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Semiclassical theory of the interaction correction to the conductance of antidot arrays
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Electron-electron interactions are responsible for a correction to the conductance of a diffusive metal, the
“Altshuler-Aronov correction” δGAA. Here, we study the counterpart of this correction for a ballistic conductor, in
which the electron motion is governed by chaotic classical dynamics. In the ballistic conductance, the Ehrenfest
time τE enters as an additional time scale that determines the magnitude of quantum interference effects.
The Ehrenfest time effectively poses a short-time threshold for the trajectories contributing to the interaction
correction. As a consequence, δGAA becomes exponentially suppressed if the Ehrenfest time is larger than the
dwell time or the inverse temperature. We discuss the explicit dependence on Ehrenfest time in quasi-one- and
two-dimensional antidot arrays. For strong interactions, the sign of δGAA may change as a function of temperature
for temperatures in the vicinity of h̄/τE.
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I. INTRODUCTION

Electronic transport in weakly disordered metals is success-
fully described by the Boltzmann theory, in which electrons are
treated as effectively classical particles moving freely between
scattering events. The wave nature of electrons gives rise to a
number of corrections to transport properties, such as the weak
localization correction,1,2 the Altshuler-Aronov interaction
correction,3,4 or the universal conductance fluctuations.5,6

Weak localization results from the constructive interference of
electrons propagating along time-reversed paths.7 The physi-
cal intuition behind the interaction correction is constructive
interference of electron trajectories which are scattered on
impurities and Friedel oscillations of the electron density.8,9

These quantum corrections become increasingly important as
the temperature is lowered, the effective dimensionality of
the sample is reduced, or as the disorder level is increased.
They have a distinctive and universal dependence on external
parameters, such as temperature or magnetic field, which
makes them identifiable in experiments. In particular, the two
quantum corrections to the conductivity, weak localization
and the Altshuler-Aronov correction, can be distinguished
by application of a magnetic field since weak localization is
suppressed by already a very small magnetic field, whereas
the Altshuler-Aronov correction is not.

A “classical analog” of a disordered metal is realized
in high-mobility semiconductor structures with randomly
placed large antidots.10,11 The absence of impurities ensures
that electrons move ballistically between reflections off the
antidots. The reason why these systems are referred to as
classical is that the size of the antidots a is much larger
than the Fermi wavelength λF. As a result, not only the
electron’s motion through the two-dimensional electron gas,
but also the reflection off an antidot is described by classical
mechanics. (In contrast, in a disordered metal, the size
of impurities is comparable to λF, so that the scattering
event is strongly diffractive.) For an irregular arrangement of
antidots, the classical dynamics is chaotic. Nearby trajectories
separate exponentially in time, the exponential separation
being characterized by the Lyapunov coefficient λ. The chaotic
dynamics is essential for the existence of quantum corrections

in this system, as it magnifies the quantum uncertainty of even
a minimal wave packet up to classical dimensions within the
short time

τE = 1

λ
ln(a/λF), (1)

thus transforming the classical dynamics into quantum-
diffractive dynamics on time scales larger than τE.12 The time
τE is known as the “Ehrenfest time.”

Since wave effects are not operative for times shorter than
τE (electrons essentially move along classical trajectories up to
the Ehrenfest time), the Ehrenfest time serves as a short-time
threshold for the duration of the trajectories contributing
to the quantum corrections in an antidot array. For weak
localization, it was found that the correction to the conductivity
is exponentially suppressed if τE is larger than the dwell time
τD, the typical time to be transmitted through the system, or the
dephasing time τφ .12–15 In contrast, other quantum corrections,
such as the universal conductance fluctuations, remain finite if
τE � τD.14,16–18

The goal of this paper is to present a theory of the Ehrenfest-
time dependence of the Altshuler-Aronov correction δGAA.
Our analysis significantly extends a previous calculation by
Kupferschmidt and one of the authors,19 which studied the τE

dependence of the interaction correction to the conductance
of a ballistic double quantum dot and found that δGAA is
strongly suppressed if τE exceeds the dwell time τD or the
inverse temperature h̄/T . The double quantum dot studied
in Ref. 19 is the simplest system with nonzero Altshuler-
Aronov correction to the conductance and is characterized
by a long-range interaction, which is spatially homogeneous
within each dot. The theory presented here is valid for both
short- and long-range interactions and can be applied to any
geometry in which the classical electron dynamics is chaotic,
although we will focus our discussion on the case of an antidot
array. For the general case considered here, we confirm the
suppression of δGAA for τE � min(τD,h̄/T ) and we calculate
the precise functional dependence of δGAA on τD and T for
finite Ehrenfest time. The explicit dependence on temperature
is characteristic for the interaction correction, which has its
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origin in virtual processes with an energy transfer larger than
temperature.

Our calculation makes use of a semiclassical formalism that
starts from the saddle-point approximation around classical
trajectories for the single-particle Green’s function. In this
way, the conductance in the absence of electron-electron in-
teractions is written as a double sum over classical trajectories
that connect source and drain reservoirs.20,21 Weak localization
and other quantum corrections to the conductance then follow
from special configurations of trajectories, in which the two
trajectories in the summation are piecewise paired, and proceed
through “crossings” at points where the pairing is changed.22,23

In the language of diagrammatic perturbation theory, segments
where the trajectories are paired correspond to diffusons or
cooperons, whereas the crossings correspond to Hikami boxes.
The application to interacting electrons requires a modification
of the formalism, which will be described in detail in the
following.

Our analysis applies to a “ballistic” conductor, where the
label “ballistic” is meant to specify that the electrons move
along well-defined classical trajectories. In the literature,
“ballistic” sometimes refers to a different limit, and several
calculations of the interaction correction to the conductance
have been reported for such “ballistic limits.” Whereas the
original work of Altshuler and Aronov3 addressed a disordered
metal with short-range scatterers in the diffusive regime
T τ � 1, the theory was generalized to account for the effects
of higher temperatures T τ � 1, a regime referred to as
ballistic.9,24,25 The case of a smooth disorder potential, in
which scattering is predominantly forward, was considered in
Ref. 26. Another type of system, where interaction corrections
appear, are networks of capacitively coupled ballistic quantum
dots,27–29 where, however, Ehrenfest-time-related phenomena
can be neglected as long as τE is much smaller than the
dwell time in a single quantum dot. Interactions also affect
the conductance through their effect on the weak localization
correction (dephasing). Semiclassical studies of the effect of
interaction-induced dephasing on weak localization can be
found in Refs. 15 and 30–32 for electronic systems and in
Ref. 33 for bosonic matter waves.

In Sec. II, we present our theory of the Ehrenfest-time
dependence on the interaction correction for a generic ballistic
chaotic conductor. In Sec. III, we then apply our formalism
to an antidot array, where the classical electronic motion
is diffusive on length scales much larger than the spacing
between antidots, and the Coulomb interaction is dynamically
screened by the diffusively moving electrons. For the antidot
array, we find δGAA ∝ exp(−τE/τD − 2πT τE/h̄) in the limit
that the Ehrenfest time is larger than dwell time and inverse
temperature. For small Ehrenfest times, we recover the
results of a disordered metal with quantum impurities, which
show a much weaker temperature dependence (algebraic or
logarithmic, depending on dimensionality). We conclude in
Sec. IV.

II. SEMICLASSICAL THEORY OF THE INTERACTION
CORRECTION

In this section, we present the semiclassical description
of the interaction corrections for a conductor with a well-

FIG. 1. (Color online) Schematic picture of the system under
consideration: A ballistic conductor, attached to ideal leads at x = 0
and L. In the semiclassical calculation of the conductance, one
retarded and one advanced Green’s function are attached to a current
vertex located at the interface with the leads. In a semiclassical
picture, these Green’s functions are associated with “retarded” and
“advanced” classical trajectories (solid and dashed lines in the figure),
both of which must point into the conductor (1). A current vertex
combined with two Green’s functions of the same kind is not
possible for the calculation of the conductance: after pairing, we have
trajectories that go straight into the leads (2). On the contrary, for a
calculation of the conductivity, the current vertex can be anywhere
inside the conductor, and pairing of retarded and advanced trajectories
is possible also if two Green’s functions of the same kind are attached
to one current vertex (3 and 4).

defined chaotic classical electron dynamics. We first review the
expressions for the interaction corrections to the conductance
in terms of the single-particle Green’s function, and then apply
the semiclassical approximation methods, taking into account
the finite Ehrenfest time.

