-

ditional uncertainty due to the estimation of the transformation parameter λ. The difference

between the two bootstrap schemes is the mechanism used for generating the bootstrap popu-

lation. In particular, the first bootstrap generates bootstrap realisations of the random effects

and unit-level error terms parametrically. In contrast, the second one is a semi-parametric wild

bootstrap which aims to protect against departures from the assumptions of the model in par-

ticular, those of the unit-level error term.

The steps of the proposed parametric bootstrap are as follows:

1. For b = 1, ..., B

(a) Using the sample estimates, β̂, σ̂2
u, σ̂

2
e , λ̂, generate u(b)

i
iid∼ N

(
0, σ̂2

u

)
and e(b)

ij
iid∼
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N
(
0, σ̂2

e

)
and simulate a bootstrap super-population y∗

(b)

ij = xTijβ̂ + u
(b)
i + e

(b)
ij .

(b) Back-transform y∗
(b)

ij to the original scale y
(b)

ij = T−1
λ

(
y∗

(b)

ij

)
and compute the

population value of the indicator of interest Ii,b.

(c) Extract the bootstrap sample in yij(b) and perform the EBP method, as described in

Section 4.4.1. Note, as the back-transformed sample data are used, the transforma-

tion parameter λ is re-estimated in each bootstrap replication b.

(d) Obtain ÎEBPi,b .

2. M̂SE
(
ÎEBPi

)
= B−1

∑B
b=1

(
ÎEBPi,b − Ii,b

)2
.

As mentioned before, the proposed parametric bootstrap allows for the additional uncer-

tainty due to the estimation of the transformation parameter. Although the use of an optimal

transformation may reduce the deviation from normality, there may still be departures from

normality especially in the tails of the distribution of the unit-level error term. To overcome

this problem, we propose a semi-parametric bootstrap that relies on the normality of the random

effects but generates the unit-level error terms by using the empirical distribution of suitably

scaled unit-level residuals. The proposed wild bootstrap scheme is described below:

1. Fit the model 4.1 using an appropriate transformation T (yij) = y∗ij and obtain β̂, σ̂2
u, σ̂

2
e , λ̂.

2. Calculate the sample residuals by êij = yij − xTijβ̂ − ûi.

3. Scale and center the residuals using σ̂e. The scaled and centered residuals are denoted

by ε̂ij .

4. For b = 1, ..., B

(a) Generate u(b)
i

iid∼ N(0, σ̂2
u).

(b) Calculate the linear predictor η(b)
ij by η(b)

ij = xTijβ̂ + u
(b)
i .

(c) Match η(b)
ij with the set of estimated linear predictors {η̂k|η ∈ n} from the sample

by using

min
k∈n

∣∣η(b)
ij − η̂k

∣∣
and define k̃ as the corresponding index.

(d) Generate weights w from a distribution satisfying the conditions in Feng et al.

(2011) where w is a simple two-point mass distribution with probabilities 0.5 at

w = 1 and w = −1, respectively.

(e) Calculate the bootstrap population as y∗(b)ij = xTijβ̂ + u
(b)
i + wk|ε̂

(b)

k̃
|.

(f) Back-transform T (yij
∗(b)) to the original scale and compute the population value

Ii,b.

(g) Extract the bootstrap sample in yij(b) and use the EBP method, as described in

Section 4.4.

(h) Obtain ÎEBPi,b .
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5. M̂SEwild

(
ÎEBPi

)
= B−1

∑B
b=1

(
ÎEBPi,b − Ii,b

)2
.

The performance of both MSE estimators is compared in a model-based simulation study in

Section 4.7.

4.6 The Guerrero Case Study: Application of Data-driven Trans-
formations

The benefits of using the proposed EBP approach with data-driven transformations for estimat-

ing deprivation and inequality indicators are illustrated in an application using the data from

the ENIGH survey 2010 and the National Population and Housing Census 2010 we introduced

in Section 4.3. The aim is to estimate the head count ratio (HCR) and the poverty gap (PGAP)

as well as the income quintile share ratio (QSR) for the 81 municipalities in Guerrero.

The indicators HCR and PGAP are special cases of the Foster-Greer-Thorbecke (FGT)

indicators (Foster et al., 1984) and they depend on a poverty line t which is equal to 0.6 times

the median of the target variable. The FGT index of type α for an area i is defined by

Fi(α, t) =
1

Ni

Ni∑
j=1

(
t− yij
t

)α
I(yij ≤ t), for α = 0, 1, 2,

where I(·) denotes an indicator function which returns 1 if (·) holds and 0 otherwise. When α =

0, Fi(α, t) is the HCR and represents the proportion of the population whose income is below

the poverty line t. Taking α = 1, Fi(α, t) defines the PGAP which is a measure of poverty

intensity and quantifies the degree, to which the average income of people living under the

poverty line differs from the poverty line. Next to the two deprivation indicators we investigate

inequality by a modified QSR -suitable for developing countries with high unemployment rates-

defined by

QSRi =

∑Ni
j=1 I (yij ≥ y0.6) yij∑Ni
j=1 I (yij ≤ y0.4) yij

,

where y0.6 and y0.4, denote the 60% and 40% quantiles of the target variable respectively. The

QSR is a widely used inequality indicator due to its simplicity and straightforward interpreta-

tion (Eurostat, 2004).

Before focusing on the state of Guerrero, we briefly illustrate the need for data-driven

transformations in different states in Mexico. Figure 4.2 represents the estimated data-driven

Box-Cox transformation parameters λ̂ (by REML) for each state in Mexico. These estimates

vary between 0.13 and 0.37, showing the adaptive feature of data-driven transformations for

each state in Mexico. Furthermore, we observe that a fixed logarithmic transformation is not

suitable for any of the states.

4.6.1 Model checking and residual diagnostics

In Section 4.3 we show that the model assumptions of the linear mixed regression model are

not met. We now discuss the use of the proposed data-driven transformations for adapting
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Figure 4.2: Estimated transformation parameters of the Box-Cox transformation in the different
states of Mexico

the working model. In particular, we focus on the three data-driven transformations presented

in Section 4.4.2, denoted by Log-Shift, Box-Cox and Dual power transformations and their

comparison to (a) a model that use a logarithmic transformation (Log) and (b) a model that

uses the untransformed income variable (No).

To start with, Figure 4.3 provides a graphical representation of the REML maximization for

the transformation parameter λ for log-shift, Box-Cox and dual power transformations. In this

case the optimal λs are approximately equal to 68.16, 0.26 and 0.30, respectively (cf. Table

4.3).
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Figure 4.3: Optimal transformation parameter λs for the log-shift, Box-Cox and dual power
transformations

In order to analyze whether the use of transformations improves the predictive power of

the model, Table 4.3 reports the percentage of variability explained for each model and its

corresponding ICC. As the ICC is larger than 0 in all cases, there appears to be unexplained

between area variability and hence the use of the mixed model may be appropriate. Using the

untransformed hciw outcome leads to a marginal (R2
m) and conditional (R2

c ) coefficients of

determination of 0.33 and 0.35, respectively. The use of a logarithmic transformation improves

the predictive power of the model in terms of the conditionalR2
c but it loses in terms of marginal

R2
m. However, it can clearly be noted that the use of data-driven transformations increases the
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predictive power of the model.

Table 4.3: R2
m, R2

c , λs, and ICC for the working model under the different transformations

R2
m R2

c λ ICC

No 0.331 0.346 - 0.023
Log 0.263 0.416 - 0.207
Log-Shift 0.419 0.517 68.159 0.169
Box-Cox 0.439 0.517 0.263 0.140
Dual 0.443 0.517 0.304 0.132

A detailed analysis of the Gaussian assumptions of the working models corresponding to

each transformation is now carried out. The results summarizing the skewness, kurtosis and

S-W normality tests are presented in Table 4.4 and the Q-Q plots are presented in Figure 4.4.

It should be noted, that at municipal-level, all three data-driven transformations perform simi-

larly and yield good approximations to the normal distribution. In contrast, the household-level

residuals show clear departures from normality, especially under the model with a fixed log-

arithmic transformation and without a transformation. The picture considerably improves for

the data-driven transformations. The log-shift, Box-Cox and dual power transformations lead

to very similar results in terms of skewness and kurtosis. We note that the log-shift transfor-

mation performs slightly better in terms of kurtosis, but not in terms of skewness compared to

the Box-Cox and dual power transformation. These findings are supported by the Q-Q plots

displayed in Figure 4.4. The data-driven transformations lead to similar Q-Q plots with more

symmetrical and less extreme tails compared to the fixed log transformation. Overall, it ap-

pears that the proposed data-driven transformations improve the predictive power of the model

and clearly give better approximations to the underlying model assumptions of the linear mixed

regression model compared to the use of a fixed logarithmic transformation.

Table 4.4: Skewness, kurtosis and values of the S-W p-values for the municipal- and household-
level error terms of the working models for EBP under the different transformations

Household-level residuals Municipal-level residuals

Transformation Skewness Kurtosis p-value Skewness Kurtosis p-value

No 7.981 110.697 0.000 1.298 5.596 0.002
Log -1.480 6.653 0.000 -0.576 2.336 0.025
Log-Shift -0.346 3.895 0.000 -0.057 1.969 0.226
Box-Cox -0.118 5.311 0.000 -0.023 2.181 0.484
Dual -0.024 5.809 0.000 -0.005 2.242 0.627

4.6.2 Deprivation and inequality indicators for municipalities in Guerrero

Based on the analysis in Section 4.6.1, estimates for the deprivation and inequality indicators

presented in Section 4.2 are calculated by using the EBP method under the three data-driven

transformations and the fixed logarithmic transformation. MSE estimation is implemented with

the wild bootstrap we introduced in Section 4.5 with B = 500 bootstrap replications.
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Figure 4.4: Q-Q-plots for the Pearson household-level (upper panels) and municipal-level
(lower panels) residuals of the working model for EBP under the different transformations

Table 4.5 shows summaries over municipalities of point estimates and root MSEs (RMSEs)

under the different transformations. We observe that the estimates based on the EBP with data-

driven transformations are more efficient (in terms of RMSE) than the corresponding estimates

based on a fixed logarithmic transformation. The effect is especially pronounced for indicators

that rely on the tail of the distribution like the QSR. Furthermore, the use of data-driven trans-

formations also has an effect on the point estimates of the indicators. For the HCR and PGAP,

the three data-driven transformations result in very similar estimates, that are different to the

EBP estimates under the model that uses the logarithmic transformation.

Having assessed the estimates from a statistical perspective, we investigate the results in

the context of the spatial distribution of poverty and inequality in the state of Guerrero. Figure

4.5 presents the point estimates of HCR, PGAP and QSR at municipal-level. As the point es-

timates based on the three data-driven transformations are almost identical, we only show the

results for the EBP with the log-shift transformation. We observe clear regional differences

between the municipalities. Having a closer look to the coastal area in the south-west of Guer-

rero, where the largest city Acapulco is located, we observe lower levels of poverty (HCR and

PGAP) and inequality (QSR) compared to other parts of the state. The coastline to the Pacific

Ocean is wealthier due to several tourist destinations like Acapulco, Ixtapa and Zihuatanejo. In

contrast, there is also a clear deprivation hotspot in the eastern part of the state Guerrero (e.g.
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Table 4.5: Summaries of point estimates and corresponding RMSEs over municipalities in
Guerrero

Point Estimation HCR PGAP QSR

Transformation Mean Median Mean Median Mean Median

Log 0.64 0.66 0.46 0.47 56.03 54.64
Log-Shift 0.56 0.59 0.35 0.36 18.06 15.83
Box-Cox 0.55 0.57 0.37 0.38 23.53 22.71
Dual 0.54 0.57 0.37 0.38 27.79 25.11

RMSE HCR PGAP QSR

Transformation Mean Median Mean Median Mean Median

Log 0.12 0.12 0.11 0.13 90.96 86.23
Log-Shift 0.10 0.11 0.09 0.09 8.73 5.92
Box-Cox 0.10 0.10 0.09 0.09 7.03 6.11
Dual 0.09 0.10 0.09 0.09 7.71 6.55

municipalities: Metlatnoc, Malinaltepec and Atlixtac) with high poverty and inequality rates.

These municipalities are home to indigenous populations living in isolated mountain areas.
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Figure 4.5: Maps of the HCR, PGAP and QSR in Guerrero for the EBP method under the
log-shift transformation at municipal-level

4.7 Model-Based Simulation Study

In this section, we present results from a model-based simulation study that aims to evaluate the

performance of the proposed methods. in Section 4.7.1 we analyze the behaviour of the data-

driven transformation parameter under four scenarios for the distributions of the area and unit-

level error terms. In Section 4.7.2 we investigate the ability of the proposed methods to provide

more precise small area estimates than the EBP with a fixed logarithmic transformation or

without a transformation and assess the performance of the proposed MSE estimators. Finally,

in Section 4.7.3 we evaluate the methods for estimating the transformation parameter.

We generate finite populations U of size N = 10000, partitioned into D = 50 areas

U1, U2, . . . , UD of sizes Ni = 200. The samples are selected by a stratified random sampling

with strata defined by the 50 small areas. This leads to a sample size of n =
∑D

i=1 ni = 921

whereby the area-specific sample sizes ni vary between 8 and 29. We chose the sample sizes

mainly because of two reasons. First, we want to assess the data-driven transformations under

extreme but realistic cases. Second, the sample sizes are similar in the case study.
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Four scenarios, denoted by Normal, Log-scale, Pareto and GB2, are considered. Details

about the data generating mechanisms of the different scenarios are provided in Table 4.6. Un-

der scenario Normal, data are generated by using Normal distributions for the random effects

and unit-level errors. Under the second scenario random effects and unit-level errors are gen-

erated under a log-normal distribution such that a fixed logarithmic transformation is suitable.

Scenarios Pareto and GB2 are settings that attempt to replicate realistic situations for income

data. In particular, random effects are generated by using a Normal distribution and unit-level

error terms are generated under a Pareto and GB2 scenario respectively. Each setting was re-

peated independently M = 500 times. We focus on the three data-driven transformations,

namely log-shift, Box-Cox and dual power transformations, and compare these to the case of a

fixed logarithmic transformation and the case of using untransformed data.

Table 4.6: Model-based simulation settings for the analysis of the MSE

Scenario Model xij zij µi ui eij

Normal 4500− 400xij + ui + eij N(µi, 3) - U [−3, 3] N
(
0, 5002

)
N(0, 10002)

Log-scale exp(10− xij − 0.5zij + ui + eij) N(µi, 2) N(0, 1) U [2, 3] N
(
0, 0.42

)
N(0, 0.82)

Pareto 12000− 400xij + ui + eij − ē N(µi, 7.5) - U [−3, 3] N
(
0, 5002

) √
2Pareto(3, 20002)

GB2 8000− 400xij + ui + eij − ē N(µi, 5) - U [−1, 1] N
(
0, 5002

)
GB2(2.5, 1700, 18, 1.46)

4.7.1 Behavior of the data-driven transformation parameters

Figure 4.6 shows box plots of the estimated transformation parameters λ for the log-shift, Box-

Cox and dual power transformations (over M = 500 replications) under the four simulation

settings. The data-driven transformation parameters are estimated by REML. Under the Nor-

mal setting the parameters of the Box-Cox and dual power transformations are close to one

indicating that no transformation is needed. In the Log-scale scenario, the data was generated

in such a way that normality may be achieved by applying the logarithmic transformation. In

this case the log-shift transformation parameter is close to zero and the same holds for the

parameters of Box-Cox and dual power transformations. For the other two scenarios (Pareto

and GB2), the data-driven parameters are between 0.25 and 0.5, so neither using a logarithmic

transformation nor ignoring the need for a transformation is appropriate. Overall, the results

indicate that the data-driven transformations behave as expected in the four scenarios and adapt

to the shapes of the data distributions.
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Figure 4.6: Estimated transformation parameters for the log-shift, Box-Cox and dual power
transformations under the different settings.
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4.7.2 Performance of the EBP under data-driven transformations

In this section we compare the performance of the proposed methods to the case of (a) fixed log-

arithmic transformation and (b) no transformation. We then assess the performance of the MSE

estimators. Five estimators of small area deprivation and inequality indicators (HCR, PGAP

and QSR) are evaluated. The EBP and the corresponding MSE estimators are implemented

using L = 100 and B = 500. The following quality measures averaged over Monte-Carlo

replications M are used to assess the performance of a small area estimator in area i:

RMSE
(
Îmethod
i

)
=

[
1

M

M∑
m=1

(
Î

method(m)
i − I(m)

i

)2
]1/2

,

Bias
(
Îmethod
i

)
=

1

M

M∑
m=1

(
Î

method(m)
i − I(m)

i

)
,

where Îmethod
i denotes the estimated indicator in area i based on any of the five methods under

consideration and Ii denotes the corresponding true value in area i.