A. Skeleton diagrams for the conductance

For definiteness, we consider a two-dimensional ballistic
conductor, such as a ballistic electron gas with an antidot array,
in contact with reservoirs at x = 0 and L (see Fig. 1). Without
interactions, we can calculate the conductance G from the
Kubo formula34

G = e2h̄

π

∫
dy

∫
dy ′

∫
dξ

(
−∂f (ξ )

∂ξ

)
× [v̂xGR(r,r′; ξ )v̂x ′GA(r′,r; ξ )] x′=0

x=L

, (2)

where f (ξ ) = 1/[exp(ξ/T ) + 1] denotes the Fermi function,

v̂x = h̄

2mi
(
−→
∂x − ←−

∂x ) (3)

is the velocity operator, and GR(r,r′; ξ ) and GA(r,r′; ξ ) are
the retarded and advanced single-particle Green’s functions,
respectively. Retarded and advanced Green’s functions are
related as

GA(r′,r; ξ ) = GR(r,r′; ξ )∗. (4)

To leading (first) order in the interaction strength, the in-
teraction correction δGAA is obtained by replacing GR(r,r′; ξ )
by GR(r,r′; ξ ) + δGR

F (r,r′; ξ ) + δGR
H(r,r′; ξ ) and expanding to
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FIG. 2. (Color online) Hartree (upper) and Fock (lower) dia-
grams: solid (dashed) lines represent retarded (advanced) Green’s
functions, the wiggly line represents the interaction. Each diagram
has a counterpart with retarded and advanced Green’s functions
interchanged.

first order in the interaction U ,9,19,35 where

δGR
F (r,r′; ξ )

=
∫

dω

4πi

∫
dr1dr2 tanh

(
ω − ξ

2T

)
GR(r,r1; ξ )

×GR(r2,r′; ξ ){UA(r1,r2; ω)GR(r1,r2; ξ − ω)

−UR(r1,r2; ω)GA(r1,r2; ξ − ω)}, (5)

δGR
H(r,r′; ξ ) = −2

∫
dω

4πi

∫
dr1dr2 tanh

(
ω − ξ

2T

)
×GR(r,r1; ξ )GR(r1,r′; ξ )

×{UA(r1,r2; 0)GR(r2,r2; ξ − ω)

−UR(r1,r2; 0)GA(r2,r2; ξ − ω)}, (6)

and with similar expressions for the advanced func-
tions δGA

F (r′,r; ξ ) and δGA
H (r′,r; ξ ). In these expressions,

UR(r1,r2; ω) and UA(r1,r2; ω) are the retarded and advanced
interaction kernels, respectively. The interaction is taken to
be zero in the leads, for x < 0 and x > L. Such a structure
represents the change of the single-particle Green’s function
due to scattering off Friedel oscillations of the density matrix
ρ(r1,r2) (Fock) or the density ρ(r2) (Hartree).9 The resulting
contributions to δGAA are represented diagrammatically as in
Fig. 2.

We would like to emphasize that we kept here only those
diagrams for which one retarded and one advanced Green’s
function are connected to each current vertex. These are the
relevant diagrams for the calculation of the conductance. This
is in contrast to the calculation of the interaction correction
to the conductivity δσAA, where diagrams with two Green’s
functions of the same kind attached to the current vertex play an
important role.3 [The conductivity σ is expressed in a similar
way as Eq. (2), but contains integrals over the x coordinates
as well, rather than fixing them to the contacts at x = 0 and
L.] Although the structure of the calculation for conductance
or conductivity considerably differs, the final results for these
quantities are related by a geometrical factor only. In two
dimensions, for a rectangular sample, one has G = σ W

L
, where

W is the width of the system.
The difference between the conductance calculation and

the conductivity calculation is readily seen in the semiclassical
language. In that language, Green’s functions are associated

with classical trajectories, and only terms in which “retarded”
and “advanced” trajectories are paired contribute. (For more
details, see following.) Since the leads are assumed to be free
of disorder and without electron-electron interactions, both the
retarded and the advanced trajectories at the positions r and
r′ in Eq. (2) must point into the conductor if the conductance
is calculated. On the other hand, for a current vertex in the
system’s interior, pairing of advanced and retarded trajectories
is still possible even if two Green’s functions of the same kind
are attached to the current vertex (see Fig. 1).

The fact that different diagrams are needed for the calcu-
lation of conductance and conductivity is well known, the
same is true for the Drude conductance and conductance
fluctuations of a disordered metal (see Ref. 36). For instance,
for the calculation of the Drude conductivity σ0 in a metal with
short-ranged disorder, there is no need to dress the diagram
with an impurity ladder, while for the classical conductance
G0, the diagram dressed with an impurity ladder, i.e., a
diffuson, is most relevant. For the Drude conductivity, one
might argue that the distance between the current vertices is of
the order of the mean-free path since the two Green’s functions
decay on this scale. The diffuson in turn is long ranged and
hence needed to describe propagation from one lead to the
other, as required for the conductance.

We also note that the calculation of the conductance as it is
outlined here is similar to the calculation of the density-density
correlation functions.37,38 A subtle point in this regard is
the existence of additional corrections in the calculation
of the density-density correlation function, namely, vertex
corrections and the so-called wave-function renormalization.
In the description developed below, both of them appear
to vanish. For the density-density correlation function, in
turn, vertex corrections and the wave-function renormalization
cancel each other, so that these corrections do not lead to a net
change of the result in either case.

B. Semiclassical theory

The conductance G depends on the precise locations of
antidots, the system boundary, and on the Fermi energy. We
now employ a semiclassical analysis in order to identify those
contributions to the conductance that remain after an average
over the Fermi energy.

The starting point is the semiclassical expression of the
Green’s functionGR(r,r′; ξ ) as a sum over classical trajectories
α from r′ to r at energy ξ (Ref. 39):

GR(r,r′; ξ ) = 2π

(2πih̄)3/2

∑
α

AαeiSα/h̄. (7)

Here, Sα(r,r′; ξ ) is the classical action corresponding to the
trajectory α, which has the properties

∂Sα

∂r
= pα,

∂Sα

∂r′ = −p′
α, (8)

and

∂Sα

∂ξ
= τα, (9)

where pα and p′
α denote the momentum at the end and

beginning of α, respectively, and τα is the duration of the
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trajectory. The stability amplitude Aα is given by Aα =√| det(Dα)|, with

Dα =
(

∂2Sα

∂r′∂r
∂2Sα

∂r′∂ξ

∂2Sα

∂ξ∂r
∂2Sα

∂ξ 2

)
. (10)

The semiclassical Green’s function further contains an addi-
tional phase shift, the so-called Maslov index,39 which we
omitted because it does not play a role in our considerations.
The semiclassical expression for advanced Green’s function
follows from Eq. (4).

Using the semiclassical Green’s function (7) we express the
interaction correction δGAA as a fourfold sum over classical
trajectories. We refer to these trajectories as retarded or
advanced, depending on the type of the Green’s function that
they originate from. The summation over classical trajectories
can be simplified for a system with chaotic classical dynamics:
In this case, the classical trajectory and hence the classical
action depend very sensitively on the initial conditions.
On the other hand, in the semiclassical limit h̄ → 0, only
configurations of trajectories with sum of the actions of the
retarded trajectories systematically equal to the sum of the
actions of the advanced trajectories up to a difference 
S
of the order of h̄ contribute substantially to the conductance.
This occurs only if the retarded and advanced trajectories are
piecewise paired, whereby they can exchange “partners” only
at a “small-angle encounter,”22 at which two pairs meet to
within a phase-space distance of order h̄1/2.

For the remaining summation over trajectories, we use a
sum rule that expresses the summation over trajectories α

between positions r′ and r and at energy ξ in terms of an
integral over the trajectory’s duration t , the initial and final
momenta p′ and p, as well as a “trajectory density” ρξ (X′ →
X; t) between the phase-space points X′ = (r′,p′) and X =
(r,p),40,41

∑
α:r′→r;ξ

A2
αf (p′

α,pα,τα)

=
∫ ∞

0
dt

∫
dp′

ξ

∫
dpξ ρξ (X′ → X; t)f (p′,p,t) (11)

(see Appendix A 1 for details). Here, f is an arbitrary
function. The initial point in phase space X′ = (r′,p′), together
with the Hamilton function H , uniquely determines the
classical trajectory, and after a time t this trajectory has
reached the phase-space point X(t) = [r(r′,p′; t),p(r′,p′,t)].
The trajectory density

ρ(X′ → X; t)

= δ[X − X(t)] = δ[r − r(r′,p′; t)]δ[p − p(r′,p′; t)]
(12)

selects then only those phase-space points which are connected
by a trajectory of duration t . At fixed energy ξ , the momentum
integrations are restricted to the energy shell dpξ = dpδ[ξ −
H (p,r)], and for the trajectory density we may factor out the
part which ensures energy conservation,

ρ(X′ → X; t) = ρξ (X′ → X; t)δ[H (X) − H (X′)]. (13)

The factor A2
α provides the Jacobian for this transformation.

Following the procedure outlined so far, we obtain an
expression in terms of trajectory densities which, strictly
speaking, is a sum of δ functions. We then replace the exact
trajectory density ρξ by a coarse-grained smooth density
ρ.42,43 The coarse graining takes place with respect to small
fluctuations of the initial and final phase-space points and/or
the positions of the scattering disks or the system’s boundaries.
In the regime λτD � 1, where the chaotic dynamics has fully
developed, the classical dynamics is essentially stochastic,
which justifies the coarse-graining procedure. The coarse-
grained trajectory density

ρξ (X′ → X; t) = P (X,X′; t) (14)

can be identified with the probability density P (X,X′; t) that
a particle originating at the phase-space point X′ = (r′,p) is
found at the phase-space point X = (r,p) after a time t . (Since
we are interested in the regime where temperature is much
smaller than Fermi energy, we drop the dependence of the
classical propagators on ξ .) For the case of antidot arrays, this
probability density is described by a diffusion equation.

The Drude conductance is obtained by keeping only pairs of
classical trajectories that connect source and drain reservoirs.
Following the steps described above, we find

G0 = e2

2π2h̄2

∫ ∞

0
dt

∫
dy dy ′

∫
dpξ dp′

ξ

× [vxP (X,X′; t)v′
x] x′=0

x=L

. (15)

We now turn to the semiclassical calculation for the interaction
correction.

C. Fock contribution

We start with the Fock contribution to δGAA, which is
given by the two lower diagrams in Fig. 2, together with
their counterparts, which are obtained by interchanging the
retarded and advanced Green’s functions. We first consider
the conductance correction δG

F,1
AA from the lower left diagram

and its counterpart, which reads as

δG
F,1
AA = −e2h̄

π

∫
dξ

(
−∂f (ξ )

∂ξ

) ∫
dω

2π
tanh

(
ω − ξ

2T

)

× Im

{∫
dy

∫
dy ′

∫
dr1dr2U

R(r1,r2; ω)

× [v̂xGR(r,r′; ξ )v̂x ′GA(r′,r2; ξ )GA(r2,r1; ξ − ω)

×GA(r1,r; ξ )] x′=0
x=L

}
. (16)

After insertion of the semiclassical expression (7) for the
Green’s functions, we obtain a sum over one retarded and
three advanced trajectories. In the semiclassical limit, a
convolution of Green’s functions is customarily calculated
using the stationary phase approximation. For this, one first
needs to determine the configurations of trajectories which
make the total action stationary. This results in a factor ∝eiSst ,
where Sst is obtained by inserting the stationary configuration
into the total action. Integration over quadratic fluctuations
around the stationary configurations then renders the prefactor.
In the present case, the convolution of Green’s functions
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FIG. 3. (Color online) Configuration of trajectories relevant for
the first diagram to the Fock contribution.

is accompanied by the interaction propagator. One might
expect that the interaction propagator affects the stationary
trajectories, such that they no longer connect to a single
classical trajectory, as in the case without interaction. However,
for the calculation of the conductance, we need to pair the
advanced trajectories with the retarded one (see Fig. 3).
Hence, performing the integration over r1 and r2 in Eq. (16)
within stationary phase approximation, we only take into
account stationary configurations that connect to a single
classical trajectory. The detailed calculation is carried out in
the Appendix A 2 and has the result∫

dr1dr2GA(r′,r2; ξ )GA(r2,r1; ξ− ω)GA(r1,r; ξ )UR(r1,r2; ω)

= − 1

h̄2

2π

(−2πih̄)3/2

∑
α:r′→r;ξ

Aαe−iSα/h̄

∫ τα

0
dt

×
∫ t

0
dt ′UR[rα(t),rα(t ′); ω]eiω(t−t ′)/h̄, (17)

where rα(t) is the coordinate of trajectory α after time t . The
integration over time reflects the freedom to choose r1 and r2

anywhere along the trajectory α; the factor eiω(t−t ′)/h̄ takes into
account the action difference at different energiesSα(ξ − ω) =
Sα(ξ ) − ωτα (for ω � ξ ). With Xα(t) = [rα(t),pα(t)] we may
rewrite

UR[rα(t),rα(t ′); ω] =
∫

dX1dX2ρξ (X′
α → X1; t)

× ρξ (X′
α → X2; t ′)UR(r1,r2; ω), (18)

where dX = dr dpξ is an integration over phase-space points
on the energy shell, and X′

α = Xα(0) is the initial phase-space
point of trajectory α.

After inserting Eqs. (17) and (18) into Eq. (16), and
upon applying the semiclassical approximation to the retarded
Green’s function as well, the interaction correction δG

F,1
AA is

expressed as a double sum over trajectories α and β running
from r′ to r. Only diagonal terms with α = β are systematically
nonzero, so that we only keep these. Again, making use of
the sum rule [Eq. (11)], we express δG

F,1
AA as an integral

over the two intermediate phase-space points X1 and X2.
Before the exact trajectory densities can be replaced by their
coarse-grained versions, we split the classical trajectories into
uncorrelated segments using the equality∫ ∞

0
dt

∫ t

0
dt ′ρξ (X0 → X1; t)ρξ (X0 → X2; t ′)

=
∫ ∞

0
dt1ρξ (X0 → X2; t1)

∫ ∞

0
dt2ρξ (X2 → X1; t2).

(19)

After coarse graining, the expression for δG
F,1
AA involves the

probability densities P (X1 → X2; t) for the chaotic classical

motion. The expression can be further simplified by introduc-
ing

Pin(X) =
∫

dy ′
∫

dp′
ξ

∫ ∞

0
dt[v′

xP (r′,p′ → X; t)]x ′=0,

Pout(X) =
∫

dy

∫
dpξ

∫ ∞

0
dt[P (X → r,p; t)vx]x=L, (20)

which express the probability that a trajectory at phase-space
point X entered at the left contact or exits at the right contact,
respectively. Using the equality∫

dξ

(
−∂f (ξ )

∂ξ

)
tanh

(
ω − ξ

2T

)
= ∂

∂ω

(
ω coth

ω

2T

)
, (21)

we finally obtain

δG
F,1
AA = e2

4π3h̄4

∫
dω

∂

∂ω

(
ω coth

ω

2T

)

× Im

{∫
dX1dX2U

R(r1,r2; ω)K1(X1,X2; ω)

}
,

(22)

where we singled out the part containing classical propagators

K1(X1,X2; ω) =
∫ ∞

0
dt Pout(X1)P (X1,X2; t)eiωt/h̄Pin(X2).

(23)

We now consider the interaction correction δG
F,2
AA that

corresponds to the lower right diagram of Fig. 2 and its
counterpart obtained by switching retarded and advanced
labels:

δG
F,2
AA = −e2h̄

π

∫
dξ

(
−∂f (ξ )

∂ξ

)∫
dω

2π
tanh

(
ω − ξ

2T

)

× Im

{∫
dy

∫
dy ′

∫
dr1dr2U

R(r1,r2,ω)

× [v̂xGR(r,r1; ξ )GA(r1,r2; ξ − ω)GR(r2,r′; ξ )v̂x ′

×GA(r′,r; ξ )] x′=0
x=L

}
. (24)

Insertion of the semiclassical expression for the Green’s
functions leads to a fourfold sum over two retarded trajectories
(from r′ to r2 and from r1 to r), and two advanced trajectories
(from r′ to r and from r1 to r2).

Because of the specific requirements for the start and
end points of the trajectories, it is not possible to pair the
trajectories one by one for their entire duration. Instead, the
trajectories need to undergo a “small-angle encounter” in
which all four trajectories are close together in phase space for
at least part of their length.22 The four possible configurations
of trajectories are shown in Fig. 4, where we take into account
the possibilities that none, one, or both points r1 and r2 lie
inside the encounter region. Their contributions to δGAA will
be denoted δG

F,2a
AA –δG

F,2d
AA (see Fig. 4).

The summation over classical trajectories with a small-
angle encounter follows the procedure outlined in Refs. 14 and
23. We refer the reader to Appendix A 3 for details, and proceed
with the results of that calculation. All four contributions to
δGAA have the same form as the contribution from the first
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FIG. 4. (Color online) Configurations of trajectories relevant for
the second diagram to the Fock contribution. Encounter regions are
indicated in blue; here the motion of all four trajectories is correlated.

diagram [see Eq. (22)], but with different expressions for the
function K(X1,X2; ω). For the contributions 2a–2d (see Fig. 4),
these expressions read as

K2a = −
∫

dX dX′Pin(X)P (X,X1; ω)

×P (X2,X′; ω)Pout(X′)
∂

∂τE
[P (X′,X; τE)eiωτE/h̄],

(25)

K2b = −
∫

dX Pin(X)P (X,X1; ω)Pout(X2)

× P (X2,X; τE)eiωτE/h̄, (26)

K2c = −
∫

dX′Pin(X1)P (X2,X′; ω)Pout(X′)

× P (X′,X1; τE)eiωτE/h̄, (27)

K2d = −
∫ τE

0
dt Pin(X1)P (X2,X1; t)

× eiωt/h̄Pout(X2). (28)

Here, P (X,X′; ω) is the Fourier transform of P (X,X′; t):

P (X,X′; ω) =
∫ ∞

0
dt P (X,X′; t)eiωt/h̄. (29)

Taken together, Eqs. (22), (23), and (25)–(28) determine the
general result for the Fock contribution to δGAA for finite
Ehrenfest time, expressed in terms of classical propagators.

Let us briefly discuss the effect of the Ehrenfest time:
Interestingly, the contribution K1 does not involve a crossing
and therefore shows no dependence on the Ehrenfest time.
However, it is canceled by the contribution K2d, if the travel
time between X1 and X2 is shorter than the Ehrenfest time.
Thus, adding all contributions together, we indeed find that
effectively only trajectories with a duration longer than the
Ehrenfest time are responsible for the interaction correction.