Table 4.7 presents the results split by the four scenarios. It shows median and mean values

of RMSE and bias averaged over small areas. Under the Normal scenario the EBP without

transformation is the gold, but the EBP with data-driven transformations (log-shift, Box-Cox

and dual power) perform similarly in terms of RMSE and bias. The same picture emerges in the

Log-scale scenario where the EBP with a logarithmic transformation is the gold standard, but

again the EBP with data-driven transformations perform well both in terms of RMSE and bias.

These results confirm our expectations that the EBP with data-driven transformations adapt to

the shape of the data distribution. Under the GB2 and Pareto scenarios we notice that the EBP

with a fixed transformation or without transformation is inferior to the EBP with data-driven

transformations both in terms of RMSE and Bias. The differences are especially pronounced

for QSR which is very sensitive to the tails of the distribution. Furthermore, the estimates

based on data-driven transformations are almost unbiased or have a small bias. A closer look

at the data-driven transformations indicates that EBP with a log-shift transformation performs

better than the EBP with Box-Cox and dual power transformations in these particular settings.

Overall, it appears that the proposed EBP method with data-driven transformations adapts to the

underlying distribution of the data, and hence improves the precision of small area estimates.

We now turn our attention to the performance of the MSE estimators. We denote by para-

metric and wild the proposed parametric bootstrap and proposed semi-parametric wild boot-

strap respectively. The aim of this part is twofold. Firstly, we assess the performance of the two

proposed MSE estimators we introduced in Section 4.5. Secondly, we investigate the ability

of the wild bootstrap to protect against departures from the assumptions of the unit-level error

term. Starting with the first aim, Table 4.8 reports the results for the two MSE estimators and

presents the mean and median values of relative RMSE and relative bias -over Monte-Carlo

replications and areas- of the EBP with Box-Cox transformation. For calculating the RMSE

and relative bias we treat the empirical MSE (over Monte-Carlo replications) as the true MSE.

The results for the EBP with a log-shift transformation and dual power transformation are avail-

able on request from the authors. We note that, on average, the proposed parametric and wild
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bootstrap approaches for the EBP with a Box-Cox transformation have small positive relative

bias (HCR and PGAP indicators) in the Normal and Log-scale settings. However, the paramet-

ric bootstrap shows some underestimation in the case of QSR. In this latter case wild bootstrap

appears to be associated with smaller relative bias. For the Normal and Log-scale scenarios

parametric bootstrap also appears to be more stable. Nevertheless, wild bootstrap improves

MSE estimation as -in most cases- it has smaller relative bias and relative RMSE. These results

indicate that departures from the model assumptions -even after using data transformations-

affects MSE estimation with parametric methods. The problem is more pronounced when es-

timating parameters that depend on the tails of the distribution as is the case with the QSR.

In those cases, the use of semi-parametric MSE estimation methods offers some protection

against misspecification.

4.7.3 Impact of alternative estimation methods for λ

In this last section we explore the use of non-parametric alternatives to the REML approach

for estimating data-driven transformation parameters (see Section 4.4.3). Here, we study five

estimation methods. These are the REML approach, the minimization of the skewness (Skew)

and the pooled skewness (poolSkew), and the distance-based criteria Kolomogorov-Smirnov

(KS) and Cramér-von Mises (CvM) we introduced in Section 4.4.3.

The five methods estimate transformation parameters close to the theoretically correct ones,

in the scenarios those are known. For instance, in the Log-scale scenario, the estimated trans-

formation parameters under the different estimation methods are shown in Figure 4.7 and Ta-

ble 4.9. We observe that although the five methods provide similar estimates of λ, the REML

method has smaller variability. In our model-based simulations we further studied the impact

of the estimation method of the transformation parameter on point and MSE estimation and we

conclude that this only marginally influences the quality of small area estimates. These results

are available from the authors upon request.

Overall, these results suggest that for the scenarios we considered in this paper the method

used to estimate the transformation parameter does not have a noticeable impact on small area

estimation and REML appears to be the most stable method.
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Figure 4.7: Box-plots of estimated transformation parameters for the log-scale scenario using
different estimation methods
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Table 4.7: Summaries of estimated RMSEs and Bias over the model-based settings

Indicator HCR PGAP QSR

Estimator Median Mean Median Mean Median Mean

Normal

RMSE No 0.0338 0.0357 0.0136 0.0154 0.3259 1.2765
Log-Shift 0.0344 0.0363 0.0155 0.0175 0.3898 0.6710
Box-Cox 0.0343 0.0358 0.0134 0.0156 0.3348 1.1178
Dual 0.0343 0.0358 0.0134 0.0156 0.3346 0.5797

BIAS No 0.0000 0.0007 0.0002 0.0009 0.0049 0.0899
Log-Shift 0.0029 0.0039 -0.0067 -0.0076 -0.1000 -0.2190
Box-Cox 0.0016 0.0027 -0.0021 -0.0025 -0.0396 -0.0807
Dual 0.0016 0.0027 -0.0021 -0.0024 -0.0458 -0.1193

Log-Scale

RMSE Log 0.0583 0.0605 0.0358 0.0367 4.9100 4.8969
Log-Shift 0.0583 0.0605 0.0358 0.0367 4.9024 4.8985
Box-Cox 0.0581 0.0604 0.0358 0.0367 4.9731 4.9717
Dual 0.0584 0.0605 0.0359 0.0367 4.9025 4.9093

BIAS Log -0.0011 -0.0009 -0.0007 -0.0003 0.0394 0.1143
Log-Shift -0.0020 -0.0017 -0.0011 -0.0007 -0.0873 -0.0072
Box-Cox -0.0009 -0.0006 -0.0008 -0.0004 0.1499 0.2106
Dual -0.0024 -0.0021 -0.0009 -0.0005 -0.1610 -0.0992

GB2

RMSE No 0.0650 0.0656 0.0552 0.0552 17.7364 32.0686
Log 0.0912 0.0908 0.0272 0.0270 1.8979 1.9002
Log-Shift 0.0418 0.0415 0.0127 0.0132 0.4286 0.4411
Box-Cox 0.0471 0.0469 0.0136 0.0139 0.4708 0.4753
Dual 0.0472 0.0470 0.0137 0.0140 0.4715 0.4760

BIAS No 0.0471 0.0477 0.0481 0.0479 1.8355 2.0825
Log 0.0746 0.0747 0.0169 0.0169 1.4718 1.4692
Log-Shift 0.0176 0.0179 -0.0008 -0.0013 0.0546 0.0523
Box-Cox 0.0274 0.0274 0.0035 0.0031 0.1780 0.1721
Dual 0.0275 0.0274 0.0037 0.0034 0.1800 0.1747

Pareto

RMSE No 0.0448 0.0444 0.0622 0.0613 1.6814 3.6057
Log 0.0304 0.0306 0.0082 0.0084 0.3887 0.3994
Log-Shift 0.0185 0.0196 0.0060 0.0063 0.1661 0.1779
Box-Cox 0.0192 0.0202 0.0059 0.0062 0.1786 0.1901
Dual 0.0192 0.0203 0.0059 0.0062 0.1782 0.1902

BIAS No 0.0277 0.0287 0.0166 0.0160 0.3173 0.3132
Log 0.0086 0.0081 -0.0030 -0.0037 0.2068 0.2034
Log-Shift 0.0003 -0.0001 -0.0034 -0.0041 0.0305 0.0300
Box-Cox 0.0030 0.0026 -0.0031 -0.0037 0.0525 0.0530
Dual 0.0030 0.0027 -0.0031 -0.0037 0.0522 0.0530
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Table 4.8: Performance of MSE estimators in model-based simulations: EBP with Box-Cox
transformation

Indicator HCR PGAP QSR

Estimator Median Mean Median Mean Median Mean

Normal

rel. RMSE[%] Parametric 8.30 9.22 9.15 9.47 15.25 21.23
Wild 14.57 14.77 14.21 14.61 17.46 20.93

rel. Bias[%] Parametric 6.64 7.27 -1.17 -0.12 -7.72 -12.61
Wild 8.05 8.04 2.17 3.23 -1.01 -1.46

Log-Scale

rel. RMSE[%] Parametric 11.14 12.00 19.19 19.57 19.10 19.75
Wild 16.82 17.00 22.70 22.95 25.34 25.62

rel. Bias[%] Parametric 6.10 6.29 5.70 6.36 7.91 7.92
Wild 7.69 7.82 7.34 7.39 6.58 6.78

GB2

rel. RMSE[%] Parametric 21.71 21.86 20.89 20.57 43.75 43.58
Wild 19.01 19.39 14.76 15.12 26.21 27.23

rel. Bias[%] Parametric -20.04 -19.74 -16.88 -15.92 -42.90 -42.74
Wild -14.59 -14.64 -5.45 -5.75 -21.72 -22.53

Pareto

rel. RMSE[%] Parametric 11.31 12.60 35.60 34.78 50.04 51.63
Wild 26.18 28.44 23.58 26.04 28.60 33.40

rel. Bias[%] Parametric 2.43 3.38 -33.82 -31.16 -49.51 -51.06
Wild 19.21 21.37 -8.28 -3.28 -23.02 -26.79

4.8 Conclusions and Future Research Directions

In this paper we investigate data-driven transformations for small area estimation. In particular,

we propose an EBP approach with data-driven transformations estimated with likelihood-based

methods. The use of scaled transformations (conditional on the Jacobian) allows for the use

of standard software for fitting the mixed linear regression model. Three types of transforma-

tions are discussed log-shift, Box-Cox and dual power transformations. We further explore the

use of parametric and semi-parametric wild bootstrap for MSE estimation that also captures

the uncertainty from estimating the data driven transformation parameter. Semi-parametric

bootstrap is used for protecting against departures from the model assumptions. Model-based

simulations demonstrate the ability of the proposed EBP method to adapt to the shape of the

data distribution and hence provide more efficient estimates than a fixed logarithmic transfor-

mation or the case where no transformation is used. Although the paper focuses on the EBP the

proposed methods are applicable to other small area estimators for example, the ELL approach

(Elbers et al., 2003).
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Table 4.9: Mean and median of estimated transformation parameters under the log-scale sce-
nario using different estimation methods

Log-Shift Box-Cox Dual

Mean Median Mean Median Mean Median

poolSkew 9.381 0.000 -0.002 -0.002 0.016 0.000
Skew 9.381 0.000 -0.002 -0.002 0.015 0.000

KS 23.906 10.816 -0.003 -0.003 0.009 -0.001
CvM 11.954 0.211 -0.004 -0.005 0.025 0.001

REML 3.349 0.000 -0.002 -0.001 0.021 0.000
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.1 Derivation of Scaled Transformations

In this appendix we derive the Jacobian and the corresponding scaling factors presented in

Table 4.2 for the log-shift, Box-Cox, and dual power transformations.

.1.1 Log-shift transformation

Let J(λ,y) be the Jacobian of the log-shift transformation from yi to y∗i (λ), defined as:

J(λ,y) =
D∏
i=1

ni∏
j=1

∣∣∣∣∣dy∗ij(λ)

dyij

∣∣∣∣∣
=

D∏
i=1

ni∏
j=1

(yij + λ)−1.

The log-likelihood function in (4.3) can be rewritten as follows:

lREML(y, λ|θ) = −n− p
2

log(2π) +
1

2
log

∣∣∣∣∣
D∑
i=1

XT
i Xi

∣∣∣∣∣− 1

2

D∑
i=1

log|Vi|

− 1

2
log

∣∣∣∣∣
D∑
i=1

XT
i V

−1
i Xi

∣∣∣∣∣
− 1

2

D∑
i=1

[y∗i (λ)−Xiβ̂]TV −1
i [y∗i (λ)−Xiβ̂]− n log

(
D∏
i=1

ni∏
j=1

(yij + λ)

) 1
n

︸ ︷︷ ︸
=ȳλ

.

In order to obtain the scaled log-shift transformation, z∗ij(λ), the denominator of the term
y∗ij(λ)

J(λ,y)1/n
is given by:

1/J(λ,y)
1
n = J(λ,y)−

1
n =

[
D∏
i=1

ni∏
j=1

(yij + λ)−1

]− 1
n

= ȳλ.

Therefore, the scaled log-shift transformation is defined as follows:

z∗ij(λ) =
y∗ij(λ)

J(λ,y)1/n
= ȳλ log(yij + λ)

for yij > −λ.
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.1.2 Box-Cox transformation

Let J(λ,y) be the Jacobian of the Box-Cox transformation from yi to y∗i (λ), defined as:

J(λ,y) =
D∏
i=1

ni∏
j=1

∣∣∣∣∣dy∗ij(λ)

dyij

∣∣∣∣∣
=

D∏
i=1

ni∏
j=1

(yij + s)λ−1.

The log-likelihood function in (4.3) can be rewritten as follows:

lREML(y, λ|θ) = −n− p
2

log(2π) +
1

2
log

∣∣∣∣∣
D∑
i=1

XT
i Xi

∣∣∣∣∣− 1

2

D∑
i=1

log|Vi|

− 1

2
log

∣∣∣∣∣
D∑
i=1

XT
i V

−1
i Xi

∣∣∣∣∣
− 1

2

D∑
i=1

[y∗i (λ)−Xiβ̂]TV −1
i [y∗i (λ)−Xiβ̂] + n(λ− 1) log

(
D∏
i=1

ni∏
j=1

(yij + s)

) 1
n

︸ ︷︷ ︸
=ȳ

.

In order to obtain the scaled transformation of the Box-Cox family, z∗ij(λ), the denominator

of the term
y∗ij(λ)

J(λ,y)1/n
is given by:

1/J(λ,y)
1
n = J(λ,y)−

1
n =

[
D∏
i=1

ni∏
j=1

(yij + s)λ−1

]− 1
n

= ȳ−(λ−1).

Therefore, the scaled Box-Cox transformation is defined as follows:

z∗ij(λ) =
y∗ij(λ)

J(λ,y)1/n
=

{
(yij+s)

λ−1

ȳλ−1λ
, λ 6= 0,

ȳ log(yij + s), λ = 0,

for yij > −s.

.1.3 Dual power transformation

Let J(λ,y) be the Jacobian of the dual power transformation from yi to y∗i (λ), defined as:

J(λ,y) =

D∏
i=1

ni∏
j=1

∣∣∣∣∣dy∗ij(λ)

dyij

∣∣∣∣∣
=

D∏
i=1

ni∏
j=1

(yij + s)λ−1 + (yij + s)−λ−1

2
.
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The log-likelihood function in (4.3) can be rewritten as follows:

lREML(y, λ|θ) = −n− p
2

log(2π) +
1

2
log

∣∣∣∣∣
D∑
i=1

XT
i Xi

∣∣∣∣∣− 1

2

D∑
i=1

log |Vi|

− 1

2
log

∣∣∣∣∣
D∑
i=1

XT
i V

−1
i Xi

∣∣∣∣∣
− 1

2

D∑
i=1

[y∗i (λ)−Xiβ̂]TV −1
i [y∗i (λ)−Xiβ̂]

+ n log

(
D∏
i=1

ni∏
j=1

(yij + s)λ−1 + (yij + s)−λ−1

2

) 1
n

︸ ︷︷ ︸
=ȳλ

.

In order to obtain the scaled dual transformation, z∗ij(λ), the denominator of the term
y∗ij(λ)

J(λ,y)1/n

is given by:

1/J(λ,y)1/n = J(λ,y)−
1
n =

[
D∏
i=1

ni∏
j=1

(yij + s)λ−1 + (yij + s)−λ−1

2

]− 1
n

= ȳ−1
λ .

Therefore, the scaled dual transformation is defined as follows:

z∗ij(λ) =
y∗ij(λ)

J(λ,y)1/n
=

ȳ−1
λ

(yij+s)
λ−(yij+s)

−λ

2λ if λ > 0;

ȳ−1
λ log(yij + s) if λ = 0,

for yij > −s.
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Chapter 5

The R Package emdi for Estimating
and Mapping Regionally
Disaggregated Indicators

5.1 Introduction

In recent years an increased number of policy decisions has been based on statistical informa-

tion derived from indicators estimated at disaggregated geographical levels using small area

estimation methods. Clearly, the more detailed the information provided by official statis-

tics estimates, the better the basis for targeted policies and evaluating intervention programs.

The United Nations suggest further disaggregation of statistical indicators for monitoring the

Sustainable Development Goals (SDGs). National Statistical Institutes (NSIs) and other orga-

nizations across the world have also recognized the potential of producing small area statistics

and their use for informing policy decisions. Examples of NSIs with well-developed programs

in the production of small area statistics include the US Bureau of Census, the UK Office for

National Statistics (ONS) and the Statistical Office of Italy (ISTAT). Although the term domain

is more general as it may include non-geographic dimensions, the term small area estimation

(SAE) is the established one. We shall follow the custom in this paper and use the terms

area/geography and domain/aggregation interchangeably.