D. Hartree contribution

The Hartree contribution to the Altshuler-Aronov correc-
tion is given by the two upper diagrams in Fig. 2. Proceeding

(a)

(b)

(d) (e)

(c)

FIG. 5. (Color online) Configurations of classical trajectories that
give the Hartree contribution to the interaction correction δGAA.
The configurations in parts (b)–(e) contain a small-angle encounter,
indicated in blue. All five configurations also contain a crossing of
the classical trajectories. The momenta associated with the crossing
are denoted p1 and p2.

as in the case of the Fock contribution, each Green’s function
is written as a sum over classical trajectories, which must
then be piecewise paired in order to give a nonvanishing
contribution to the interaction correction to the conductance.
The resulting configurations of classical trajectories are shown
schematically in Fig. 5. The trajectory configurations of
Fig. 5 are in one-to-one correspondence to those of Figs. 3
and 4 for the Fock contribution to δGAA: The diagram of
Fig. 5(a) corresponds to that of Fig. 3, whereas the diagrams
of Figs. 5(b)–5(e) correspond to those of Fig. 4, contributions
2a–2d.

Unlike the Fock diagrams, all diagrams for the Hartree
correction involve a finite-angle crossing of the trajectories,
in addition to the small-angle encounter of Figs. 5(b)–5(e).
Another important difference is that the action difference 
S
for the Hartree case depends on the two positions r1 and r2

associated with the interaction vertex. Denoting the momenta
involved in the finite-angle crossing of the trajectories by
p1 and p2 (see Fig. 5), the action difference contributes an
additional oscillating phase factor ei(r1−r2)·(p1−p2)/h̄. (No fast
oscillating phase factors are associated with the integration
over r1 and r2 for the Fock diagrams.) For chaotic classical
motion, the directions of the momenta p1 and p2 are random
and uncorrelated, while the magnitude |p1| = |p2| = pF is
fixed by energy conservation. As a result, only a short-
range component of the interaction contributes to the Hartree
correction, and one finds the same expression for δGAA as for
the Fock contribution, with the replacement3

UR(r1 − r2; ω)

→ −2δ(r1 − r2)

〈 ∫
dr eir·(p1−p2)/h̄UR(r; ω = 0)

〉
p1,p2

, (30)

where the brackets 〈· · · 〉 indicate an average over the momenta
p1 and p2 with |p1| = |p2| = pF. In case of a short-range
interaction U (r1,r2) ∝ δ(r1 − r2), one verifies that this re-
placement rule leads to δGH

AA = −2δGF
AA, in agreement with

Eqs. (5) and (6).
Intuitively, the interaction correction associated with the

trajectory configurations of Fig. 5 can be interpreted as the
interference of electrons that follow a classical trajectory
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connecting source and drain contacts, and electrons that
additionally scatter from Friedel oscillations.8,9,35 In the
configuration of Fig. 5(a), the trajectory that contains the
scattering from the Friedel oscillation is shorter than that of the
reference trajectory, whereas it is longer in the configurations
of Figs. 5(b)–5(e). The phase difference between the scattered
trajectory and the reference trajectory is precisely compen-
sated by the phase of the Friedel oscillation.35 A similar
interpretation applies to the Fock contribution, although here
the scattering is from Friedel oscillations of the density matrix,
not of the electron density itself.

E. Coulomb interaction

For the Coulomb interaction UC(r1,r2) = e2/|r1 − r2|, due
to the long-range nature, it is never sufficient to deal with the
first order in perturbation theory only, and effects of dynamical
screening have to be included. Hence, it is not sufficient to
consider only diagrams with a single bare interaction line as
in Fig. 2; instead, one has to sum up a ladder of diagrams
within the random phase approximation (RPA). This analysis is
explained in Refs. 9, 26, 37, and 44 and it can be carried over to
the semiclassical formalism without significant modifications.

For the purpose of including higher-order interaction con-
tributions, the separation into Hartree and Fock contributions
is no longer meaningful. Instead, it is favorable to decompose
the interaction into singlet and triplet channels. Hereto, we
consider the interaction amplitude of a scattering process,
where two particles with initial momenta p1 (p2) and spin α (γ )
interact and depart with final momenta p1 + q (p2 − q) and
spin β (δ). Since in the semiclassical theory of transport only
paired trajectories are relevant, we may restrict our analysis to
the case |q| � pF . The classification into singlet (j = 0) and
triplet part (j = 1) then amounts to separating the interaction
amplitude according to its spin structure as

Uαβγ δ = U (j=0)δαβδγ δ + U (j=1)
∑

i

σ i
αβσ i

γ δ, (31)

where σ i represents the Pauli matrices (i = x,y,z). To lowest
order, the interaction amplitude consists of the scattering
processes shown in Fig. 6. Here, in the left process the
interaction transfers a small momentum q. Such small-angle
scattering appears in the Fock contribution to the interaction
correction. The spin structure of this process belongs to the
singlet channel. The right process allows for large-angle
scattering, which appears in the Hartree contribution to the
interaction correction. This process has to be split into singlet

FIG. 6. Lowest-order scattering processes of two particles with
initial momenta p1 (p2) and spin α (γ ), and final momenta p1 + q
(p2 − q) and spin β (δ). Since the interaction conserves spin, the
left process is proportional to δαβδγ δ and belongs to the singlet
channel, while the right process has the structure δαδδβγ = 1

2 (δαβδγ δ +∑
i σ

i
αβσ i

γ δ) and therefore splits into singlet and triplet contributions.

and triplet contributions, so that we end up with

U
(j=0)
0 (q) = UC(q) − 1

2 〈UC(p1 − p2)〉|p1|=|p2|=pF
, (32)

U
(j=1)
0 (q) = − 1

2 〈UC(p1 − p2)〉|p1|=|p2|=pF
. (33)

Here, we anticipated that for a diffusive system we may average
over the directions of the momenta of the electrons. To include
screening, one then sums up the RPA series in each channel,

U (j )(q,ω) = U
(j )
0 (q) − U

(j )
0 (q)�(q,ω)U (j )(q,ω), (34)

where the disorder-averaged polarization operator � is di-
agonal in spin space (note that the disorder average of the
polarization operator does not involve a crossing, and therefore
has no τE dependence).

The discussion so far is valid for weak interaction (i.e.,
interaction parameter rs � 1). For stronger interactions, one
should also include Fermi-liquid effects. Then, the structure of
the screened interaction remains the same, but the bare inter-
action is now expressed in terms of Fermi-liquid parameters
F

ρ,σ

0 :

U
(j=0)
0 (q) = UC(q) + 1

2ν
F

ρ

0 , U
(j=1)
0 (q) = 1

2ν
F σ

0 . (35)

Let us turn back to the Altshuler-Aronov correction. Apply-
ing the preceding analysis, we find that Coulomb interaction
is properly included, if we calculate the Fock-type diagrams
as in Fig. 2, where the interaction is replaced by the effective
interaction

U (r1,r2; ω) = U (j=0)(r1,r2; ω) + 3U (j=1)(r1,r2; ω), (36)

where the factor 3 comes from the spin summation and
accounts for the multiplicity of the triplet channel. The precise
relation between U (r1,r2; ω) and U (q; ω) follows from the
solution of the diffusion equation and will be clarified in the
next section [see Eq. (59)].

III. INTERACTION CORRECTION FOR
ANTIDOT ARRAYS

In the preceding section, we developed the semiclassical
theory of the interaction correction to the conductance, where
we expressed our final results in terms of the classical
propagator P (X,X′,t). The explicit expression of this classical
propagator is determined by the geometry of the system
under consideration. In semiclassical studies, two prototypical
geometries are mainly investigated: ballistic quantum dots,
where the classical chaotic motion results from reflections
at the boundary of the dot, and antidot arrays, where the
placement of artificial macroscopic scatterers leads to a chaotic
dynamics. For a single ballistic quantum dot, the interaction
correction vanishes. The simplest example of a geometry with
a nonzero interaction correction is hence a double quantum
dot, which was studied in Ref. 19. We will first show how
the results of the previous section are connected to the results
of this reference. The remaining part of this section is then
devoted to the interaction correction for antidot arrays, which
has not been theoretically studied so far.
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A. Double dot

We consider a double-dot system, where two identical dots
are connected by a ballistic contact of conductance Gc. The
first (second) dot is connected to the left (right) reservoir by a
ballistic contact of conductance Gd . The level density (i.e., the
density of states times the dot’s area) for each dot is N per spin.
Within each dot, the phase space is explored uniformly during
the chaotic motion. Hence, we might replace the integration
over phase space by a sum over the dots,∫

dX =
∑

i

�i, (37)

where we weigh with the available phase-space volume
�1 = �2 = (2πh̄)2N of each dot. The classical propagators
are replaced by

P (X ← X′; t) = 1

�j

P (j ← i; t). (38)