Without loss of generality in this paper we will assume that the primary data sources used to

estimate statistical indicators are national socio-economic household sample surveys. Sample

surveys are designed to provide estimates with acceptable precision at national and possibly

sub-national levels but usually have insufficient sizes to allow for precise estimation at lower

geographical levels. Therefore, direct estimation that relies only on the use of survey data

can be unreliable or even not possible for domains that are not represented in the sample. In

the absence of financial resources for boosting the sample size of surveys, using model-based

methodologies can help to obtain reliable estimates for the target domains.

Model-based SAE methods (Pfeffermann, 2013; Rao and Molina, 2015) work by using

statistical models to link survey data, that are only available for a part of the target population,

with administrative or census data that are available for the entire population. Despite the wide
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range of SAE methods that have been proposed by academic researchers, these are so far ap-

plied only by a fairly small number of NSIs or other practitioners. This gap between theoretical

advances and applications may have several reasons one of which is the lack of suitable, user

friendly statistical software. More precisely, software needs not only to be available but it also

needs to simplify the application of the methods for the user. The R (R Core Team, 2017)

package emdi (Kreutzmann et al., 2018) aims to improve the user experience by simplifying

the estimation of small area indicators and corresponding precision estimates. Furthermore, the

user benefits from support that extends beyond estimation in particular, evaluating, processing,

and presenting the results.

Traditionally model-based SAE methods have been employed for estimating simple, linear

indicators for example, means and totals using for example, mixed (random) effects models

and empirical best linear unbiased predictors (EBLUPs). Several software packages exist. In

R, the package JoSAE (Breidenbach, 2015) includes functions for EBLUPs using unit-level

models. Functions in the package hbsae (Boonstra, 2012) enable the use of unit- and area-level

models and can be estimated either by using restricted maximum likelihood (REML) or hierar-

chical Bayes methods. The package BayesSAE (Shi and with contributions from Peng Zhang,

2013) also allows for Bayesian methods. The rsae package by Schoch (2012) and package

saeRobust by Warnholz (2016a) provide functions for outlier robust small area estimation us-

ing unit- or area-level models. Gaussian area-level multinomial mixed-effects models for SAE

can be done with the mme package (Lopez-Vizcaino et al., 2014). In addition, resources in R
are available for Bayesian SAE from the BIAS (Bayesian methods for combining multiple In-

dividual and Aggregate data Sources) project (Gómez-Rubio et al., 2010) and from the package

SAE2 (Gómez-Rubio et al., 2008) that provides likelihood-based methods. In Stata, functions

xtmixed and gllamm support the estimation of linear mixed models, which is a popular

basis for model-based SAE. EBLUPs can be derived using these functions (West et al., 2007).

Similarly, PROC MIXED and PROC IML can be used for fitting unit- and area-level models

in SAS as shown in Mukhopadhyay and McDowell (2011). Furthermore, several SAS macros

for SAE are provided by the EURAREA (Enhancing Small Area Estimation Techniques to

meet European Needs) project (EURAREA Consortium, 2004).

More recently widespread application of SAE methods involves the estimation of poverty

and inequality indicators and distribution functions (The World Bank, 2007). In this case the

use of methodologies for estimating means and totals is no longer appropriate since such indica-

tors are complex, non-linear functions of the data. As an example, we refer to the Foster-Greer-

Thorbecke indicators (Foster et al., 1984), the Gini coefficient (Gini, 1912) and the quantiles

of the income distribution. Popular SAE approaches for estimating complex indicators include

the Empirical Best Predictor (EBP) (Molina and Rao, 2010), the World Bank method (El-

bers et al., 2003) and the M-Quantile method (Chambers and Chandra, 2006; Tzavidis et al.,

2010). Although in this paper we focus exclusively on software for implementing the EBP

method (Molina and Rao, 2010), a future version of the package will include the M-Quantile

and World Bank methods. The World Bank provides a free software for using the World Bank

method called PovMap (The World Bank, 2013). However, this focuses exclusively on poverty

mapping. Creating a more general open-source software can help to accelerate the uptake of
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modern model-based methods. Currently, the best known package that also includes the EBP

method is the R package sae (Molina and Rao, 2010). Although the sae package implements a

range of small area methods, it lacks the necessary functionality for supporting the user beyond

estimation for example, for performing model diagnostic analyses, visualising, and exporting

the results for further processing. In contrast, emdi supports the user by providing more op-

tions and greater flexibility. In particular, package emdi offers the following attractive features

that distinguish it from the sae package and other R packages for SAE:

• The estimation functions return by default estimates for a set of predefined indicators,

including the mean, the quantiles of the distribution of the response variable and poverty

and inequality indicators. Additionally, self-defined indicators or indicators available

from other packages can be included.

• The user can select the type of data transformation to be used in emdi. Data-driven

transformation parameters are estimated automatically.

• In contrast to other packages that include only a parametric bootstrap for mean squared

error (MSE) estimation, package emdi includes two bootstrap methods, a parametric

bootstrap and a semi-parametric wild bootstrap (see Appendix .1) for MSE estimation.

Both incorporate the uncertainty due to the estimation of the transformation parameter.

The use of wild bootstrap (Thai et al., 2013; Flachaire, 2005) protects the user against de-

partures from the distributional assumptions of the nested error linear regression model.

This offers additional protection against possible misspecification of the model assump-

tions.

• Customized parallel computing is offered for reducing the computational time associated

with the use of bootstrap.

• Package emdi provides predefined functions for diagnostic analyses of the model as-

sumptions. A mapping tool for plotting the estimated indicators enables the creation of

high quality visualization. The output summarizing the most relevant results can be ex-

ported to Excel™ and to OpenDocument Spreadsheets for presentation and reporting

purposes.

The remainder of this paper is structured as follows. Section 5.2 gives information about

the estimation methods that are included in the package. In Section 5.3 we present the data

sets that we used for illustrating the use of the emdi package. Section 5.4 describes the core

functionality of the package. Examples demonstrate the use of the methods for computing,

assessing and presenting the estimates. Section 5.5 shows how users can extend the set of

indicators to be estimated by including customized options and describes the parallelization

features of the package. Finally, Section 5.6 discusses future potential extensions.

5.2 Statistical Methodology

In order to obtain regionally disaggregated indicators, package emdi includes direct estimation

and currently model-based estimation using the EBP approach by Molina and Rao (2010).
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Measurement Indicator Ii Expression Range

Location Meani
∑Ni
j=1 yij
Ni

R

Qi,q F−1
i (q) = inf{yi ∈ R : Fi(yi) ≥ q} R

Poverty HCRi 1
Ni

∑Ni
j=1 I(yij ≤ z) [0, 1]

PGi
1
Ni

∑Ni
j=1

(
z−yij
z

)
I(yij ≤ z) [0, 1]

Inequality Ginii
2
∑Ni
j=1 jyij

Ni
∑Ni
j=1 yij

− (Ni+1)
Ni

[0, 1]

QSRi
∑Ni
j=1 I(yij>Qi,0.8)yij∑Ni
j=1 I(yij≤Qi,0.2)yij

R

Table 5.1: List of predefined population indicators in emdi. Note that Fi(yi) denotes the
empirical distribution function of the population in domain i and quantiles are generally defined
for q ∈ (0, 1). The predefined quantiles in emdi are q ∈ (0.1, 0.25, 0.5, 0.75, 0.9).

The predefined indicators returned by the estimation functions in emdi include the mean

and quantiles Qq (10%, 25%, 50%, 75%, 90%) of the target variable as well as non-linear indi-

cators of the target variable. A widely used family of indicators measuring income deprivation

and inequality is the Foster-Greer-Thorbecke (FGT) one (Foster et al., 1984). Package emdi
includes the FGT measures of Head Count Ratio (HCR) and Poverty Gap (PG). In order to

compute the HCR and PG indicators one must use a threshold z, also known as poverty line.

This line is a minimum level of income deemed adequate for living in a particular country and

can be defined in terms of absolute or relative poverty. For instance, the international absolute

poverty line is currently set to $1.90 per day by the World Bank (The World Bank, 2017). Rela-

tive poverty means a low income relative to others in a particular country - for instance, below a

percentage of the median income in that country. Another family of indicators of interest is the

so-called Laeken indicators, endorsed by the European Council in Laeken, Belgium (Council

of the European Union, 2001). Two examples of Laeken indicators that are well-known for

measuring inequality are the Gini coefficient (Gini, 1912) and the Income Quintile Share Ratio

(QSR) (Eurostat, 2004). These two inequality indicators are also available in emdi. There-

fore, in total emdi includes ten predefined indicators Ii - summarized in Table 5.1 - that are

estimated at domain level i using a) direct estimation introduced in Section 5.2.1 and b) model-

based estimation via the EBP method introduced in Section 5.2.2.

In the following sections the notation denotes by U a finite population of size N , partitioned

into D domains U1, U2, . . . , UD of sizes N1, . . . , ND, where i = 1, . . . , D refers to an ith

domain and j = 1, . . . , Ni to the jth household/individual. From this population a random

sample of size n is drawn. This leads to n1, . . . , nD observations in each domain. If ni is equal

to 0 the domain is not in the sample. The target variable is denoted by y.

5.2.1 Direct estimation

Direct estimation relies on the use of sample data only. The definition of direct (point and

variance) estimators in emdi follows Alfons and Templ (2013). The mean and the quantiles

help to describe the level and the distribution of a target variable. Especially for target variables
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with a skewed distribution, quantiles can be more appropriate summary statistics than the mean,

since these are robust to extreme values. Direct estimators of the mean and the quantiles are

defined as follows,

M̂eani =

∑ni
j=1wijyij∑ni
j=1wij

,

Q̂i,q =

1
2 (yik + yik+1) if

∑k
j=1wij = q

∑ni
j=1wij ;

yik+1 if
∑k

j=1wij ≤ q
∑ni

j=1wij ≤
∑k+1

j=1 wij ,

where w denotes the sample weights and q ∈ (0, 1) defines the corresponding quantile.

FGT measures HCR and PG are estimated by package emdi as follows,

ĤCRi =
1∑ni

j=1wij

ni∑
j=1

wijI(yij ≤ z),

P̂Gi =
1∑ni

j=1wij

ni∑
j=1

wij

(
z − yij
z

)
I(yij ≤ z),

where the indicator function I(·) equals 1 if the target variable yij is below the threshold z and 0

otherwise. As already mentioned, for the computation of the HCR and PG indicators one must

use a threshold z, also known as the poverty line. Package laeken (Alfons and Templ, 2013)

uses relative poverty lines defined as 60% of median equivalized disposable income, which

corresponds to the EU definition for poverty lines and thus in this case the HCR is the At-risk-

of-poverty rate. In contrast, package emdi allows both for absolute and relative poverty lines

and the user is free to set the poverty line. Therefore, the threshold can be given as an argument

in emdi or, alternatively, the user can define an arbitrary function depending on the target

variable and sampling weights. As a default, a relative threshold defined as 60% of the median

of the target variable is used. The HCR describes the proportion of the population below the

poverty line and the PG further takes into account how far, on average, this proportion falls

below the threshold. Both indicators are between 0 and 1.

The two inequality indicators Gini and QSR are estimated in emdi by

Ĝinii =

2
∑ni

j=1

(
wijyij

∑j
k=1wik

)
−
∑ni

j=1w
2
ijyij∑ni

j=1wij
∑ni

j=1wijyij
− 1

 ,
Q̂SRi =

∑ni
j=1 I(yij > Qi,0.8)wijyij∑ni
j=1 I(yij ≤ Qi,0.2)wijyij

,

where I(·) is an indicator function that equals 1 if the target variable is above the weighted 80%

quantile or below the 20% quantile and 0 otherwise. The Gini coefficient is between 0 and 1,

and the higher the value, the higher the inequality is. The extreme values of 0 and 1 indicate

perfect equality and inequality, respectively. QSR is typically used when the target variable is

income and in this case it is defined as the ratio of total income of the 20% richest households

to the 20% poorest households. The higher the value of QSR, the higher the inequality is.

While variance estimation in package laeken (Alfons and Templ, 2013) is only available for
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the poverty and inequality indicators, package emdi also provides a non-parametric bootstrap

method (Alfons and Templ, 2013) for estimating the variance of estimates of the mean and the

quantiles. The variance is, on the one hand, an important measure for measuring the precision

of estimates. On the other hand, it is also important to compute the coefficient of variation

(CV) which is one measure for showing the extent of the variability of the estimate. The CV is

used, for instance, by NSIs for quantifying the uncertainty associated with the estimates and is

defined as follows,

CV =

√
M̂SE(Îi)

Îi
,

where Îi is an estimate of an indicator Ii for domain i and M̂SE(Îi) is the corresponding mean

squared error.

5.2.2 Model-based estimation

The implementation of the EBP method in package emdi is based on the theory described in

Molina and Rao (2010) and Rao and Molina (2015). The underlying model is a unit-level

mixed model also known in SAE literature as the nested error linear regression model (Battese

et al., 1988). In its current implementation the EBP method is based on a two-level nested

error linear regression model that includes a random area/domain-specific effect and a unit

(household or individual)-level error term.

In addition to the notation above, here we assume that X = (x1, . . . ,xp)
> is the design

matrix, containing p explanatory variables. The nested error linear regression model is defined

by

T (yij) = x>ijβ+ui+eij , j = 1, . . . , ni, i = 1, . . . , D, ui
iid∼ N(0, σ2

u), eij
iid∼ N(0, σ2

e),

(5.1)

where T denotes a transformation of the target variable y, xij is a vector of unit-level auxiliary

variables of dimension (p + 1) × 1, β is the (p + 1) × 1 vector of regression coefficients and

ui and eij denote the random area and unit-level error terms.

The EBP approach works by using at least two data sources, namely a sample data set used

to fit the nested error linear regression model and a population (e.g., census or administrative)

data set used for predicting - under the model - synthetic values of the outcome for the entire

population. Both data sources must share identically defined covariates but the target variable

is only available in the sample data set.

Use of data transformations
Under model (5.1) we assume that the model error terms follow a Gaussian distribution. How-

ever, in certain applications - as is the case when analyzing economic variables - this assump-

tion may be unrealistic. Package emdi includes the option of using a one-to-one transformation

T (yij) of the target variable y aiming to make the Gaussian assumptions more plausible. A

logarithmic-type transformation is very often used in practice (Elbers et al., 2003; Molina and

Rao, 2010). However, this is not necessarily the optimal transformation, for example, when the
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model error terms do not follow exactly a log-normal distribution. In addition to a logarithmic

transformation, package emdi allows the use of a data-driven Box-Cox transformation. The

Box-Cox transformation is denoted by

T (yij) =


(yij+s)

λ−1
λ if λ 6= 0;

log(yij + s) if λ = 0,
(5.2)

where λ is an unknown transformation parameter and s denotes the shift parameter, which is a

constant and chosen automatically such that yij+s > 0. A general algorithm for estimating the

transformation parameter λ is the residual maximum likelihood (REML), which is described

in detail in Rojas-Perilla et al. (2017). One advantage of using the Box-Cox transformation is

that it includes the logarithmic and no transformation as cases for specific values of λ.

Package emdi currently includes the following options: no transformation, logarithmic

transformation and Box-Cox transformation.

The EBP method is implemented using the following algorithm:

1. For a given transformation obtain T (yij). If the user selects the Box-Cox transformation,

the transformation parameter λ is automatically estimated by the emdi package.

2. Use the sample data to fit the nested error linear regression model and estimate θ denoted

by θ̂ = (β̂, σ̂2
u, σ̂

2
e). The variance components are estimated by REML using the function

lme from the package nlme (Pinheiro et al., 2017). Also compute γ̂i = σ̂2
u

σ̂2
u+

σ̂2e
ni

.

3. For l = 1, . . . , L:

(a) For in-sample domains (domains that are part of the sample data set), generate a

synthetic population of the target variable by T (y
∗(l)
ij ) = x>ijβ̂+ ûi+v∗i +e∗ij , with

v∗i
iid∼ N(0, σ̂2

u(1 − γ̂i)), e∗ij
iid∼ N(0, σ̂2

e) and ûi, the conditional expectation of ui
given yi.

For out-of-sample domains (domains with no data in the sample) the conditional

expectation of ui cannot be computed, hence for these domains generate a synthetic

population by using T (y
∗(l)
ij ) = x>ijβ̂ + v∗i + e∗ij , with v∗i

iid∼ N(0, σ̂2
u), e∗ij

iid∼
N(0, σ̂2

e).

For additional details we refer to Molina and Rao (2010).

(b) Back-transform to the original scale y
(l)

i = T−1(y∗
(l)

i ) and calculate the target

indicator I(l)
i (y

(l)

i ) in each domain. Note that I(l)
i is used here as a generic notation

for any indicator of interest.

4. Compute the final estimates by taking the mean over the L Monte Carlo simulations in

each domain, ÎEBPi = 1/L
L∑
l=1

I
(l)
i (y

(l)

i ).

The emdi package fits the nested error linear regression model by using the nlme package and

currently does not permit the use of an alternative package for example lme4 (Bates et al.,

2015). The reason for this choice is that in future developments of emdi we plan to allow for
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more complex covariance structures for the unit-level error term and the random effect for ex-

ample, allowing for spatially correlated errors (Pratesi and Salvati, 2009; Schmid et al., 2016).

To the best of our knowledge, the nlme package offers sufficient flexibility for incorporating

such models.

Measuring the uncertainty of the EBP estimates is done by using bootstrap methods. Here

the uncertainty is quantified by the MSE. Package emdi includes two bootstrap schemes. One

is parametric bootstrap under model (1) following Molina and Rao (2010), which additionally

includes the uncertainty due to the estimation of the transformation parameter (Rojas-Perilla

et al., 2017).

Using an appropriate transformation often mitigates the departures from normality. How-

ever, even after transformations, departures from normality may still exist in particular for the

unit-level error term. For this reason, emdi also includes a variation of semi-parametric wild

bootstrap (Flachaire, 2005; Thai et al., 2013; Rojas-Perilla et al., 2017) to protect against depar-

tures from the model assumptions. The semi-parametric wild bootstrap is presented in detail

in Appendix .1. A simulation study comparing the performance of both MSE estimators is

presented in Rojas-Perilla et al. (2017). Since the bootstrap schemes presented here are com-

putationally intensive, emdi includes an option for parallelization that is described in detail in

Section 5.5.2.

5.3 Data Sets

The main idea of SAE is to combine multiple data sources. Typically, one data set is obtained

from a survey on unit-level and the other one from census or administrative/register data. The

target variable is available in the survey but not in the census data. The administrative data

contains explanatory variables that are potentially correlated with the target variable and hence

they can be used to assist the estimation. Depending on the model type and the indicator

of interest, census information is needed at the unit-level, i.e., information is available for

every unit in each domain, or it is required at the area-level which means that aggregated

data for each domain is given. If the user is interest in estimating non-linear functions of

the target variable (like indicators discussed in Section 5.2), then access to unit-level census

data is needed. As the EBP approach in package emdi is suitable for estimating non-linear

indicators, one population data set (eusilcA pop) and one survey data set (eusilcA smp)

are provided at the household level such that the method can be illustrated. The two data sets

are based on the use of eusilcP from the package simFrame (Alfons et al., 2010). This

data set is a simulated close-to-reality version of the European Union Statistics on Income and

Living Conditions (EU-SILC) in Austria from 2006. Austria is a federal republic in Central

Europe made up of nine states and 94 districts (79 districts headed by commissions and 15

statutory cities) with a total population of about 8.8 million in 2018. The original EU-SILC

data is obtained from an annual household survey that is nowadays conducted in all EU member

states and six other European countries and enables the analysis of income, socio-demographic

factors and living conditions.

For practical reasons, we need to modify the eusilcP data set used in package sim-
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Frame. Due to confidentiality constraints the lowest geographical level in this data set includes

the nine states and identifiers for lower regional levels, like the 94 districts, are not included.

However, in the context of SAE the interest is on lower geographical levels like districts or mu-

nicipalities. Therefore, we assigned households to Austrian districts for illustrating the method-

ology better. The modified synthetic population is called eusilcA pop. The assignment is

based on two criteria available from external sources: a) the population sizes at state and dis-

trict level and b) the income level in each district. From the last register-based census in 2011

the population sizes in each district and in each state are known and publicly available (Statistik

Austria, 2013). We defined the district population sizes in relation to the state population sizes

in the eusilcA pop data set such that their population ratios mimic the true ratios in Austria.

Furthermore, the Austrian Chamber of Commerce published a ranking of the districts within

the states based on the net per capita income (Wirtschaftskammer Österreich, 2017). Based on

this ranking we assigned households to districts such that the ordering of the districts within

states is maintained. One drawback of the population data set is the small number of house-

holds in some districts. For instance, the number of households is only 5 in Rust (Stadt). This

is, however, partly due to the fact that it is also in reality a really small district with only 1896

inhabitants (Statistik Austria, 2013). Although the eusilcA pop data set in emdi mimics

some real characteristics in Austria, it is a synthetic population data set for demonstrating the

functionality of the package and conclusions about the levels of inequality and poverty in the

Austrian districts observed from this data are not official estimates. The full documented code

for the assignment of the households to the districts is available from the authors’ GitHub

folder (https://github.com/SoerenPannier/districtAssignment.git).

The target variable in the example is the equivalized household income (eqIncome),

which is defined as the total household disposable income divided by the equivalized household

size determined by the modified OECD scale (Hagenaars et al., 1994). Thus, the indicators in

our illustration describe the distribution of income, poverty and inequality similarly to the anal-

ysis in Alfons and Templ (2013). The remaining variables in eusilcA pop are variables that

identify the regional levels (state and district) and auxiliary variables that can be used

for modeling income. These explanatory variables are, among others, gender (gender), the

equivalized household size (eqsize) as well as financial resources like the employees cash

(cash) or unemployment benefits (unempl ben). Table 5.2 gives an overview of possible

model covariates.

The sample data set eusilcA smp is a household sample from the eusilcA pop pop-

ulation that includes 1945 observations. The sample is drawn by stratified random sampling

where the districts define the strata. For the 75% largest districts (in terms of number of house-

holds) 10% of the households were selected and the maximum number of sampled households

is equal to 200 in any given district. Consequently, the 25% smallest districts do not have

any observation in the sample. Summaries of state and district-specific sample sizes are given

below.
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R> data("eusilcA_smp")

R> table(eusilcA_smp$state)

Burgenland Carinthia Lower Austria Salzburg Styria

31 162 387 163 337

Tyrol Upper Austria Vienna Vorarlberg

173 392 200 100

R> summary(as.numeric(table(eusilcA_smp$district)))

Min. 1st Qu. Median Mean 3rd Qu. Max.

14.00 17.00 22.50 27.79 29.00 200.00

District-specific sample sizes (in contrast to state-specific) are quite small with 25% of

districts having no sample data at all. Hence, the use of SAE methods may be useful in this

case. In Section 5.4 we discuss the estimation of regional indicators based on these data sets in

detail.

In addition to SAE methods, package emdi provides a function called map plot that produces

maps of the estimated indicators. In order to demonstrate the use of the function map plot

package emdi contains a shape file for the 94 Austrian districts which is downloaded from

the SynerGIS website (Bundesamt für Eich- und Vermessungswesen, 2017). This shape file

is saved in .rda format and the object shape austria dis is a SpatialPolygons

DataFrame. For more information about this class we refer to Bivand et al. (2013).

5.4 Basic Design and Core Functionality

Section 5.2 presented the statistical methodology that uses either direct estimation or the model-

based EBP approach. In package emdi direct and model-based estimation are implemented

with functions direct and ebp, respectively. A key benefit offered by emdi is the flexibility

for producing, assessing, presenting and exploring the estimates. This is achieved by using the

following commands:

1. Estimate domain indicators including MSE estimation: direct and ebp

2. Get summary statistics and model diagnostics: summary and plot

3. Extract and compare the indicators of interest: estimators and compare

4. Visualize the estimated indicators: map plot

5. Export the results to Excel™: write.excel

The package emdi uses the S3 object system (Chambers and Hastie, 1992). All objects

created in the package emdi by an estimation function (direct and ebp) share the class

emdi. Objects of class emdi comprise ten components, which are presented in Table 5.3.

Some of these components are specific only to one of the estimation methods, such that they
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Variable Meaning Scale level

Target variable
eqIncome The equivalized household income. Numeric

Domain identifiers
state Austrian states. Factor
district Austrian districts. Factor

Explanatory variables
eqsize The equivalized household size according to the Numeric

modified OECD scale.
gender The person’s gender (levels: female and male). Factor
cash Employee cash or near cash income. Numeric
self empl Cash benefits or losses from self-employment (net). Numeric
unempl ben Unemployment benefits (net). Numeric
age ben Old-age benefits (net). Numeric
surv ben Survivor’s benefits (net). Numeric
sick ben Sickness benefits (net). Numeric
dis ben Disability benefits (net). Numeric
rent Income from rental of a property or land (net). Numeric
fam allow Family/children related allowances (net). Numeric
house allow Housing allowances (net). Numeric
cap inv Interest, dividends, profit from capital investments in Numeric

unincorporated business (net).
tax adj Repayments/receipts for tax adjustment (net). Numeric

Design variable
weight Sampling weight. Numeric

Table 5.2: Variables of the two data sets in package emdi. Note that the population data set
does not contain a variable for the sampling weights.

are NULL for the other one. These components are indicated in the second column of Table

5.3. Depending on the estimation method, the emdi object is also of class direct or model.

Thus, the commands can be tailored to the estimation method, e.g., model diagnostics

(provided by the command plot) are only suitable when a model-based approach is used. In

what follows the estimation functions are presented and emdi functionalities are illustrated.

5.4.1 Estimation of domain indicators

As far as possible, the two estimation functions (direct and ebp) have the same structure

and variable names, which helps to simplify their use. For function direct, the user has to

specify three arguments (see Table 5.4), that include the target variable, the sample data set, and

the variable name that defines the domain identifier in the sample data. For the remaining argu-

ments suitable defaults are defined. The EBP approach is implemented in emdi, using function

ebp. As shown in Table 5.5, the user has to specify five arguments that include the structure

of the fixed effects of the nested error linear regression model, the two data sets (population

and sample), and the variable names that define the domain identifiers in each data set. For

the remaining arguments suitable defaults are defined. Following Molina and Rao (2010), the

number of Monte Carlo iterations L and the number of bootstrap populationsB are set to 50 by
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Position Name Short description Available for
direct model

1 ind Point estimates for indicators 3 3

per domain
2 MSE Variance/MSE estimates 3 3

per domain
3 transform param Transformation and 3

shift parameters
4 model Fitted linear mixed-effects 3

model as lme object
5 framework List with 8 components 3 3

describing the data
6 transformation Type of transformation 3

7 method Estimation method for 3

transformation parameter
8 fixed Formula of fixed effects used 3

in the nested error linear
regression model

9 call Image of the function call that 3 3

produced the object
10 successful bootstraps A matrix with domains as rows, 3

indicators as columns and
the number of corresponding
successful bootstraps

Table 5.3: Components of emdi objects. All explanations can be found in the documentation
of the emdi object in the package.

default. In practice, we recommend using larger values for example, L ≥ 200 and B ≥ 200.

The choice of a transformation is simplified since the user only has to choose the type of trans-

formation. The shift parameter s and the optimal transformation parameter λ in the case of

using the Box-Cox transformation are automatically estimated. This distinguishes emdi from

package sae (Molina and Marhuenda, 2015) where the user has to select the transformation

parameters manually. Since the Box-Cox transformation includes the no transformation and

logarithmic transformation as special cases, this family of transformations is chosen as the de-

fault option.

Example using Austrian districts:
For illustrating the functions of package emdi we estimate indicators using the data sets de-

scribed in Section 5.3. The target variable is the equivalized income (eqIncome) and the

regional level of interest are Austrian districts included in variable district. For direct es-

timation of the indicators the user has to specify these two arguments and the sample data set

called eusilcA smp. In addition, several other arguments are defined as shown below. We

account for the sampling design by including the sampling weights in the estimation. Further-

more, we set the threshold argument to 60% of the median of equivalized income that - in this

example - equals 10885.33 and we are also interested in obtaining the variance estimates of the

indicators.

R> emdi_direct <- direct(y = "eqIncome", smp_data =
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Arguments Short description Default

y Target variable
smp data Survey data
smp domains Domain identifier
weights Sampling weights No weights
design Variable indicating strata No design
threshold Threshold for poverty indicators 60% of the median of

the target variable
var Variance estimation No variance estimation
boot type Type of bootstrap: naive or calibrate Naive
B Number of bootstrap populations 50
seed Seed for random number generator 123
X calib Calibration variables None
totals Population totals None
custom indicator Customized indicators None
na.rm Deletion of observations with missing values No deletion

Table 5.4: Input arguments for function direct. All explanations can also be found in the
documentation of the direct function in the package.

+ eusilcA_smp, smp_domains = "district", weights = "weight",

+ threshold = 10885.33, var = TRUE)

The R object emdi direct is of classes emdi and direct.

An example of using the ebp method for computing point and MSE estimates for the prede-

fined indicators and two custom indicators, namely the minimum and maximum equivalized

income is provided below:

R> emdi_model <- ebp(fixed = eqIncome ˜ gender + eqsize + cash

+ self_empl + unempl_ben + age_ben + surv_ben + sick_ben +

+ dis_ben + rent + fam_allow + house_allow + cap_inv +

+ tax_adj, pop_data = eusilcA_pop, pop_domains = "district",

+ smp_data = eusilcA_smp, smp_domains = "district",

+ threshold = 10885.33, MSE = TRUE, custom_indicator =

+ list(my_max = function(y, threshold){max(y)}, my_min =

+ function(y, threshold){min(y)}))

In contrast to the direct estimation, the user also has to choose the auxiliary variables to be

included in the nested error linear regression model. The variables that are chosen to explain

the equivalized income are demographics as gender and the equivalized household size but

also financial benefits and allowances as for example cash income, unemployment benefits and

capital investement. Furthermore, model-based estimation requires the use of both, population

(eusilcA pop) and sample (eusilcA smp) data and the domain identifiers. For enabling

the comparison between direct and model-based estimates of the indicators of interest we use

the same threshold as in the direct estimation. MSE estimates are returned by setting the MSE

argument to TRUE. The final R object emdi model is of classes emdi and model. For this

object we show in the following subsections the emdi functionalities.
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Arguments Short description Default

fixed Fixed effects formula of the nested error
regression model

pop data Census or administrative data
pop domains Domain identifier for population data,

pop data
smp data Survey data
smp domains Domain identifier for sample data,

smp data
L Number of Monte Carlo iterations 50
threshold Threshold for poverty indicators 60% of the median of

the target variable
transformation Type of transformation: no, log or Box-Cox Box-Cox
interval Interval for the estimation of the optimal (-1,2)

transformation parameter
MSE Mean Squared Error (MSE) estimation No MSE estimation
B Number of bootstrap populations 50
seed Seed for random number generator 123
boot type Type of bootstrap: parametric or wild Parametric
parallel mode Mode of parallelization Automatic
cpus Number of kernels for parallelization 1
custom indicator Customized indicators None
na.rm Deletion of observations with missing values No deletion

Table 5.5: Input arguments for function ebp. All explanations can also be found in the docu-
mentation of the ebp function in the package.

5.4.2 Summary statistics and model diagnostics

R-users typically use a summary method for summarizing the results. For emdi objects the

summary outputs differ depending on the two classes. The summary for objects obtained by

direct estimation gives information about the number of domains in the sample, the total and

domain-specific sample sizes. The summary for model-based objects is more extensive. In

addition to information about the sample sizes, information about the population size and the

number of out-of-sample domains is provided. Since model-based SAE relies on prediction un-

der the model, including model diagnostics in emdi is important for users. A first measure to

consider when evaluating the working model is the well known R2. Nakagawa and Schielzeth

(2013) provide a generalization of this measure for linear mixed models. A marginal R2 and a

conditional (a measure that accounts for the random effect) R2 are implemented via function

r.squaredGLMM in package MuMIn (Barton, 2018). The summary method uses this func-

tion to calculate and present both measures. For the EBP and model-based SAE methods in

general the validity of parametric assumptions is crucial. Therefore, emdi also outputs residual

diagnostics. In particular, results include the skewness and kurtosis of both sets of residuals

(random effects and unit-level) and the results from using the Shapiro-Wilk test for normality

(test statistic and p-value). The intra-cluster correlation (ICC) coefficient is further used for

assessing the remaining unobserved heterogeneity. Finally, the summary command gives in-

formation about the selected transformation. If the user opts for a Box-Cox transformation, the

transformation parameter λ and the shift parameter s are reported.
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In addition to the diagnostics provided by summary, emdi enables the use of graphical diag-

nostics (see Figure 5.1). The plot method outputs graphics of residual diagnostics.

The first set of plots (Figure 5.1a) are Normal Quantile-Quantile (Q-Q) plots of Pearson

unit-level residuals and standardized random effects. Figure 5.1b and 5.1c are kernel density

plots of the distribution of the two sets of residuals contrasted against a standard normal distri-

bution. Outliers can have a significant impact on the model fit and hence on prediction. Hence,

a Cook’s distance plot is also available (Figure 5.1d), in which the three largest values of the

standardized residuals are identified alongside the case identification number for further inves-

tigation. Finally, if a Box-Cox transformation is used, a plot of the profile log-likelihood that

shows the value of the transformation parameter for which the likelihood is maximized is also

produced (Figure 5.1e). The user can customize the format of all plots. Method plot accepts

the parameter label with the predefined values blank (deletes all labels) and no title

(axis labels are given, but no plot titles). In addition, a user-defined list that contains specific

labels for each plot list can be given. Another parameter available is color which accepts

a vector with two color specifications. The first color defines the lines in Figure 5.1a, 5.1d

and 5.1e and the second one specifies the color of the shapes in Figure 5.1b and 5.1c. For

the likelihood plot the range in which the likelihood should be computed can be specified by

using the parameter range. The appearance of the plots benefits from the use of the ggplot2
package (Wickham, 2009). Hence, plot accepts a gg theme argument that allows for all

customization options of theme that is a tool for modifying non-data components of a plot.