The probability P (j ← i; t) to be in dot j after a time t , when
the particle initially started in dot i, is then calculated from the
master equation

∂tP (j ← i; t) = −
∑
m

γjmP (m ← i; t), (39)

where the rate matrix γ has the form

γ =
(

γL + γ12 −γ12

−γ12 γR + γ12

)
. (40)

Here, γ12 = Gc/2Ne2 is the rate for transitions between the
dots, and γL = γR = Gd/2Ne2 is the rate for escape to the left
and right leads. The solution to Eq. (39) reads as

P (j ← i; t) = (e−γ t )ji . (41)

The probability Pin (Pout) that a particle in dot i has entered
via the left contact (leaves the system via the right contact) is
given by

Pin(i) = γL(γ −1)1i , Pout(i) = γR(γ −1)2i . (42)

The bare interaction of the double-dot system can be described
by a capacitive coupling of the dots

U0 = e2

C
, C =

(
C0 + Cc −Cc

−Cc C0 + Cc

)
, (43)

where C0 describes the coupling of each dot to an external
gate, and Cc is the cross capacitance between the dots. For
the inclusion of screening, we make use of the polarization
operator

�ij (ω) = 2N

[
δij + iω

h̄
P (j ← i; ω)

]
, (44)

from which we obtain the dynamically screened interaction as

U−1(ω) = U−1
0 + �(ω). (45)

For the frequencies of interest, one may neglect the first term
in this equation, and one obtains

Uij (ω) = 1

2N

(
1 − iω

h̄
γ −1

)
ij

. (46)

Using the expressions of this paragraph and the Eqs. (22), (23),
and (25)–(28) from the last section, one obtains, after some
algebra, the result from Ref. 19:

δGAA = − e2

2πh̄

GdG
2
c(τD−e−τE/τD+ + τD+e−τE/τD−)

(Gd + 2Gc)3

× Im
∫

dω

h̄

eiωτE/h̄∂ω

(
ω coth ω

2T

)
(1 − iωτD+/h̄)(1 − iωτD−/h̄)

. (47)

Here, τD+ = 2Ne2/Gd and τD− = 2Ne2/(Gd + 2Gc) are the
characteristic dwell times of the double-dot system [they refer
to relaxtion of (anti)symmetric charge configurations]. For
zero Ehrenfest time, one recovers the results known from
random matrix theory, while for large Ehrenfest times, δGAA is
suppressed as e−τE/τD±−2πτET/h̄ (for more details, see Ref. 19,
where the stated results are too large by a factor of 2). We note
that the Hartree contribution is zero in this case, due to the
long-range nature of interaction.

B. Antidot arrays

In the following, we now apply the theory developed in
Sec. II to quasi-one-dimensional (1D) and two-dimensional
(2D) antidot arrays. The antidot arrays consist of a ballistic
electron gas with randomly placed disk-shaped scatterers of
size much larger than the Fermi wavelength. The classical
dynamics in such an antidot array is chaotic, and diffusive
on length scales much larger than the disk size a or the
distance between disks. In particular, since the Ehrenfest time
τE = λ−1 ln(a/λF) � λ−1 because of the large logarithm, and
since λ−1 is comparable to the transport time τ , the diffusive
dynamics applies for time scales down to τE.

A diffusively moving particle quickly loses its memory
about the direction of motion, so that the classical propagators
P (X,X′; t) depend on the positions r and r′ associated with
the phase-space points X and X′ only. This leads to significant
simplifications of the general semiclassical expressions for the
interaction correction δGAA. In order to evaluate δGAA in this
limit, we start by expressing the integration over momentum
at fixed energy as an integration over the corresponding
angle φ,

dpξ = (2πh̄)2ν
dφ

2π
, (48)

where ν is the density of states per spin. We then find

P (X,X′; t) = 1

(2πh̄)2ν
P (r,r′; t), (49)

where P (r → r′; t) depends on the positions only and satisfies
a diffusion equation

(∂t − D
r)P (r,r′; t) = δ(t)δ(r − r′), (50)

with diffusion coefficient D. For a rectangular sample of
dimension L × W , coupled to ideal leads at x = 0 and L and
with insulating boundaries at y = 0 and W , the solution of
Eq. (50) reads as

P (r,r′; t) = θ (t)
∑

q

ψq(r)ψq(r′)e−Dq2t , (51)
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with the function

ψq(r) =
√

4

LW
sin(qxx) ×

{
1/

√
2 if qy = 0,

cos(qyy) if qy 
= 0.
(52)

The sum over q runs over qx = nπ
L

with n = 1,2, . . . and qy =
mπ
W

with m = 0,1, . . . . We also use the Fourier-transformed
diffusion propagator

P (r,r′; ω) =
∑

q

ψq(r)ψq(r′)
Dq2 − iω/h̄

. (53)

Finally, the probabilities Pin(r) and Pout(r) that a trajectory
originating at position r exits the sample on the left or on the
right, respectively, are

Pout(r) = x

L
, Pin(r) = L − x

L
, (54)

which may be derived from the diffusive flux

jx(r,r′; t) = −D∂xP (r,r′; t), (55)

at position r and time t , for a particle starting from r′ at time
t = 0. The Drude conductance [Eq. (15)] is then expressed as

G0 = e2

2π2h̄2

∫
dy

∫
dpξ [−D∂xPin(x)]x=L, (56)

which gives the familiar result

G0 = 2e2νD
W

L
. (57)

Let us now turn to the interaction. For the inclusion of
screening effects, we need the polarization operator, which,
for the low frequencies at which the electron dynamics is

effectively diffusive, can be expressed through the diffusion
propagator

�(r,r′; ω) = 2ν

[
δ(r − r′) + iω

h̄
P (r,r′; ω)

]
. (58)

Using Eqs. (34)–(36), we then find that the effective interaction
can be written as

UR(r1,r2; ω) =
∑

q

ψq(r)ψq(r′)UR(q,ω), (59)

where UR(q,ω) = UR,(j=0)(q; ω) + 3UR,(j=1)(q; ω) is given
by

UR,(j=0)(q; ω) = 1

2ν

Dq2 − iω/h̄

Dq2
, (60)

UR,(j=1)(q; ω) = Fσ
0

2ν

Dq2 − iω/h̄

Dq2
(
1 + Fσ

0

) − iω/h̄
(61)

in the singlet and triplet channels, respectively. Due to the
divergence of the bare Coulomb interaction at small momenta,
the interaction in the singlet channel is set by the polarization
operator solely. In the triplet channel, the interaction depends
on the zero angular harmonic of Fσ , which is the only free
parameter controlling the interaction strength.

For the further calculations, it is convenient to make use of
the diffusion equation to write

∂

∂τE
[P (r,r′; τE)eiωτE/h̄] =

(
D
 + iω

h̄

)
P (r,r′; τE)eiωτE/h̄.

With the help of additional spatial integrations over delta
functions, which we then replace using Eq. (53), the interaction
correction to the conductance then takes the form

δGAA = νe2

πh̄2

∫
dω ∂ω

(
ω coth

ω

2T

)
Im

{∫
dr1dr2U

R(r1,r2; ω)K(r1,r2; ω)

}
, (62)

where the function K(r1,r2; ω) reads as

K(r1,r2; ω) =
∫

dr dr′Pin(r)Pout(r′)
{
DωP (r,r1; ω)D′

ωP (r2,r′; ω)
∫ ∞

τE

dt P (r′,r; t)eiωt/h̄

−P (r,r1; ω)P (r2,r′; ω)DωP (r′,r; τE)eiωτE/h̄ + DωP (r,r1; ω)P (r2,r′; ω)P (r′,r; τE)eiωτE/h̄

+P (r,r1; ω)D′
ωP (r2,r′; ω)P (r′,r; τE)eiωτE/h̄

}
, (63)

with the shorthand notations Dω = (D
r + iω/h̄) and D′
ω =

(D
r′ + iω/h̄). The technical advantage of the structure
of Eq. (63) is that each term contains the same diffusive
propagators. Performing several partial integrations, using

Pin(r) = 
Pout(r) = 0, ∇Pin(r) = −∇Pout(r) = − 1

L
ex, as

well as Dω

∫ ∞
τE

dtP (r′,r; t)eiωt/h̄ = −P (r′,r; τE)eiωτE/h̄, we
are able to simplify the expression and finally obtain

K(r1,r2; ω) = −4D2

L2

∫
dr dr′P (r,r1; ω)P (r2,r′; ω)

× ∂x∂x ′

∫ ∞

τE

dt P (r′,r; t)eiωt/h̄. (64)

Together, Eqs. (62) and (64) represent the main result for the
interaction correction in antidot arrays. For zero Ehrenfest
time, the time integral of Eq. (64) equals P (r′,r; ω) and
one recovers the results for quantum impurities, obtained by
standard diagrammatic perturbation theory [see Ref. 45, where
the symbol F of this reference equals F/2 = −Fσ