Example using Austrian districts:
In order to check the diagnostics in our example we use the summary and the plot methods.

The summary output of the object emdi model is presented below.

R> summary(emdi_model)

Empirical Best Prediction

Call:

ebp(fixed = eqIncome ˜ gender + eqsize + cash + self_empl +

unempl_ben + age_ben + surv_ben + sick_ben + dis_ben +

rent + fam_allow + house_allow + cap_inv + tax_adj,

pop_data = eusilcA_pop, pop_domains = "district",

smp_data = eusilcA_smp, smp_domains = "district",

threshold = 10885.33, MSE = TRUE, custom_indicator =

list(my_max = function(y, threshold) {

max(y)

}, my_min = function(y, threshold) {

min(y)

}))

Out-of-sample domains: 24
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In-sample domains: 70

Sample sizes:

Units in sample: 1945

Units in population: 25000

Min. 1st Qu. Median Mean 3rd Qu. Max.

Sample_domains 14 17.0 22.5 27.78571 29.00 200

Population_domains 5 126.5 181.5 265.95745 265.75 5857

Explanatory measures:

Marginal_R2 Conditional_R2

0.6325942 0.709266

Residual diagnostics:

Skewness Kurtosis Shapiro_W Shapiro_p

Error 0.7523871 9.646993 0.9619824 3.492626e-22

Random_effect 0.4655324 2.837176 0.9760574 1.995328e-01

ICC: 0.2086841

Transformation:

Transformation Method Optimal_lambda Shift_parameter

box.cox reml 0.6046901 0

This output helps to justify the use of a model-based approach for SAE in this specific

example. On the one hand, 24 out of 94 districts are out-of-sample such that direct estimates

cannot be produced for these districts. Furthermore, the sample sizes in the districts are rather

small with a median of 22.5 households and vary between a minimum of 14 households and a

maximum of 200 households. The explanatory power of the selected covariates is high with the

conditional R2, the measure that jointly considers the fixed and the random effect, of around

71%. The ICC of 20.9% further justifies the inclusion of a random effect. The normality tests

show that normality is rejected for the unit-level error term but not for the random effect. The

use of transformations helps to reduce the skewness of the distribution of the error terms. The

optimal transformation parameter is 0.6 indicating that neither using the untransformed income

or the logarithmic transformation of income would be appropriate for this data set. The plots in

Figure 5.1 used for residual analyses of the object emdi model can be produced as follows,

R> plot(emdi_model, label = "no_title", color =

+ c("red3", "red4"))

The Q-Q plots and the densities of the two error terms confirm that normality seems to be

reasonable for the random effect but not for the unit-level error term. Furthermore, the Cook’s

distance plot identifies possible outliers. The last plot shows the optimal transformation pa-

rameter, which is the maximum of the profile log-likelihood.
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Figure 5.1: Graphics obtained by using plot(emdi model). (a) shows Normal Q-Q plots
of the unit-level errors and the random effects. (b) and (c) show kernel density estimates of
the distributions of standardized unit-level errors and standardized random effects compared
to a standard normal distribution (black density). The Cook’s distance plot is displayed in (d)
whereby the index of outliers is labeled. The profile log-likelihood for the optimal parameter
value of the Box-Cox transformation is shown in (e).
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5.4.3 Selection and comparison of indicators

Package emdi returns a set of predefined and customized indicators. The ten predefined indi-

cators are summarized in Table 5.1. However, the user may only be interested in some of these

or only in individually defined (customized) indicators. A function called estimators helps

the user to select the indicator or indicators of interest. This is done by using the indicator

argument that takes a vector of indicator names as an argument, but in addition also accepts

keywords defining predefined groups; for example, the keyword custom returns only user-

defined indicators. In addition to variance and MSE estimates, NSIs often use the CV as an

additional measure of the quality of the estimates. Estimated CVs as defined in Section 5.2 can

be returned alongside MSE estimates.

It is often important to compare model-based and direct estimates. Direct estimates do not de-

pend on the use of a model and hence the analyst should be interested in deriving model-based

estimates that are close to direct estimates. Comparing model-based to direct estimates offers

an internal validation procedure for checking whether the use of a model leads to unreasonable

estimates. Package emdi provides a function called compare plot that returns two plots, a

scatter plot according to Brown et al. (2001) and a line plot. The scatter plot shows the direct

and model-based point estimates, the fitted regression line, and the identity line. The closer the

regression line is to the identity line, the closer the estimates are. The line plot is shown for do-

mains ordered by the sample size. Thus, the user can see how the model-based estimates track

the direct estimates across domains. In accordance with the function estimators the user

can choose which indicators are compared by using the indicator argument. Similarly to

the diagnostic plots, the user can modify the layout of the two plots. The label options are also

blank (deletes all labels) and no title (axis labels are given, but no plot titles). The color,

the shape of the points and the type of the lines can be changed by using arguments color,

shape and line type, respectively.

Example using Austrian districts:
We illustrate how to estimate the median of equivalized income and the Gini coefficient and

the corresponding CV estimates for the first 6 districts in Austria.

R> head(estimators(emdi_model, indicator = c("Gini", "Median"),

+ MSE = FALSE, CV = TRUE))

Domain Gini Gini_CV Median Median_CV

1 Eisenstadt-Umgebung 0.2214688 0.09790984 25414.07 0.10381883

2 Eisenstadt (Stadt) 0.2872751 0.06110093 49274.84 0.07673551

3 Güssing 0.1906263 0.13046770 16718.13 0.12732081

4 Jennersdorf 0.2098103 0.15371048 12869.55 0.17815504

5 Mattersburg 0.2091353 0.10851693 20102.09 0.12764578

6 Neusiedl am See 0.1865026 0.05934130 18386.83 0.06346778

For these districts, the Gini coefficient and the median income are highest in Eisenstadt

(Stadt). The lowest Gini is in Neusiedl am See and the lowest median in Jennersdorf. Further-

more, it can be noted that none of the CVs is above 20%. This threshold is used by the ONS in
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pop data id shape id

ID of domain 1 in the emdi obj ID of domain 1 in the shape file
ID of domain 2 in the emdi obj ID of domain 2 in the shape file
ID of domain 3 in the emdi obj ID of domain 3 in the shape file

...
...

Table 5.6: Example of a mapping table for argument map tap in function map plot in emdi.

UK in order to decide if estimates can be reported.

The plots in Figure 5.2 are obtained by

R> compare_plot(emdi_direct, emdi_model, indicator =

+ c("Gini", "Median"), label = "no_title", color =

+ c("red3", "blue"))

The scatter plots highlight that the disparity of the fitted regression line from the identity line

is higher for the Gini coefficient than for the median. The model-based estimates do not track

the direct estimates and show also a lower variability across the domains. In contrast, the direct

and model-based estimates for the median are close to each other. Especially for large domains

the difference is negligible.

5.4.4 Mapping of the estimates

In SAE maps are a natural way to present the estimates as they help describing the spatial

distribution of issues like poverty and inequality. Creating maps can be demanding or labo-

rious in practice. Package emdi includes function map plot that simplifies the creation of

maps. Given a spatial polygon provided by a shape file and a corresponding emdi object

map plot produces maps of selected indicators and corresponding MSE and CV estimates.

The parameters MSE, CV and indicator correspond to those in the estimators function.

As Wickham (2009) points out the matching of domain identifiers in the statistical data to the

corresponding identifiers in the spatial data (shape file) is challenging and general solutions are

hard to obtain. The function map plot in emdi allows for an argument map tab when the

identifiers do not match. The user must define a mapping table (cf. Table 5.6) for the argument

map tab in the form of a data frame that matches the domain variable in the population data

set with the domain variable in the shape file. If the domain identifiers in both data sources

match, this table is not required. The handling of the spatial shape files can be done using

package maptools (Bivand and Lewin-Koh, 2017) in combination with package rgeos (Bivand

and Rundel, 2017). Alternative approaches are provided by the packages rgdal (Bivand et al.,

2018) and sf (Pebesma, 2018). For general information on how to work with spatial data and

shape files we refer the reader to Bivand et al. (2013).

Example using Austrian districts:
The steps for obtaining a map of median income in Austrian districts and the corresponding

CVs are outlined below. First, the shape file needs to be loaded.
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Figure 5.2: Graphics obtained by using compare plot(emdi model). (a) and (c) show
the scatter plots of the direct and model-based estimates for the Gini coefficient (top) and
the median (bottom), respectively. (b) and (d) are line plots of the same estimates where the
domains are ordered by increasing sample size.

150



CHAPTER 5. THE R PACKAGE EMDI FOR SMALL AREA ESTIMATION

10000
20000
30000
40000

(a) Median income.

0.05
0.10
0.15
0.20

(b) CV of the median income estimates.

Figure 5.3: Maps of point estimates and CVs of the median income for 94 districts in Austria.

R> load_shapeaustria()

Then, two maps are created (cf. Figure 5.3).

R> map_plot(emdi_model, MSE = FALSE, CV = TRUE, map_obj =

+ shape_austria_dis, indicator = "Median",

+ map_dom_id = "PB")

As the domain identifiers in the data set and shape file already match, the argument map tab

is not required. For an example where the argument map tab needs to be specified, we refer

the reader to help(map plot).

The map of the median equivalized income in Figure 5.3 indicates differences across

Austrian districts. The richest district appears to be Eisenstadt (Stadt) followed by Urfahr-

Umgebung. Furthermore, throughout the country some districts have a relatively low median

income like Zell am See and Schärding. The map of the CVs shows that most districts have a

CV below 20%. The highest CVs occur in the out-of-sample domains.

5.4.5 Exporting the results

Exporting the results from R to other widely used software such as Excel™ is important for

users. For doing so a large set of well established tools already exists. Nevertheless, export-

ing all model information, including the information contained in the summary output is not

straightforward. Function write.excel creates a new Excel™ file that contains the sum-

mary output in the first sheet and the results from the selected estimators in the following sheet.

Again the parameters MSE, CV and indicator correspond to those in the estimators

function. The link with the Excel™ file format is done by using the package openxlsx (Walker,

2017). This package does not require a Java™ installation, which offers an advantage over the

use of the xlsx package (Dragulescu, 2014) because Java™ may be seen as a potential security

threat. Nevertheless, package openxlsx (Walker, 2017) needs a zipping application available

to R. Under Microsoft Windows™ this can be achieved by installing RTools while under

macOS™ or Linux™ such an application is available by default. In addition to exporting the

results to Excel™, emdi also provides an option to export output directly as OpenDocument
Spreadsheets via the function write.ods.

Example using Austrian districts:
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Figure 5.4: Export of the summary output and estimates to Excel™.

Excel™ outputs of model-based estimates for Austrian districts can be obtained by the follow-

ing command.

R> write.excel(emdi_model, file = "excel_output.xlsx",

+ indicator = "Median", MSE = FALSE, CV = TRUE)

The output is presented in Figure 5.4 and shows that also the Excel™ user receives the same

diagnostics from the summary and results for selected estimates. The summary output is de-

scribed in detail in Section 5.4.2.

5.5 Additional Features

In addition to those features that are essential for estimating regional indicators, package emdi
offers to incorporate external indicators and increases the computational efficiency of the MSE

estimation by parallel computing. In this section we show how users can bring indicators

from other R packages into emdi and how parallel computing can help with reducing the

computational burden.

5.5.1 Incorporating an external indicator

A feature we should pay attention to is the ease by which indicators of other R packages can

be brought into emdi. This is demonstrated by using the Theil index from the R package ineq
(Zeileis, 2014). The Theil index describes economic inequality and thus can be also used in the

application with the data of this paper. It belongs to a family of generalized entropy inequality

measures and can be expressed by

Theili =
1

ni

ni∑
j=1

yij
ȳ
log

(
yij
ȳ

)
,

where ȳ = 1
ni

∑ni
j=1 yij (Cowell, 2011). The Theil index takes values from 0 to ∞ with 0

indicating equality and higher values increasing inequality (The World Bank, 2005). As the

function ineq only requires a numeric vector of the target variable, it can be straightforwardly
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wrapped into a form usable within the direct or ebp functions. Using the function direct

the Theil index can be estimated as follows.

First, the package ineq needs to be installed and loaded.

R> install.packages("ineq")

R> library("ineq")

Subsequently, the function ineq with type = "Theil" can be given to the argument

custom indicator.

As the function direct needs the arguments y, weights and threshold, these argu-

ments have to be also specified in the newly defined function.

R> my_theil <- function(y, weights, threshold) {

+ ineq(x = y, type = "Theil")

+ }

The argument custom indicator needs to include a named list of self-defined indica-

tors.

R> my_indicators <- list(theil = my_theil)

R> emdi_direct2 <- direct(y = "eqIncome", smp_data =

+ eusilcA_smp, smp_domains = "district", weights = "weight",

+ var = TRUE, custom_indicator = my_indicators)

As the Theil index is now part of the emdi object, all methods shown in Section 5.4 can be

also used for this newly defined inequality indicator. For instance, by estimating a customized

indicator via function direct a bootstrap variance estimator is used and the subset method

can be applied in order to get results for certain districts.

R> select_theil <- estimators(emdi_direct2, indicator =

+ "theil", CV = TRUE)

R> subset(select_theil, Domain == "Wien")

Domain theil theil_CV

67 Wien 0.1202542 0.1108617

5.5.2 Parallelization

Bootstrapping the MSE can be very costly in terms of computation time and the possibilities

of speeding up are limited when staying within R. Nevertheless, as the bootstrap procedures

described in Section 5.2.2 and Appendix .1 consist of B independent iterations, they are suit-

able for efficient parallel computing. In this particular case, parallelization may be described

as follows:

1. The user predefines how many parallel processes (cpus) and bootstrap iterations (B)

should be used in function ebp.

2. The bootstrap iterations are equally distributed on the parallel processes.
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3. In each process the differences between EBP point estimates and the pseudo true values

∆̂Ii,b = ÎEBPi,b −Ii,b (compare e.g., Appendix .1) are calculated. This is done on different

central processing units (CPUs) at the same time (parallel computing).

4. The results ∆̂Ii,b from all processes are combined and the MSE is estimated by

M̂SE
(
ÎEBPi

)
= B−1

∑B
b=1

(
∆̂Ii,b

)2
.

In R there are numerous ways and packages for implementing parallel computing. The most

used package in this context is parallel (R Core Team, 2017), which mainly builds on the

work of packages snow (Tierney et al., 2016) and multicore (Urbanek, 2014). These packages

follow two different approaches for parallelization. Package snow launches a new version of

R on each core. Those versions communicate with the master process through the so-called

“socket”. Therefore, we will proceed calling this way of parallelization the socket approach.

The second approach is called “forking” and is the approach developed in the multicore pack-

age. Forking duplicates the entire current version of R and shifts it to a new core. Forking

has one crucial advantage: all slave processes share the same memory with the master process

for any object that is not modified. This feature makes it very fast. Its disadvantage is that it

is not available on Microsoft Windows™ operating systems. The parallel package allows for

both approaches but uses different functions. These functions are given an unified interface by

the package parallelMap (Bischl and Lang, 2015). This interface for parallelization is used

in emdi. In the ebp function the parallelization approach defaults to socket if a Microsoft
Windows™ OS is detected and to forking otherwise. The parallelization is activated by setting

the cpus argument to an integer value larger than 1. In the example below the computation

time is measured when the number of CPUs is set equal to 1 and to 2, respectively:

R> system.time(emdi_model1 <- ebp(fixed = eqIncome ˜ gender +

+ eqsize + cash + self_empl + unempl_ben + age_ben +

+ surv_ben + sick_ben + dis_ben + rent + fam_allow +

+ house_allow + cap_inv + tax_adj, pop_data = eusilcA_pop,

+ pop_domains = "district", smp_data = eusilcA_smp,

+ smp_domains = "district", threshold = 10885.33, MSE =

+ TRUE, seed = 100, cpus = 1))

user system elapsed

155.86 0.09 157.36

R> system.time(emdi_model2 <- ebp(fixed = eqIncome ˜ gender +

+ eqsize + cash + self_empl + unempl_ben + age_ben +

+ surv_ben + sick_ben + dis_ben + rent + fam_allow +

+ house_allow + cap_inv + tax_adj, pop_data = eusilcA_pop,

+ pop_domains = "district", smp_data = eusilcA_smp,

+ smp_domains = "district", threshold = 10885.33, MSE =

+ TRUE, seed = 100, cpus = 2))

user system elapsed

3.62 0.45 89.45
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The return value elapsed from function system.time informs the user about the real

time that has passed from submitting the command until completion. Hence, the time compar-

ison shows that two parallel processes reduce the time that is needed for the ebp function to

run approximately by half. Please note that computation times are not replicable.