0 /(1 + Fσ
0 )

and the reference misses a factor 2 for the triplet contribution].
If the Ehrenfest time is finite, it poses a short-time threshold
and only electrons with a travel time larger than τE contribute
to the interaction correction. We now discuss Ehrenfest-time
dependence of δGAA in detail for a quasi-1D and a 2D antidot
array.
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C. Quasi-one-dimensional antidot array

For a quasi-1D antidot array (width W much smaller than
length L), we may simplify the diffusion propagator by taking
only the diffusion mode with zero transverse momentum into
account. After insertion of the diffusion propagators and the
interaction into Eqs. (62) and (64), and using the residue
technique for the ω integration, we find

δGAA = −e2

h

∞∑
m=1

∞∑
n=1

e
−n

τE
τT e

−m2 τE
τD

×
[
n
τEτD

τ 2
T

gm(nτD/τT ) − n
τ 2

D

τ 2
T

g′
m(nτD/τT )

]
, (65)

where the time τT = h̄/2πT is the inverse temperature,
τD = L2/Dπ2 is the diffusion time, and the function gm(x)
is expressed as

gm(x) = 128

π4

∞∑
k=1

c2
km

1

(k2 + x)(m2 + x)

×
{

1

k2
+ 3Fσ

0

k2
(
1 + Fσ

0

) + x

}
, (66)

with

ckm =
{
km/(k2 − m2) if k + m odd,

0 else.
(67)

The summation over k in Eq. (66) can be written in a closed
form [see Eq. (B1)]. We will now discuss the dependence of
δGAA on temperature, system size, and Ehrenfest time for
several limiting cases.

1. τD � τ T ,τE

We first consider the limit τD → ∞ corresponding to a large
antidot array. In this case, the Ehrenfest-time dependence of
the interaction correction δGAA is determined by the ratio
τE/τT . For τE/τT � 1, one finds the result

δGAA = −e2

h

√
τT

τD

3ζ
(

3
2

)
π

[
1 + 3

2 + Fσ
0 − 2

√
1 + Fσ

0

Fσ
0

]
,

(68)

independent of τE and known from diagrammatic perturbation
theory. Here, ζ (3/2) ≈ 2.612 38 is the Riemann zeta function
(see Appendix B for details). On the other hand, for large
Ehrenfest times or, equivalently, higher temperatures τE/τT �
1, the interaction correction δGAA acquires an exponential
dependence on temperature ∝e−2πT τE/h̄:

δGAA = −e2

h

4

π3/2

√
τE

τD
e
− τE

τT , (69)

independent of Fσ
0 . The crossover between these two limiting

cases is shown in Fig. 7 for different values of the Fermi-liquid
interaction constant Fσ

0 .
We emphasize the influence of the interaction constant in

the triplet channel Fσ
0 : While for small values of Fσ

0 , δGAA

is always negative and monotonously decaying as temperature
is increased, a more interesting behavior is observed at large
interaction strength: At small Ehrenfest time and Fσ

0 < − 3
4 ,

0.0 0.5 1.0 1.5 2.
2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

0

FIG. 7. (Color online) Interaction correction to the conductance
of a quasi-one-dimensional antidot array in the large-system-size
regime τD � τT , τE.

the contribution from the triplet channel dominates and gives
rise to a positive sign of the interaction correction. On the
contrary, if the Ehrenfest time is large, the prefactor of the
exponential behavior shows no dependence on Fσ

0 to leading
order in τT

τE
and is therefore always negative. Hence, at

sufficiently large interaction strengths, one observes a sign
change of the interaction correction as the temperature is
varied.

2. τ T � τD,τE

In the limit of zero temperature, δGAA is a function of the
ratio τE/τD only (we again refer to Appendix B for details). At
zero Ehrenfest time, we have

δGAA = −e2

h

∞∑
m=1

∫ ∞

0
dx gm(x), (70)

with gm(x) defined in Eq. (66). For small Fσ
0 , we have

δGAA ≈ −(e2/h)(0.74 + Fσ
0 ). In this parameter range, the

singlet contribution is dominant, which leads to a negative sign
of the interaction correction, and to a monotonous decay as a
function of τE

τD
. At larger Fσ

0 , the triplet contribution competes
with the singlet contribution, resulting in a sign change of
the interaction correction for sufficiently strong interactions,
starting at Fσ

0 ≈ −0.5. For τE � τD, we find an exponential
dependence of δGAA on τE

τD
:

δGAA = −e2

h

(
1 + 3Fσ

0

1 + Fσ
0

)
16(5π2 − 48)

3π4

τD

τE
e
− τE

τD . (71)

The crossover between the limits τE � τD and τE � τD is
shown in Fig. 8 for several representative values of Fσ

0 .

3. τE � τD,τ T

Finally, in the “classical” limit of large Ehrenfest times, we
have

δGAA = −e2

h

τEτD

τ 2
T

e
− τE

τT e
− τE

τD g1

(
τD

τT

)
, (72)

where g1 is defined in Eq. (66). In this parameter regime,
the interaction correction has the characteristic exponential
suppression δGAA ∝ e−2πT τE/h̄−τE/τD .
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FIG. 8. (Color online) Interaction correction to the conductance
of a quasi-one-dimensional antidot array in the low-temperature
regime τT � τD, τE.

D. Large 2D system

We will now consider a two-dimensional antidot array of
dimensions L × W , where we restrict ourselves to the limit
of large system size τD � τE, τT . In the large-size limit, the
relevant quantity is the conductivity σ = GL/W (although we
here write results for the conductivity, we formally calculate
the conductance and multiply with the geometrical factor
L/W ; see also the discussion in Sec. II A). We may then
express Eqs. (62) and (64) in momentum space,

δσAA = −4νe2D

πh̄2

∫
dω ∂ω

(
ω coth

ω

2T

)

× Im

{ ∫
d2q

(2π )2
UR(q; ω)

Dq2
x e

iωτEe−Dq2τE

(Dq2 − iω/h̄)3

}
. (73)

In the limit of zero Ehrenfest time, this expression simplifies to
the well-known result of diagrammatic perturbation theory.9,35

The full Ehrenfest-time dependence is shown in Fig. 9. For
τE � τT , we have the asymptotic behavior

δσAA = − e2

πh

[
1 + 3

(
1 − ln

(
1 + Fσ

0

)
Fσ

0

)]
ln

τT

τE
, (74)

which coincides with the well-known expression of quantum
impurities, where the role of the elastic scattering time as a
short-time cutoff is taken over by the Ehrenfest time. In the
opposite limit τE � τT , we obtain an exponential dependence

0.0 0.5 1.0 1.5 2.
0.6

0.4

0.2

0.0

0.2

0

FIG. 9. (Color online) Interaction correction to the conductivity σ

of a two-dimensional antidot array for various values of the interaction
strength F σ

0 in the triplet channel.

on temperature

δσAA = − e2

πh
e
− τE

τT . (75)

As in the one-dimensional situation, at small Fσ
0 the singlet

contribution dominates the interaction correction, while at
larger Fσ

0 the triplet contribution competes, and a sign change
of the interaction correction as a function of τE

τT
is observed if

Fσ
0 � −0.45.

IV. CONCLUSION

In this paper, we considered the effect of a finite Ehrenfest
time on the interaction correction of a conductor in which
the motion of the electrons is described by chaotic classical
dynamics. Using semiclassical theory of transport, we derived
an expression for the interaction correction containing only
the interaction propagator and coarse-grained classical prop-
agators of the electronic motion. We confirm the result of
Ref. 19, obtained for a double ballistic quantum dot, that
the Ehrenfest time enters as a short-time threshold for the
interaction correction. In other words, the minimal time it
takes to traverse the system for trajectories responsible for the
interaction corrections is the Ehrenfest time.

As a specific and experimentally relevant example, we
applied the formalism to antidot arrays, where the coarse-
grained classical dynamics follows a diffusion equation. At
zero Ehrenfest time, we recovered the well-known results of
the diagrammatic perturbation theory for a disordered metal.3

If the Ehrenfest time is large, we found that the interaction
correction is exponentially suppressed ∝e−τE/τDe−2πT τE/h̄.
While the factor e−τE/τD is also present for weak localization,
the suppression with temperature is specific to the interaction
correction. Unlike the dwell time τD, which governs the
Ehrenfest-time dependence of weak localization, temperature
is a variable that can be easily controlled experimentally
without changing the classical dynamics, making the inter-
action correction a promising experimental signature of the
Ehrenfest-time dependence of quantum transport. (We note
that weak localization depends on temperature implicitly via its
dependence on the dephasing time. However, an independent
measurement of the dephasing time that enters into the
expression for the Ehrenfest-time dependence of the weak
localization correction is problematic.15)

A particular signature of the underlying classical motion
is a sign change of the interaction corrections for strong
enough interactions. Associated with this sign change is a
nonmonotonous temperature dependence of the interaction
correction, in the temperature range T ∼ h̄/τE. As long as only
the Fock contribution is considered, the sign of the interaction
correction is negative. If the Hartree contribution (more
precisely, the triplet channel of interaction) is added, there is a
competition between Hartree and Fock-type corrections, and
the sign of the total interaction correction at small Ehrenfest
time may change as a function of the interaction strength. For
large Ehrenfest time, the Fock contribution always dominates,
so that the sign of the interaction correction is independent on
the interaction strength in that limit.