Despite the advantages in terms of computation time, parallelization comes with a major

drawback. The reproducibility of results that depends on random number generations is non

trivial. The usual set.seed() command that is used in R to ensure reproducibility is not suf-

ficient due to the different R sessions used in parallel computing. In the socket approach, the

function clusterSetRNGStream() from the parallel package is used to provide repro-

ducible random number streams to each process that are far apart from each other. Therefore,

all processes would produce different but reproducible random numbers. When using the fork-

ing approach, reproducibility can be more easily achieved by simply using a different random

number generator. In the ebp function, set.seed(seed, kind = "L’Ecuyer") is

used to set the random number generation to L’Ecuyer (L’Ecuyer et al., 2002) which is based

on L’Ecuyer (1999). The multiple substreams of random numbers are created by the rstream
package (Leydold, 2017) in both approaches. Please note that results obtained from parallel

computation are only reproducible if the same number of processes and the same paralleliza-

tion approach are used. The reproducibility is demonstrated below by reproducing the results

with cpus equal to 2.

R> emdi_model22 <- ebp(fixed = eqIncome ˜ gender + eqsize +

+ cash + self_empl + unempl_ben + age_ben + surv_ben +

+ sick_ben + dis_ben + rent + fam_allow + house_allow +

+ cap_inv + tax_adj, pop_data = eusilcA_pop, pop_domains =

+ "district", smp_data = eusilcA_smp, smp_domains =

+ "district", threshold = 10885.33, MSE = TRUE, seed =

+ 100, cpus = 2)

R> all.equal(emdi_model2, emdi_model22)

[1] TRUE

5.6 Conclusion and Future Developments

In this paper we show how the emdi package can simplify the application of SAE methods.

This package is, to the best of our knowledge, the first R SAE package that supports the user

beyond estimation in the production of complex, non-linear indicators. Another important

feature is that data-driven transformation parameters are estimated automatically. Estimating

the uncertainty of small area estimates is achieved by using both parametric bootstrap and

semi-parametric wild bootstrap. The additional uncertainty due to the estimation of the trans-

formation parameter is also captured in MSE estimation. Customized parallel computing is

included for reducing the computational time. The complexity in applying SAE methods is

considerably reduced, useful diagnostic tools are incorporated and the user is also supported

by the availability of tools for presenting, visualizing and further processing the results. For
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instance, the model summary and results can be exported to Excel™ and to OpenDocument
Spreadsheets. Since emdi makes the application of SAE methods in R almost as simple as

fitting a linear or a generalized linear regression model, it also has the potential to close the gap

between theoretical advances in SAE and their application by practitioners.

Additional features will be integrated in future versions of the package. Firstly, the imple-

mentation of alternative SAE methods will increase the usage of the package. For example, the

World Bank (Elbers et al., 2003) and M-Quantile (Chambers and Chandra, 2006; Tzavidis et al.,

2010) methods complement the EBP approach (Molina and Rao, 2010) for estimating disaggre-

gated complex, non-linear indicators. Secondly, including additional evaluation and diagnostic

tools for comparing direct and model-based estimates will assist the user with deciding which

estimation method should be preferred. Thirdly, currently emdi includes only some possible

types of transformations and one estimation method for the transformation parameter, namely

REML. Future versions of the package will include a wider range of transformations (e.g., log

shift and dual power transformations) and alternative estimation methods (minimization of the

skewness or measures of symmetry) for the transformation parameter.
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.1 Semi-parametric Wild Bootstrap

The semi-parametric wild bootstrap is implemented as follows,

1. Fit model 5.1 (using an appropriate transformation for y) to obtain estimates β̂, σ̂2
u, σ̂

2
e , λ̂.

2. Calculate the sample residuals by êij = yij − x>ijβ̂ − ûi.

3. Scale and center these residuals using σ̂e. The scaled and centered residuals are denoted

by ε̂ij .

4. For b = 1, ..., B

(a) Generate u(b)
i

iid∼ N(0, σ̂2
u).

(b) Calculate the linear predictor η(b)
ij by η(b)

ij = x>ijβ̂ + u
(b)
i .

(c) Match η(b)
ij with the set of estimated linear predictors {η̂k|k ∈ n} from the sample

by using nn

min
k∈n

∣∣∣η(b)
ij − η̂k

∣∣∣
and define k̃ as the corresponding index.

(d) Generate weights w from a distribution satisfying the conditions in Feng et al.

(2011) where w is a simple two-point mass distribution with probabilities 0.5 at

w = 1 and w = −1, respectively.

(e) Calculate the bootstrap population as T (y
(b)
ij ) = x>ijβ̂ + u

(b)
i + wk̃|ε̂

(b)

k̃
|.

(f) Back-transform T (y
(b)
ij ) to the original scale and compute the bootstrap population

value Ii,b.

(g) Select the bootstrap sample and use the EBP method as described above.

(h) Obtain ÎEBPi,b .

5. M̂SEWild

(
ÎEBPi

)
= B−1

∑B
b=1

(
ÎEBPi,b − Ii,b

)2
.

A simulation study assessing the performance of the semi-parametric wild bootstrap is

presented in Rojas-Perilla et al. (2017).

.2 Reproducibility

The results presented in this paper were obtained under R version 3.4.4 on a 64-bit platform

under Microsoft Windows 7™. The installed packages are listed in Table 7. A snapshot of

the corresponding repository was created with the package packrat (Ushey et al., 2018) and is

available from the authors’ GitHub folder (https://github.com/SoerenPannier/

emdi.git). To make use of this repository Git must be installed. The authors recommend

the following workflow:

• Use the new project functionality from RStudio.
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• Choose checkout from version control and select Git.

• Enter the repository URL: https://github.com/SoerenPannier/emdi.git.

• Wait until packrat finishes the initialization process.

• Restart RStudio.

• Enter the R command packrat::restore().

• After the package installation has finished all packages are installed as documented in

Table 7.
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Package Version Package Version Package Version

assertthat 0.2.0 mgcv 1.8-23 stringi 1.1.7
backports 1.1.2 mime 0.5 stringr 1.3.0
BBmisc 1.11 minqa 1.2.4 testthat 2.0.0
BH 1.66.0-1 moments 0.14 tibble 1.4.2
boot 1.3-20 MuMIn 1.40.4 utf8 1.1.3
brew 1.0-6 munsell 0.4.3 viridisLite 0.3.0
cellranger 1.1.0 nlme 3.1-131.1 whisker 0.3-2
checkmate 1.8.5 nloptr 1.0.4 withr 2.1.2
cli 1.0.0 openssl 1.0.1 xml2 1.2.0
colorspace 1.3-2 openxlsx 4.0.17 base 3.4.4
commonmark 1.4 packrat 0.4.9-1 boot 1.3-20
crayon 1.3.4 parallelMap 1.3 class 7.3-14
curl 3.1 pillar 1.2.1 cluster 2.0.6
desc 1.1.1 pkgconfig 2.0.1 codetools 0.2-15
devtools 1.13.5 plyr 1.8.4 compiler 3.4.4
dichromat 2.0-0 praise 1.0.0 datasets 3.4.4
digest 0.6.15 R.cache 0.13.0 foreign 0.8-69
emdi 1.1.2 R.methodsS3 1.7.1 graphics 3.4.4
foreign 0.8-69 R.oo 1.21.0 grDevices 3.4.4
ggplot2 2.2.1 R.rsp 0.42.0 grid 3.4.4
git2r 0.21.0 R.utils 2.6.0 KernSmooth 2.23-15
glue 1.2.0 R6 2.2.2 lattice 0.20-35
gridExtra 2.3 RColorBrewer 1.1-2 MASS 7.3-49
gtable 0.2.0 Rcpp 0.12.16 Matrix 1.2-12
HLMdiag 0.3.1 RcppArmadillo 0.8.400.0.0 methods 3.4.4
hms 0.4.2 RcppEigen 0.3.3.4.0 mgcv 1.8-23
httr 1.3.1 readODS 1.6.4 nlme 3.1-131.1
ineq 0.2-13 readr 1.1.1 nnet 7.3-12
jsonlite 1.5 rematch 1.0.1 parallel 3.4.4
labeling 0.3 reshape2 1.4.3 rpart 4.1-13
laeken 0.4.6 rgeos 0.3-26 spatial 7.3-11
lattice 0.20-35 rlang 0.2.0 splines 3.4.4
lazyeval 0.2.1 RLRsim 3.1-3 stats 3.4.4
lme4 1.1-15 roxygen2 6.0.1 stats4 3.4.4
magrittr 1.5 rprojroot 1.3-2 survival 2.41-3
maptools 0.9-2 rstudioapi 0.7 tcltk 3.4.4
MASS 7.3-49 scales 0.5.0 tools 3.4.4
Matrix 1.2-12 simFrame 0.5.3 utils 3.4.4
memoise 1.1.0 sp 1.2-7

Table 7: Packages installed while producing the results presented in this paper.
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Chapter 6

Should we Transform Count Data
Sets? Generalized Linear Models vs.
Count Data Transformations

6.1 Introduction

We see and interpret the world as a set of discrete individual things that can be grouped: dogs,

trees, countries and, thus, the act of counting is, usually, natural to all of us: two dogs, five

trees, ten countries, among others. In statistics, these variables are known as counts and refer

to enumerated events or observations often confined within a fixed time-interval or a defined

area. Sometimes, one also may like to analyze variables that take only values within the inter-

val [0, 1], such as proportions or percentages: for instance, the proportion of animals habitating

a specific area. Thus, if the aim is to model these non-continuous variables, linear regression

may not be able to be directly used. In fact, it makes different key assumptions about the tar-

get variable, the explanatory variables, and their relationship. First, it is based on modeling

the expected value of measurements from a continuous quantity (such as weights or income)

as a linear function of quantitative and qualitative covariates. This is also called the linearity

assumption. Second, the variability is attached by the normal distribution of the error regres-

sion terms (normality assumption), which are also assumed to be independent with constant

variance (homoscedasticity assumption). If one aims to explain non-continuous variables us-

ing the classical linear regression model, a non-normal distributed error and heterogeneous

variance structures arise and the above mentioned assumptions are not fulfilled. Typically, the

conditional distribution of these data types can be skewed, their variances can be dependent

on the mean, and they often contain many zero values (Blom, 1954). Even counts are easy

to interpret: difficulties in the distribution of the observed variable can arise when the target

variable is also bounded. Thus, directly using linear regression might yield inaccurate results

and, moreover, might yield predictions for the target variable that lie outside the data range.

Therefore, possible modifications in the response variable may be needed in order to apply the

least squares estimation method and subsequent inference for the classical linear regression

model. These modifications are known in the literature as transformations, and are broadly ap-
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plied in this context in order to improve linearity, normality, and homosedasticity assumptions

(Rocke (1993)). Proper transformations for non-continuous data often depend on the underly-

ing assumed distribution of the target variable or on the variance structure inherent to the data.

But even if no evidence of a model-specific process underlying the data is taken into account

or can not be demonstrated, transformations can still be applied. The most prominent ones are

the logarithmic function, the Box-Cox transformation, and different powers of roots, among

others. However, is such a modification the only and most adequate device for modeling these

variables?

A broad range of models suitable for the analysis of non-continuous data have emerged

as an alternative approach. For instance, generalized linear models (GLMs) were proposed

by Nelder and Wedderburn (1972) and extended by McCullagh and Nelder (1989). These

models allow for directly modeling a target variable coming from the family of exponential

distributions that includes in particular the Poisson, binomial, and negative binomial distri-

butions. GLMs are broadly applied in a wide variety of disciplines, such as human biology,

ecology, and social sciences. They are specified by a linear predictor; a link function, which

describes how the mean of the target variable is related to the linear predictor; and a variance

function, which describes the relationship between the variance and the mean. Furthermore,

generalized linear mixed models (GLMMs) additionally account for dependency coming from

repeated measurements made on the same statistical units. Therefore, the non-continuous vari-

ables mentioned above could be modeled by using GLMs and GLMMs. However, do these

kinds of models remove the necessity of transforming non-continuous variables? In order to

answer the research questions, the present paper compares these two approaches in terms of

bias, root-mean-square error, and variance under count data sets, in particular the Poisson dis-

tribution. The performance of the generalized linear regression model and the classical linear

regression model under different transformations, such as the Box-Cox and shifted square root,

are studied in the present work.

The remainder of this paper is structured as follows. Detailed information about general-

ized linear regression models is given in Section 6.2. In Section 6.3, data transformations for

count data sets are introduced. The most relevant comparison criteria are presented in Section

6.4. Section 6.5 presents a model-based simulation study under different scenarios. Finally, in

Section 6.6, some concluding remarks and future research directions are presented.

6.2 Count Data Regression Models

Studying the relationship between explanatory variables and special response data types, such

as counts, is a fundamental activity encountered in natural, social and medical sciences. For

these data sets, a distribution from the exponential family of distributions is assumed for the

response variable and is modeled by using GLMs. Additionally, defining the distribution of the

response variable implicitly implies defining the relationship between the corresponding mean

and variance. Therefore, GLMs are considered as an extension of the linear regression model

for addressing the necessity of assuming a distributional form of the response variable, and in

case specific variance structures are needed. Following Agresti (2015), GLMs are essentially
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made up of the following components. Some of the most common practice and paper relevant

GLMs are described in Table 6.1.

• Random component (RC): Let y denote the target variable with n observations defined

by y = (y1, y2, . . . , yn)T . The random component specifies the density function of y

coming from the exponential family of distributions, which contains a set of probability

distributions and takes the form:

fy(yi; θi, φ) = exp

{
yiθi − b(θi)

a(φ) + c(yi, φ)

}
,

where θ is known as the natural parameter and φ the dispersion parameter (DP). The

functions a(·), b(·), and c(·) are assumed to be known. The most common distributions

are the normal, binomial, and Poisson distributions.

• Linear predictor (LP): Assume xi = (xi1, . . . , xip)
T , the values of the explanatory vari-

ables, with X the n × p design matrix. Let β = (β0, β1, . . . , βp)
T , the vector of re-

gression coefficients. The linear predictor reflects the linearity in the parameters, and is

denoted by:

ηi =

p∑
j=1

βjxij , for i = 1, . . . , n.

In matrix form the linear predictor is expressed as Xβ.

• Link function (LF): This is a monotonic and differentiable function, which is denoted by

g(·) and describes how the linear predictor is related to the random component. In other

words, how the mean E(yi) = µi is related to the linear predictor as following:

g(µi) =

p∑
j=1

βjxij , for i = 1, . . . , n.

The most commonly used are the inverse, logarithmic, and logit link functions.

• Variance function (VF): This function is given by f(·) and reflects how the variance and

the mean are related:

Var(yi) = φf(µi).

Table 6.1: Generalized linear regression models common in practice

RC Range Mean Variance LF VF DP
Normal: yi ∼ (µi, σ

2) (−∞,∞) µi σ2 Identity 1 σ2

Poisson: yi ∼ P (λi) 0, 1, . . . λi λi log(µi) µi 1
Negative Binomial: yi ∼ NB(ki, πi) 0, 1, . . . ki

πi

ki(1−πi)
π2
i

log(µi)
1−µi
µi

1
k2i

Binomial: yi ∼ B(ki,πi)
ki

0,1,...,ki
ki

πi
πi(1−πi)

ki
logit(µi) µi(1− µi) 1

ki

Poisson regression is the starting point of the analysis of count data. As McCullagh and

Nelder (1989) states, “The Poisson distribution is the nominal distribution for counted data

in much the same way that the normal distribution is the benchmark for continuous data”.
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The data coming from this discrete distribution generally describes the probability of a given

number of events randomly occurring in time or space. Therefore, it takes on only integer

values 0, 1, 2, . . ., without an upper limit. As a special case in GLMs, the Poisson regression

model frequently uses a log-linear relationship between the linear predictor and the mean by

including the logarithm as the link function, g(µi) = log(µi), and the dispersion parameter,

φ = 1. This model is known as the Poisson log-linear model. Typically, the iterative weighted

least squares algorithm is used in order to estimate the vector of regression coefficients.