As mentioned above, the sign change of the interaction
corrections for systems with small Ehrenfest times requires a
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rather strong interaction in the triplet channel. In particular, in
2D systems the threshold was estimated to be Fσ

0 � −0.45,
where Fσ

0 is the corresponding Fermi-liquid constant, whereas
in quasi-one-dimensional systems the condition reads as
Fσ

0 � −0.75. Let us focus on 2D systems with Coulomb
interaction, for which the condition is less restrictive. Both
numerical and experimental results for Fσ

0 are available in the
literature. In general, Fσ

0 is a function of the gas parameter
rs = √

2e2/εh̄vF, where ε is the static dielectric constant
and vF the Fermi velocity. To get an estimate for typical
values of rs to be expected in antidot array experiments, we
take vF ≈ 3 × 105 m/s, which was reported in Ref. 30 for
antidot arrays fabricated from GaAs/AlGaAs heterostructures.
Together with the dielectric constant for GaAs ε ≈ 13, we
obtain rs ≈ 0.8. In Ref. 46, the constant Fσ

0 for a given gas
parameter rs was extracted from experimental data using the
results for the interaction corrections to conductivity.4,9,26,47

For systems with rs ≈ 1, typical values of Fσ
0 were found

to be of the order of −0.35. This seems consistent with
numerical results obtained in Ref. 48, were systems with
moderately large rs were analyzed. For the maximal value
of rs = 5 considered in this paper, the Fermi-liquid constant
decreased further down to Fσ

0 = −0.5. Considerably larger
negative values up to Fσ

0 ≈ −0.7 were inferred for systems
with rs ≈ 22 in Ref. 49. We take this as evidence that 2D
systems with sufficiently strong triplet channel interactions
are realizable, provided the additional antidot structure may
be superimposed. Relevant values of the gas parameter rs are
likely in the range of rs ≈ 3–5.
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APPENDIX A: DETAILS OF THE
SEMICLASSICAL CALCULATION

1. Sum rule

Here, we show how to derive the sum rule Eq. (11). We
start by noticing that

A2
α =

∣∣∣∣∣det

(
∂2Sα

∂r′∂r
∂2Sα

∂r′∂ξ

∂2Sα

∂ξ∂r
∂2Sα

∂ξ∂ξ

)∣∣∣∣∣ =
∣∣∣∣∣det

(
∂p′

α

∂r
∂p′

α

∂ξ
∂τα

∂r
∂τα

∂ξ

)∣∣∣∣∣ . (A1)

Hence, we may write∑
α:r′→r;ξ

A2
αf (p′

α,pα,τα)

=
∫ ∞

0
dt

∫
dp′ ∑

α:r′→r;ξ

δ(t − τα)δ(p′ − p′
α)f (p′,pα,t)

×
∣∣∣∣ det

(
∂r
∂p′

∂ξ

∂p′
∂r
∂t

∂ξ

∂t

)∣∣∣∣
−1

. (A2)

The determinant serves as a Jacobian for the transformation
(t,p′) → (ξ,r):

∑
α:r′→r;ξ

δ(t − τα)δ(p′ − p′
α)f (p′,pα,t)

∣∣∣∣∣det

(
∂r
∂p′

∂ξ

∂p′

∂r
∂t

∂ξ

∂t

)∣∣∣∣∣
−1

= δ{ξ − H [r,p(r′,p′; t)]}δ[r − r(r′,p′; t)]
× f [p′,p(r′,p′; t),t], (A3)

where [r(r′,p′; t),p(r′,p′; t)] is the phase-space point that
a trajectory originating from (r′,p′) reaches after time t .
After insertion of

∫
dp δ[p − p(r′,p′; t)], we finally arrive at

Eq. (11).

2. Convolution rule

In this Appendix, we derive the convolution rule∫
dr1dr2GA(r′,r2; ξ )GA(r2,r1; ξ − ω)GA(r1,r; ξ )f (r1 − r2)

= − 1

h̄2

2π

(−2πih̄)3/2

∑
α:r′→r;ξ

Aαe−iSα/h̄

∫ τα

0
dt

×
∫ t

0
dt ′f [rα(t) − rα(t ′)]eiω(t−t ′)/h̄, (A4)

where f (r) is an arbitrary function. (Here, we omitted
contributions from stationary configurations of trajectories,
which can not be connected to a single trajectory. For the
calculation of the interaction correction, such contributions
drop out upon pairing with the retarded trajectory.)

To this end, we first prove an auxiliary identity for the
stability amplitudes. Hereto, we consider a trajectory α that
connects r′ with r. Further, let r1 be a point on trajectory α,
and α′ (α′′) be the part of trajectory α connecting r′ with r1 (r1

with r). The stability amplitude Aα can be then written as39

A2
α = 1

v2
F

∣∣∣∣∂2Sα(r,r′)
∂r⊥∂r ′

⊥

∣∣∣∣ = 1

v2
F

∣∣∣∣∂p′
⊥α

∂r⊥

∣∣∣∣ ,
(A5)

p′
⊥α(r,r′) = −∂Sα(r,r′)

∂r ′
⊥

,

where vF is the Fermi velocity and r⊥ (r ′
⊥) denote displace-

ments perpendicular to the trajectory α. The last equation
implicitly defines r⊥α(r ′

⊥,p′
⊥). We then introduce

Bα = −
(

∂r⊥α

∂p′
⊥α

)
r ′
⊥

,

Bα′ = −
(

∂r⊥1α′

∂p′
⊥α′

)
r ′
⊥

, (A6)

Bα′′ = −
(

∂r⊥α′′

∂p⊥1α′′

)
r⊥1

,

such that A2
α = v−2

F

∣∣B−1
α

∣∣, A2
α′ = v−2

F

∣∣B−1
α′

∣∣, A2
α′′ =

v−2
F

∣∣B−1
α′′

∣∣. Then, the following identity holds:

Bα = Bα′Bα′′

(
∂2Sα′(r1,r′)

∂r2
⊥1

+ ∂2Sα′′ (r,r1)

∂r2
⊥1

)
. (A7)
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For the proof of Eq. (A7), we note that Bα measures the change of the final coordinate of α induced by a small change of the
initial momentum. When we consider α to be composed by α′ and α′′, a small change of the initial momentum leads to a change
of the intermediate coordinate and momentum, which results in a change of the final coordinate,(

∂r⊥α

∂p′
⊥α

)
r ′
⊥

=
(

∂r⊥α′′

∂p⊥1α′′

)
r⊥1

(
∂p⊥1α′

∂p′
⊥α′

)
r ′
⊥

+
(

∂r⊥α′′

∂r⊥1α′′

)
p⊥1

(
∂r⊥1α′

∂p′
⊥α′

)
r ′
⊥

=
(

∂r⊥α′′

∂p⊥1α′′

)
r⊥1

(
∂r⊥1α′

∂p′
⊥α′

)
r ′
⊥

[(
∂p′

⊥α′

∂r⊥1α′

)
r ′
⊥

(
∂p⊥1α′

∂p′
⊥α′

)
r ′
⊥

+
(

∂r⊥α′′

∂r⊥1α′′

)
p⊥1

(
∂p⊥1α′′

∂r⊥α′′

)
r⊥1

]

=
(

∂r⊥α′′

∂p⊥1α′′

)
r⊥1

(
∂r⊥1α′

∂p′
⊥α′

)
r ′
⊥

[(
∂p⊥1α′

∂r⊥1α′

)
r ′
⊥

−
(

∂p⊥1α′′

∂r⊥1α′′

)
r⊥

]
. (A8)

The last line yields Eq. (A7).
In a similar fashion, one verifies that

Bα′ = BαBα′′

(
∂2Sα′′ (r,r1)

∂r2
⊥

− ∂2Sα(r,r′)
∂r2

⊥

)
. (A9)

The identity we need for the derivation of the convolution
rule (A4) involves the partitioning of a single trajectory α into
three trajectories α′ (r′ → r1), α′′ (r1 → r2), and α′′′ (r2 → r).
In this case, we have

Bα = Bα′Bα′′Bα′′′

[ (
∂2Sα′

∂r2
⊥1

+ ∂2Sα′′

∂r2
⊥1

) (
∂2Sα′′

∂r2
⊥2

+ ∂2Sα′′′

∂r2
⊥2

)

−
(

∂2Sα′′

∂r⊥1∂r⊥2

)2 ]
. (A10)

To see this, one introduces the trajectory α̃ as connection of α

and α′ and makes use of Eqs. (A7) and (A9).
We now turn to the proof of the convolution rule (A4).

Hereto, we define

K(r,r′; ω) =
∫

dr1dr2δ(r1 − r2 − a)GA(r′,r2; ξ )

×GA(r2,r1; ξ − ω)GA(r1,r; ξ ), (A11)

where a is arbitrary, but fixed. With the abbreviation r̃1 =
r1 − a we write

K(r,r′; ω) =
∫

dr1GA(r′,r̃1; ξ )GA(r̃1,r1; ξ − ω)GA(r1,r; ξ ).