The Poisson distribution is entirely described by only one single parameter, namely the

mean and denoted by λ, with λ > 0. This parameter is theoretically equal to the variance

(Var(y) = E(y)). In practice, however, overdispersion and excess of zeros, are two frequent

problems of empirical count data sets. The first issue occurs when, under a Poisson distribu-

tion, the Var(y) > E(y). This may caused by heterogeneity between the units of observation

or correlated responses. The Poisson distribution with underdispersion, i.e. Var(y) < E(y),

is less common in practice. There are three main ways of dealing with overdispersion. First,

using a robust sandwich covariance matrix estimation method (Zeileis et al., 2008). Second,

the dispersion parameter φ is not assumed to be equal to one and fixed, but rather, it is esti-

mated from the data. It is also known as the quasi-Poisson model (Wedderburn, 1974). Finally,

assuming a negative binomial distribution on the data set is the most common way in practice

to accommodate overdispersion in count data regression modeling (McCullagh and Nelder,

1989). Meanwhile, hurdle count data regression models (Mullahy, 1986; Heilbron, 1994) deal

with overdispersion and excess zero counts. Different approaches for directly modeling ex-

cess of zeros can be found in the literature: mixed Poisson distribution regression (Hinde and

Demétrio, 1998), zero-inflated distribution models (Lambert, 1992; Greene, 1994), threshold

models (Saei et al., 1996; Saei and McGilchrist, 1997), among others. Choosing one of these

methodologies should be accomplished by graphical analysis and a sound scientific reasoning.

For more detail about these and more research directions of modeling with count data sets, see

for example Grogger and Carson (1991); Famoye (1993); Faddy (1997); Gurmu (1998) and

Cameron and Trivedi (2013).

6.3 Count Data Transformations

Count data sets are characterized by having non-negative integers that can theoretically take

values from zero to infinity, but may vary according to the nature of the regarded data. A

count response exhibits inherent characteristics (non-negative and integer) that collide against

essential aspects of the linear regression model, given that the latter models the target variable

as a variable taking innumerable infinite values over the whole regression line. Researchers

often ignore the discontinuity problem that arises with discrete data if the response variable

takes many different distinct values and model it as continuous (Hilde, 2014). On the other

hand, the truncation at zero rules out the simple and direct use of the normal distribution for

computation of probabilities, in particular for data close to zero. As in standard statistical mod-

els, y is assumed to come from a certain probability distribution where each observation is

independent from each other. The Poisson distribution, is commonplace, along with some of
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their generalizations to represent this data type (Freeman and Tukey, 1949). For all of these

distributions, the variance is a known function of the mean. This becomes a complication

when applying classical linear techniques such as the analysis of variance. A further compli-

cation may arise since the relation between variability and mean level often suggests excessive

skewness (Anscombe, 1948).

Transformations have received much attention as a method to stabilize variance and correct

for normality for this type of data. Bartlett (1937) presents the square root transformation, of

which the further developed transformations are based.

y∗i =
√
yi.

Due to the form of Poisson distributed data, this transformation is a natural suggestion for

with a large mean (> 10). Bartlett (1937, 1947) suggests introducing a constant c = 1
2 to

the square root transformation:
√
yi + 1

2 when the target variable takes only small values and

specially when zeros are common in the data set. Later, by allowing a more flexible form for

the transformation by adding a constant parameter c, equal to

y∗i =
√
yi + c.

Anscombe (1948) finds that for large means the transformation in which c = 3
8 produces

the most nearly constant variance. This author suggests similar transformations related to the

angular transformation for the negative binomial case, for both large and small values of the

mean. Anscombe (1948) also demonstrates that a variance stabilizing transformation of the

form
√
y + c, with c ≥ 0 any fixed constant, and low sample mean values has the following

feature

lim
λ−→0

Var(
√
yi + c) = 0.

The work of Uddin et al. (2006) studies the relation between the mean and the parameter c using

this family of transformations under different simulation settings. In this paper, the shifted root

square transformation is applied. For this, an adaptive transformation parameter, denoted by

s, is estimated according to the distribution features of the dataset with maximum likelihood

theory, as in Rojas-Perilla et al. (2017). The adaptive root square transformation is defined as

follows

y∗i (s) =
√
yi + s.

Freeman and Tukey (1950) carried out an empirical study on the use of transformations

related to the arcsine and square root as a method to stabilize variance and normalize errors for

Poisson distributed data. They suggest combining transformations, in particular using twofold

transformations for both distributions and problems (see Table 6.2). Several of the distributions

suitable for non-continuous data tend to normality, if n tends to infinity. This means, this will

not always hold for small n. Curtiss (1943) studies the mathematical limitations of some of the

above transformations under these situations. For these cases, Cornish and Fisher (1938) and

Fisher and Cornish (1960) developed the Cornish-Fisher expansions, based on the quantiles

from the empirical probability distribution. By using this approximation, Blom (1954) derives a
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general transformation series form for Poisson and negative binomial distributed data so that the

skewness correction is as small as possible. This solution is related to the beta transformation.

They directly transform the mean of the distributions as shown in Table 6.2. Please notice

that the selection of the parameters c, µ0 are based on some cases, presented in detail in Blom

(1954). However, the blom transformation series for count data sets are not commonly applied

in practice.

Kendall et al. (1948) and Blom (1954) demonstrated that inducing homogeneity for some

data sets also results in symmetry. However, it does not always mean perfect normality. The

cube root transformation is used for count data in case symmetry is focus on the research.

This means that the researcher should always have a criteria in the evaluation or requirements

of model assumptions. Kendall et al. (1948) states that transformations which deal with het-

eroscedasticity problems in general also protect against non-symmetry. However, it always

depends on the features of the data set. In order to improve the assumptions of the linear re-

gression model, the logarithmic and Box-Cox transformations are commonly used for count

data sets. The Box-Cox transformation includes the logarithm as a special case and adapts, like

the shifted square root transformation, to the data set. Therefore, this paper focuses especially

on these two data-driven transformations. The Box-Cox transformation is defined as

y∗i (s) =


ysi−1
s if s 6= 0;

log(yi) if s = 0.

Transformation Functional form Data range

Square root y∗i =
√
yi y > 0

y∗i =
√
yi + 1 y > −1

Shifted square root y∗i (s) =
√
yi + s y > −s

Bartlett y∗i =
√
yi + 1

2 y > −1
2

Anscombe y∗i =
√
yi + 3

8 y > −3
8

Twofold y∗i = 1
2(
√
yi +

√
yi + 1) y > 0

Logarithm y∗i = log(yi) y > 0

Cube root y∗i = y
1
3
i y ∈ R

Blom µ∗(λ) =

 1
1−λµ

(1−λ) + c if λ ≤ 1;

log( µµ0 ) if λ = 1.
µ > 0

Box-Cox y∗i (s) =


ysi−1
s if s 6= 0;

log(yi) if s = 0.
y > 0

Table 6.2: Transformations for count data sets

6.4 Methodological Differences

Choosing between the linear regression model or the generalized linear regression model for

count data sets could be seen as a model selection problem. McCullagh and Nelder (1989) de-
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scribe it also as a part of selecting the right scale for analysis, taking the research purpose into

account. But should we use the original scale, or the transformation scale of the target variable?

Jereys (1961) states, “It is sometimes considered a paradox that the answer depends not only

on the observations but on the question; it should be a platitude.” In linear regression models it

is crucial to analyze the fulfillment of model assumptions, such as normality, homoscedastic-

ity, and linearity. In particular, combining Poisson-distributed data under this kind of models

usually leads to different possible “good” scales. For instance, the square root transformation

of the target variable often stabilizes the variance. Meanwhile, the cube root of the squared

variable gives approximate symmetry or normality. In practice, finding a common scale may

mean choosing a suitable transformation that simultaneously improves these model assump-

tions. This is a seldom feature obtained by applying a selected transformation for right skewed

distributions with variance equal to the mean, as in the Poisson distribution case. The most

suitable transformation to achieve homoscedasticity frequently differs from the best transfor-

mation to achieve symmetry or normality (Agresti, 2015). Furthermore, transformation comes

at some cost to the trade-off between accuracy and interpretability (O’Hara and Kotze, 2010;

Ives, 2015). The interpretability on the original scale of measurement is often preferable to the

transformed scale. However, if the transformed scale is chosen, such as the logarithm scale,

conclusions can be also presented in some cases on this scale and the subsequent inference of

the linear regression models can be applied. However, applying a logarithmic transformation

for count data often leads to results that are not defined on the original scale, particularly, if the

data is highly skewed and contains many outliers. Additionally, in Poisson log-linear models,

model parameters express the effects of the covariates on log[E(y|x)]. In order to obtain the

information on E(y|x), these effects can be translated to an exponential model for the mean

by using the inverse link function. In contrast, if a logarithmic transformation is applied to the

linear regression model, the model parameters are defined only on E[log(y)|x], but not exactly

on E(y|x) (Agresti, 2015).

One of the biggest challenges that researchers face when working with the linear regres-

sion model under transformations is the bias problem. Often, after fitting such a model, it

is common to want to return to an untransformed scale. The bias is produced in the inverse

transformation process of a non-linear transformation. In general, a non-linear function has a

non-linear inverse. In fact, E[t(y)|x] is not equal to t[E(y|x)], for most functions t(·) applied

in the response variable. Expressing this issue for the linear regression model leads to:

t−1
[
E(xβ + e)

]
= t−1

[
E(xβ) + E(e)

]
= t−1

[
E(xβ)

]
= t−1

[
E(y|x)

]
6= E

[
t−1(xβ + e)

]
Therefore, it becomes a common problem in practice to determine the magnitude of the

bias caused by applying a specific transformation. If no attention is paid to this problem,

grossly misleading conclusions can be produced. On the contrary, GLMs directly model the

conditional expectation of the target variable in the original scale. Therefore, using GLMs does
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not produce this kind of bias. This is naturally one of the reasons why the researchers prefer

fitting this model, instead of analyzing the possible bias problem inherent to the non-linear

transformations by using the linear regression model.

GLMs are considered to be a unified theory of modeling some prominent continuous and

non-continuous response variables, for which the random component is separately chosen from

the choice of the link function. That means the probability distribution and the variance struc-

ture can be defined by the researcher in case they are known. However, Gelman and Hill

(2006) and Ives (2015) point out that these distributional assumptions are not carefully ana-

lyzed in common practice. On the contrary, transformations may be useful when no evidence

of the exact definition of the underlying probability distribution of counts is known, such as

Poisson-like processes. Furthermore, in case the counts are large in the data set, the linear

regression model can be useful as an alternative to GLMs (Warton et al., 2016). Additionally,

GLMs and GLMMs have some mathematical limitations and computational complications in

case other correlation structures or data-type of covariates are needed.

Finally, a challenge regarding the research purpose also arises when choosing between the

linear regression model or the generalized linear regression model for count data. Is the focus

paid on prediction or inference? If the research is only concerned with statements about the

likely values of the target variable under a question of the form “What is the predicted value of

the response under the selected model?”, the prediction problem should be the key point. The

analysis should be accompanied by some measures of precision, such as the root-mean-squared

error and bias deviation, and some measures of goodness of fit.

6.5 Simulation Study for the Mean

In order to assess the performance of the linear regression model under specific transformations

and the generalized linear regression model for count data, in terms of prediction, model-based

evaluations are carried out in this paper. The simulation study was implemented in the open-

source software R (R Core Team, 2017) by using different R packages. For instance, the glm()
function from package stats and the function glm.nb() from the package MASS (Venables

and Ripley, 2002). Transformations provided by the package trafo (Medina et al., 2017) are

used.

For the simulation study: a fixed Poisson distributed population of size N = 10000 is

used for generating S = 200 sub-samples for a fixed sample size n. This was repeated for

n = 50, 100, 150, . . . , 1000. For practical reasons, only the logarithmic function is used in this

paper as the link function for Poisson data, as presented in Table 6.1. As mentioned before, the

Poisson regression model under these specifications, is also known as the Poisson log-linear

model. The population is generated as follows

Population: λi = exp(2.5 + xi),

xi ∼ U(0, 1.2).

=⇒Y ∼ Poisson(λ), with P (Y = y) =
e−λλy

y!
.
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Additionally, a weighted version of the least squares method is used for the maximum like-

lihood parameter estimates (Agresti, 2015). Additional simulation results for the binomial

negative case are available from the author on request.

The Poisson log-linear regression model fitted in every sub-population is defined as follows

Model 1 (Poisson): log(λi) = β0 + β1xi.

In parallel and with the idea of finding the most suitable transformation, the shifted square

root and the Box-Cox type transformations, described in Table 6.2, are applied for the linear

regression model as

Model 2 (Box-Cox): Box-Cox(yi) = β0 + β1xi + ei.

Model 3 (SQRT): Shifted square root(yi) = β0 + β1xi + ei,

where ei is the unit-level error term and is expected to be normal distributed under the applied

transformation.

The results focus on the estimation of the average number of counts in the population.

There are different quality measures for assessing the performance of mean estimators. This

paper focuses on only two of them: the root-mean-squared error (RMSE) and the bias/relative

bias (RB). Let λ̂ be the estimated mean and λ the corresponding true value, known from the

simulations. The RMSE is defined as:

RMSE
(
λ̂
)

=

[
1

S

S∑
s=1

(
λ̂s − λs

)2
]1/2

.

The RMSE measures the differences between the estimated mean and the respectively true

value in each sub-population. It values are non negative and lie between 0 and∞.

The RB provides a measure that indicates the relative differences of the estimated means

and their respectively true values and lies between −∞ and∞.

Bias
(
λ̂
)

=
1

S

S∑
s=1

(
λ̂s − λs

)
,

RB
(
λ̂
)

=
1

S

S∑
s=1

(
λ̂s − λs
λs

)
× 100.

Figure 6.1 presents the RB, the RMSE, and the variances for the generated predictions,

for which different sample sizes are used. As expected, the Poisson approach leads to more

efficient results, in terms of RMSE, than the transformation-based approaches. For this, the

RMSE always decreases as the sample size increases. In case of using the Box-Cox and SQRT

transformations, the RMSE also decreases as the sample size increases, but it remains constant

at one point. The Box-Cox transformation is well-known for leading both, stabilized variances
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and more symmetric data. It is perhaps not surprising that the Box-Cox transformation leads to

more accurate results than the SQRT approach. In fact, the SQRT could be seen as an special

case of the Box-Cox transformation and therefore, the same picture is obtained for the negative

binomial case and it is also expected for some other count distributions.

Let us now turn to the bias results. As we can see, the Poisson approach has negligible bias,

whereas the transformed models lead to biased results. This is observed independent of the

sample size. If we in parallel analyzed the variances, we notice that the bias problem describe

in Section 6.4 is clearly present. The variances by using these three approaches are similar

to each other. The differences in the RMSE are possibly due to the non-correction bias in this

analysis. As noted in Section 6.2, after applying a specific transformation on the target variable,

it is necessary to make an analysis of the bias, coming from the back-transforming process.

However, how do we know for certain the magnitude of the bias under these transformations?

As mentioned in Section 6.4, bias incurred when back-transforming to the original scale

is almost inherent to this process and we should be aware of this (Anscombe, 1948; Neyman

and Scott, 1960). It always depends on which transformation we are using in practice. The

statistical complications by back-transforming data to the original scales has been extensively

discussed (Laurent, 1963; Patterson, 1966; Duan, 1983; Miller, 1984; Rothery, 1988; Smith,

1993; Rainey, 2017). For instance, the work of Rothery (1988) states that the magnitude of

the bias mainly depends on the variance and less upon on the sample size. Different bias cor-

rections for the regression parameters introduced by some specific transformations from Table

6.2 have been proposed in the literature. For instance, most relevant results for the logarithmic

transformation were published until the early 1980s in different research fields. For example,

one of the simplest analytical bias correction approach when using the logarithmic transfor-

mation is proposed by Sprugel (1983), in which the back-transformed estimates are multiplied

by a constant equal to the half of the variance error. For further insights regarding this prob-

lem under the logarithmic transformation see Finney (1941); Meyer (1941); Neyman and Scott

(1960); Goldberger (1968); Heien (1968); Aitchison and Brown (1969); Bradu and Mundlak

(1970); Zellner (1971); Baskerville (1972); Beauchamp and Olson (1973); Sprugel (1983);

Rukhin (1986) and Newman (1993). In case of using the Anscomble variance stabilizing trans-

formation, the paper of Makitalo and Foi (2011) gives an approximation of the bias correction.

For the Box-Cox transformation also different approaches have been proposed. For detailed

information see Taylor (1986); Smallwood et al. (1986); Sakia (1988) and Sakia (1990).

The researchers can use some of these bias correction solutions according to the transfor-

mation type. However, these methods are mainly studied for the logarithmic and Box-Cox

transformations under the linear regression model. This is still under research for the other

transformations presented in Section 6.3. In particular, for data-driven transformations. If a

bias correction is carried out for the analysis presented before, it is expected that the differ-

ences in the bias would not that much as noted in Figure 6.1.
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Figure 6.1: RMSE, relative bias, and conditional variances of the predictors for the estimation
of the mean

6.6 Conclusions and Further Research Directions

The broad goal of this paper is to analyze the methodical differences between the linear regres-

sion model under transformations and the generalized linear regression model, in particular the

Poisson log-linear regression model. Choosing which methodology should be preferable, al-

ways depends on the research question. As we already noted, using non-linear transformations

for count data sets have different challenges for researches. First, the selection of a suitable

transformation should be part of a previous careful analysis of the data to be studied. The dis-

tributional form of the underlying distributional process, the data range, and some features of

distributional moments are some of the characteristics to be included in this previous analysis.

For instance, in case the underling process of the data is not previously known, data transforma-

tions are able to adapt on different count data distributions. In the scenario studied in Section

6.5 the Poisson distribution was used for representing the underlying distributional process of

the data. Thus, the exactly distribution of the target variable was applied in the context of

GLMs. In such a scenario, the use of GLMs are usually recommended in practice. Second,

selecting only one transformation that improves all distributional assumptions of the linear re-

gression model is not always straightforward. Thus, it is not common to have in practice one

transformation, which in parallel corrects the model assumptions in the same way. Therefore,

the research should know in which scale is the analyses made or the criteria of selecting one

suitable transformation. Third, if a selected transformation is applied on a target variable and

the researcher needs to return to the original measurement scale, a bias correction analysis

should be proposed.
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According to the simulation settings, more realistic scenarios should be implemented.

These include, count data sets presenting the overdispersion problem and/or an excess num-

ber of zeros. One research gap is analyzing the influence of different, particularly, of lower

values of λ when one is working under the square root space. One would expect a more ac-

curate stabilization of the variance. More research is needed for the comparison between the

two approaches in terms of inference tools, assessment of model assumptions, and goodness

of fit. For instance, the Pearson, Anscombe, and deviance residuals are widely used for as-

sessing model fit under these models. For more information about the definition of residuals in

non-continuous variables, see Anscombe (1953); Cox and Snell (1968) and Pierce and Schafer

(1986). It would be interesting to incorporate a detailed analysis of the accurate estimation

under other distributional processes. Finally, the analysis of bias correction approaches under

different count data transformations should be addressed in further research.
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Summary

Summary in English

Abstract: A Guideline of Transformations in Linear and Linear Mixed Regres-
sion Models

Representing a relationship between a response variable and a set of covariates is an essential

part of the statistical analysis. The linear regression model offers a parsimonious solution to

this issue, and hence it is extensively used in nearly all science disciplines. In recent years the

linear mixed regression model has become common place in the statistical analysis. Numer-

ous assumptions are usually made whenever these models are employed in scientific research.

If one or several of these assumptions are not met, the application of transformations can be

useful. This work provides an extensive overview of different transformations and estimation

methods of transformation parameters in the context of linear and linear mixed regression mod-

els. The main contribution is the development of a guideline that leads the practitioner working

with data that does not meet model assumptions by using transformations.

Keywords: Transformations, model assumptions, linear regression models, linear mixed re-

gression models, transformation parameters

Abstract: The R Package trafo for Transforming Linear Regression Models

The linear regression model has been widely used for descriptive, predictive, and inferential

purposes. This model relies on highly restrictive set of assumptions, which are not always ful-

filled when working with empirical data. In this case, one solution could be the use of more

complex regression methods that do not strictly rely in the same assumptions. However, in

order to improve the validity of model assumptions, transformations are a simpler approach

and enable the user to keep using the well-known linear regression model. But how can a

user find a suitable transformation? The R package trafo offers a simple user-friendly frame-

work for selecting a suitable transformation depending on the user needs. The collection of

selected transformations and estimation methods in the package trafo complement and enlarge

the methods that are existing in R so far.

Keywords: Transformations, optimal parameter, power transformations, normality, linear re-

gression model
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Abstract: From start to finish: A framework for the production of small area
official statistics

Small area estimation is a research area in official and survey statistics of great practical rele-

vance for national statistical institutes and related organisations. Despite rapid developments

in methodology and software, researchers and users would benefit from having practical guide-

lines for the process of small area estimation. In this paper we propose a general framework

for the production of small area statistics that is governed by the principle of parsimony and is

based on three broadly defined stages namely, specification, analysis/adaptation and evaluation.

Emphasis is given to the interaction between a user of small area statistics and the statistician

in specifying the target geography and parameters in light of the available data. Model-free

and model-dependent methods are described with focus on model selection and testing, model

diagnostics and adaptations such as use of data transformations. Uncertainty measures and the

use of model and design-based simulations for method evaluation are also at the centre of the

paper. We illustrate the application of the proposed framework using real data for the estima-

tion of non-linear deprivation indicators. Linear statistics, for example averages, are included

as special cases of the general framework.

Keywords: Census, design-based methods, diagnostics, inequality, model-based methods

Abstract: Data-driven Transformations in Small Area Estimation

Small area models typically depend on the validity of model assumptions. For example, a

commonly used version of the Empirical Best Predictor relies on the Gaussian assumptions of

the error terms of the linear mixed regression model, a feature rarely observed in applications

with real data. The present paper proposes to tackle the potential lack of validity of the model

assumptions by using data-driven scaled transformations as opposed to ad-hoc chosen transfor-

mations. Different types of transformations are explored, the estimation of the transformation

parameters is studied in detail under the linear mixed regression model and transformations are

used in small area prediction of linear and non-linear parameters. The use of scaled transforma-

tions is crucial as it allows for fitting the linear mixed regression model with standard software

and hence it simplifies the work of the data analyst. Mean squared error estimation that ac-

counts for the uncertainty due to the estimation of the transformation parameters is explored

using parametric and semi-parametric (wild) bootstrap. The proposed methods are illustrated

using real survey and census data for estimating income deprivation parameters for municipal-

ities in the Mexican state of Guerrero. Simulation studies and the results from the application

show that using carefully selected, data-driven transformations can improve small area estima-

tion.

Keywords: Random effects, bootstrap, adaptive transformations, maximum likelihood estima-

tion, poverty mapping
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Abstract: The R Package emdi for Estimating and Mapping Regionally Disaggre-
gated Indicators

The R package emdi enables the estimation of regionally disaggregated indicators using small

area estimation methods and includes tools for processing, assessing, and presenting the re-

sults. The mean of the target variable, the quantiles of its distribution, the Head Count Ratio,

the Poverty Gap, the Gini coefficient, the Quintile Share Ratio, and customized indicators are

estimated using direct and model-based estimation with the Empirical Best Predictor (EBP)

(Molina and Rao, 2010). The user is assisted by automatic estimation of data-driven trans-

formation parameters. Parametric and semi-parametric, wild bootstrap for mean squared error

estimation are implemented with the latter offering protection against possible misspecifica-

tion of the error distribution. Tools for (a) customized parallel computing, (b) model diagnostic

analyses, (c) creating high quality maps and (d) exporting the results to Excel™ and Open-
Document Spreadsheets are included. The functionality of the package is illustrated with

example data sets for estimating the Gini coefficient and median income for districts in Austria.

Keywords: Official statistics, survey statistics, parallel computing, small area estimation, vi-

sualization

Abstract: Should we Transform Count Data Sets? Generalized Linear Models vs.
Count Data Transformations

Count data sets are also typically analyzed by using classical linear regression models; some-

times, without a careful analysis of model assumptions inherent to these models, or sometimes,

just by incorporating a transformation in the target variable to satisfy parametric assumptions.

Generalized linear regression models are suitable for modeling non-continuous variables, such

as the Poisson or binomial cases. They are an alternative approach for directly using count

data as the target variable. Simulating data from different discrete distributions, these two

approaches are compared: the generalized linear regression model and the classical linear re-

gression model under suitable count data transformations. The analysis focuses on predic-

tion, which is evaluated in terms of some uncertainty measures, such as the relative bias and

root-mean-square error. A discussion of some relevant comparison criteria between these ap-

proaches is made in this paper on open areas for research.

Keywords: Transformations, generalized linear regression models, count data

Kurzfassungen in deutscher Sprache

Zusammenfassung: Ein Leitfaden für die Nutzung von Transformationen in li-
nearen und linear gemischten Modellen

Ein großer Bestandteil statistischer Analysen besteht darin, den Zusammenhang zwischen ei-

ner abhängigen und mehreren erklärenden Variablen zu beschreiben. Da das lineare Regres-

sionsmodell eine einfache Lösung für die Beschreibung dieses Zusammenhangs ist, wird es

in vielen Wissenschaften angewandt. Seit einiger Zeit werden auch immer häufiger linear ge-

mischte Regressionsmodell genutzt. Beide Modelltypen basiseren auf einigen Annahmen, die
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bei der Anwendung überprüft werden und erfüllt sein sollten. Wenn eine oder mehrere die-

ser Annahmen nicht erfüllt sind, können Transformationen helfen weiterhin die Modellklasse

der linearen Modelle zu nutzen. Dafür bietet diese Arbeit einen umfassenden Überblick über

verschiedene Transformationen und Schätzmethoden für die Schätzung eines optimalen Trans-

formationsparameters basierend auf den zugrunde liegenden Daten im Kontext von linearen

und linear gemischten Modellen. Der größte Beitrag der Arbeit liegt darin, dem Anwender

Leitlinien an die Hand zu geben, wie man Transformationen nutzen kann, um die Modellan-

nahmen des linearen Modells zu erfüllen, und was dabei beachtet werden muss.

Stichworte: Transformationen, Modellannahmen, lineare Modelle, linear gemischte Modelle

Zusammenfassung: Das R Paket trafo für die Transformation von linearen Mo-
dellen

Das lineare Regressionsmodell ist eine weit verbreitete statistische Methode, um Zusammenhänge

zu beschreiben und Vorhersagen durchzuführen. Allerdings beruht das Modell auf einer An-

zahl an Annahmen, die in der Anwendung nicht immer erfüllt sind. In diesen Fällen könnten

zum einen komplexere Methoden genutzt werden, die nicht auf den gleichen Annahmen be-

ruhen. Zum anderen können Transformationen helfen, um die Gültigkeit der Annahmen zu

verbessern. Um eine passende Transformation zu finden, bietet das R Paket trafo einen an-

wenderfreundlichen Rahmen. Die Auswahl an Transformationen und Schätzmethoden für den

Transformationsparameter in diesem Paket ergänzen die bisher angebotenen Methoden in R.

Stichworte: Transformationen, optimaler Transformationsparameter, Normalität, lineares Mo-

dell

Zusammenfassung: Vom Anfang bis zum Ende: eine Anleitung für die Produkti-
on von amtlichen Statistiken für kleine Regionen

Small Area Estimation ist ein Forschungsgebiet im Bereich der Survey-Statistik mit großer

praktischer Relevanz für statistische Ämter und ähnliche Institutionen. Aufgrund der schnel-

len Entwicklung von Methoden und Software können Forscher von einer praxisnahen Anlei-

tung für den Umgang mit Small Area Estimation Methoden profitieren. Daher schlagen wir

ein allgemeines, möglichst einfach gehaltenes Konzept für die Erstellung von Statistiken für

kleine Regionen vor, das auf drei Schritten basiert: Spezifikation, Analyse und Anpassung,

und Evaluierung. Insbesondere wird die Interaktion zwischen dem Anwender von Small Area

Estimation Methoden und dem Statisiker bei der Festlegung der Zielregion und der Zielpa-

rameter unter Berücksichtigung von verfügbaren Daten beschrieben. Sowohl modellfreie, als

auch modellabhängige Methoden werden erläutert, wobei der Fokus auf der Modellauswahl,

dem Testen, der Diagnose und Anpassungen des Modells mit Hilfe von Datentransformatio-

nen liegt. Die Messung von Unsicherheit und die Evaluierung der Methode mittels modell-

und Design-basierter Simulationen ist auch ein wichtiger Bestandteil der vorliegenden Arbeit.

Das Konzept wird anhand der Schätzung von nicht-linearen Armutsindikatoren basierend auf

realen Daten veranschaulicht und lineare Statistiken, wie der Mittelwert, werden als spezielle

Fälle des allgemeinen Konzepts vorgestellt.
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Stichworte: Zensus, Design-basierte Methoden, Diagnosemethoden, Ungleichheit, modellba-

sierte Methoden

Zusammenfassung: Datengetriebene Transformationen für Small Area Estimati-
on

Methoden aus dem Bereich Small Area Estimation hängen im Allgemeinen von der Gültigkeit

ihrer Modellannahmen ab. Die Standardversion des Empirical Best Predictor basiert auf der

Normalverteilungsannahme der Fehlerterme des linear gemischten Modells. Diese Annahme

wird in der Anwendung jedoch nur selten erfüllt. Die vorliegende Arbeit schlägt vor, das Pro-

blem der nicht erfüllten Normalität mit datengetriebenen Transformationen zu beheben. Dafür

werden verschiedene Transformationen betrachtet, die Schätzung von Transformationspara-

metern im linear gemischten Modell detailliert untersucht und die Transformationen in der

Schätzung/Prognose von linearen und nicht-linearen Indikatoren im Small Area Kontext an-

gewandt. Die Nutzung von standardisierten Transformationen ist besonders sinnvoll, da dies

ermöglicht das linear gemischte Modell weiterhin mit Standardsoftware zu schätzen. Somit

wird die Arbeit des Datenanlysten vereinfacht. Des Weiteren werden zwei Methoden für die

Schätzung von Unsicherheit eingeführt, ein parametrischer und ein semi-parametrischer (wild)

Bootstrap, die die zusätzliche Unsicherheit durch die Schätzung des Transformationsparame-

ters berücksichtigen. Die neuen Methoden werden anhand der Schätzung von einkommensba-

sierten Armutsindikatoren für die Gemeinden im mexikanischen Bundesstaat Guerrero basie-

rend auf realen Survey und Zensus Daten veranschaulicht. Umfangreiche Simulationsstudien

und die Ergebnisse der Anwendung zeigen, dass sinnvoll ausgewählte, datengetriebene Trans-

formationen die Schätzung von Indikatoren in kleinen Regionen verbessern.

Stichworte: Small Area Estimation, linear gemischtes Regressionsmodell, Schätzung von Un-

sicherheit, Poverty Mapping, Maximum Likelihood Theorie

Zusammenfassung: Das R Paket emdi für die Schätzung und die Erstellung von
Karten für regional disaggregierte Indikatoren

Das R Paket emdi ermöglicht die Schätzung von regional disaggregierten Indikatoren mit-

tels Small Area Estimation Methoden und enthält Funktionen für die Erstellung, die Analyse

und die Präsentation von Ergebnissen. Der Mittelwert, die Quantile der Verteilung, the Ar-

mutsquote, die Armutslücke, der Gini-Koeffizient und das Quintilsverhältnis, sowie individuell

definierte Indikatoren können mit direkter Schätzung oder modellbasierten Verfahren, mit dem

Empirical Best Predictor (Molina and Rao, 2010), geschätzt werden. Der Anwender wird dabei

durch die automatische Schätzung von Transformations-parametern für datengetriebene Trans-

formationen unterstützt. Ein parametrischer und ein semi-parametrischer wild Bootstrap für die

Schätzung des mittleren quadratischen Fehlers sind implementiert, wobei der zweite zusätzlich

gegen die mögliche Misspezifikation der Fehlerverteilung schützt. Das Paket ermöglicht (a)

parallele Berechnungen, (b) die Analyse von Modellannahmen, (c) die Erstellung von Kar-

ten, (d) den Export von Ergebnissen zu Excel™ und zu OpenDocument Spreadsheets. Die

Funktionalität des Pakets wird mit der Schätzung des Gini-Koeffizienten und des Medians für

österreichische Bezirke basierend auf Beispieldatensätzen illustriert.
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Stichworte: amtliche Statistik, Survey-Statistik, parallele Berechnungen, Small Area Estima-

tion, Visualisierung

Zusammenfassung: Sollten Zähldaten transformiert werden? Generalisierte li-
neare Modelle vs. Transformationen für Zähldaten

Zähldaten werden auch typischerweise mit klassischen linearen Modellen analyisert und manch-

mal werden die Modellannahmen entweder nicht sorgfältig untersucht oder die abhängige Va-

riable wird transformiert, um Verteilungsannahmen des Fehlerterms zu erfüllen. Generalisier-

te lineare Modelle sind hingegen die passenden Modelle zur Analyse von nicht stetigen Va-

riablen, wie Poisson- oder binomialverteilte Variablen. Beide Methoden, die Transformation

der abhängigen Variable und generalisierte lineare Modelle, sind Alternativen zur einfachen

Lösung die Zählvariable als abhängige Variable im linearen Modell zu nutzen. Diese beiden

Ansätze werden in der vorliegenden Arbeit in einer Simulationsstudie verglichen. Der Fokus

liegt auf der Vohersage, sodass die Schätzmethoden anhand der relativen Verzerrung und der

relativen mittleren quadratischen Abweichung evaluiert werden. Darüber hinaus werden unter-

schiedliche Vergleichskriterien und offene Forschungsfragen für die beiden Methoden disku-

tiert.

Stichworte: Transformationen, generalisierte lineare Regressionsmodelle, Zähldaten
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