(A12)

We then insert the semiclassical expressions for the Green’s
functions which expresses the former equation as a sum over
trajectories α′ (from r′ to r̃1), α′′ (from r̃1 to r1), and α′′′ (from
r1 to r).

The integration over r1 is carried out within stationary phase
approximation. Here, we only take into account stationary
phase configurations, where α′, α′′, and α′′′ are connected
to a single trajectory. Other configurations play no role for
the calculation of the conductance since the three advanced
trajectories are paired with a single retarded trajectory. Hence,
the convolution K may be written as a sum over trajectories
α connecting r′ with r and a sum over points r(0)

1 , for which
α first passes through r̃(0)

1 = r(0)
1 − a and then through r(0)

1 .
Deviations 
r1 = (
x1,
y1) from r(0)

1 may be parametrized

as


r⊥1 = − sin(θ )
x1 + cos(θ )
y1,
(A13)


r̃⊥1 = − sin(θ̃)
x1 + cos(θ̃ )
y1,

where θ (θ̃ ) is the angle of the momentum of trajectory α at
r(0)

1 (r̃(0)
1 ), and in turn 
r⊥1 (
r̃⊥1) represent perpendicular

displacements of trajectory α at r(0)
1 (r̃(0)

1 ). We then expand the
sum of the actions of trajectories α′, α′′, and α′′′ up to second
order in 
r1:

Sα′ (r̃1,r′; ξ ) + Sα′′ (r1,r̃1; ξ − ω) + Sα′′′ (r,r1; ξ )

= Sα(r,r′; ξ ) − ωτ + 
S(
r1), (A14)

where τ is the duration of α between r̃(0)
1 and r(0)

1 , and 
S(
r1)
is given by


S(
r1) = 1

2

[
∂2Sα′

(
r̃(0)

1 ,r′)
∂r̃2

⊥1

+ ∂2Sα′′
(
r(0)

1 ,r̃(0)
1

)
∂r̃2

⊥1

]

r̃2

⊥1

+ 1

2

[
∂2Sα′′

(
r(0)

1 ,r̃(0)
1

)
∂r2

⊥1

+ ∂2Sα′′′
(
r,r(0)

1

)
∂r2

⊥1

]

r2

⊥1

+
[

∂2Sα′′
(
r(0)

1 ,r̃(0)
1

)
∂r̃⊥1∂r⊥1

]

r⊥1
r̃⊥1, (A15)

where as a consequence of energy conservation only perpen-
dicular displacements need to be considered. The integration
over 
r1 can then be accomplished, and using Eq. (A10) we
get

K(r,r′; ω) =
(

2π

(2πih̄)3/2

)3

(2πih̄)
∑

α:r′→r;ξ

∑
{r(0)

1 }

× 1

v2
F

1

| sin(θ − θ̃ )|Aαe−i(Sα−ωτ )/h̄,

where the factor |sin(θ − θ̃ )|−1 originates from the Jacobian of
the transformation (A13). [A possible phase shift from taking
the square root of Eq. (A10) is needed to restore the correct
Maslov index. For our calculation, however, the Maslov index
plays no role and we drop it in our expressions.]

On the other hand, we have∫ τα

0
dt

∫ t

0
dt ′δ(2)[rα(t) − rα(t ′) − a] =

∑
{r(0)

1 }

1

v2
F

1

|sin(θ − θ̃ )| .
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FIG. 10. (Color online) Schematic drawing of an encounter,
formed by the trajectories α, β, γ , and δ, with time scales and
phase-space points as described in the main text.

With that, we finally obtain

K(r,r′,ω) = − 1

h̄2

2π

(2πih̄)3/2

∑
α:r′→r;ξ

Aαe−iSα/h̄

×
∫ τα

0
dt

∫ t

0
dt ′δ(2)[rα(t) − rα(t ′) − a]eiω(t−t ′).

(A16)

Multiplying with f (a) and integrating over a then yields
Eq. (A4).

3. Summation over classical trajectories involving
a small-angle encounter

The summation over classical trajectories with a small-
angle encounter as given in Fig. 4 is performed using the
procedure of Refs. 14 and 23. We here outline the main points
of this calculation.

The four trajectories α (from r′ to r2), β (from r1 to r),
γ (from r′ to r), and δ (from r1 to r2) are piecewise paired
as shown in Fig. 10. We start by noting that the choice of
the retarded trajectories α and β fully specifies the advanced
trajectories γ and δ since the linearized chaotic dynamics
allows for precisely one unique solution of a trajectory that
satisfies the initial and final conditions required for the pairing
shown in Fig. 10. Moreover, the products of the stability
amplitudes are equal, AαAβ = Aγ Aδ , so that the product of
four Green’s functions required for the calculation of δGAA

can be written as

GR(r,r1; ξ )GA(r1,r2,ξ − ω)GR(r2,r′; ξ )GA(r′,r; ξ )

= 1

2πh̄3

∑
α:r′→r2;ξ

∑
β:r1→r;ξ

A2
αA2

βei
S/h̄eiωτδ/h̄, (A17)

where 
S is the action difference Sα + Sβ − Sγ − Sδ . The
summation over trajectories α and β is restricted to those
trajectories that undergo (at least) one small-angle encounter.

The action difference 
S has two contributions: One con-
tribution from the length difference of the retarded trajectories
α and β versus the advanced trajectories γ and δ, and one
contribution from the different energy ξ − ω associated with
the trajectory δ. The former contribution has been calculated in
Refs. 50 and 51 and equals seue; the latter contribution equals
ωτδ , where τδ is the duration of the trajectory δ. Note that the
product seue is independent of the position of the phase-space
point Xe along the encounter.

The trajectories α and β are enumerated by first picking a
phase-space point Xe on the trajectory α. The Poincaré surface
of section at this point may be parametrized with stable and
unstable phase-space coordinates, which are denoted se and ue,
respectively. Moving the Poincaré surface of section along the
trajectory, the unstable (stable) coordinate grows (shrinks) as
e±λt , where λ is the Lyapunov coefficient. We choose the origin
of the coordinate system such that the trajectory α pierces the
Poincaré surface of section at coordinates (se,ue) = (0,0). The
point Xe is part of an encounter formed by trajectories α and
β, if β passes through the Poincaré surface of section at phase-
space distance |se| < c and |ue| < c, where c is a cutoff scale,
below which the chaotic classical motion can be linearized.
(One can always simultaneously rescale the coordinates s and
u, such that the cutoff scale is the same for both coordinates.)
The cutoff scale c enters the final results in the combination
ln(c2/h̄) only, so that the precise value of c is unimportant,
as long as c represents a scale characteristic of the classical
dynamics. One verifies that the choice of the phase-space point
Xe on the trajectory α and of the phase-space coordinates for
the trajectory β also specify the two remaining trajectories γ

and δ. Indeed, since γ is paired with α before the encounter,
and with β after the encounter, it pierces through the Poincaré
surface of section at the same unstable coordinate as β and the
same stable coordinate as α. Similar considerations apply to
the trajectory δ. The summation over trajectories α and β is
then written as

∑
α:r′→r2;ξ

∑
β:r1→r;ξ

A2
αA2

β . . .

=
∫

dpξ dp′
ξ dp1,ξ dp2,ξ

∫
dXe

∫ c

−c

dsedue

∫ ∞

0
dτα

×
∫ ∞

0
dτβ

∫ τα

0
dtα

∫ τβ

0
dtβ

1

tenc

×ρξ (r′,p′ → Xe; τα − tα)ρξ (Xe → r2,p2; tα)

×ρξ (r1,p1 → X∗
e ; tβ)ρξ (X∗

e → r,p; τβ − tβ) . . . ,

(A18)

where X∗
e is the phase-space point located at phase-space

displacement (se,ue) from X and the dots indicate an arbitrary
function of the end-point coordinates of the trajectories α

and β. The time tenc denotes the duration of the encounter.
The factor tenc in the denominator accounts for the fact
that Xe can be chosen anywhere along the encounter. The
ends of the encounter are determined by the condition that
max(|s|,|u|) = c, or that one of the trajectories involved ends,
whichever occurs first. Since the phase-space coordinates s

and u decrease/increase exponentially upon proceeding along
the trajectories α and β, with a rate given by the Lyapunov
exponent λ, one finds that tenc is given by the expression

tenc = min[λ−1 ln(c/|se|),tβ] + min[λ−1 ln(c/|ue|),tα].

(A19)

The four different scenarios, depending on whether tβ and
tα are larger or smaller than λ−1 ln(c/|se|) and λ−1 ln(c/|ue|),
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respectively, correspond to the four contributions to δG
F,2a
AA –

δG
F,2d
AA to δG

F,2
AA. The same situation also occurs in the

calculation of the shot noise (see Refs. 52 and 53).
The next step in the calculation is to replace the exact

trajectory densities ρξ by the coarse-grained ones. In order
to account for correlations inside the encounter, we introduce
phase-space points X and X′ at the beginning and end of the
encounter, if the phase-space points X1 and X2 associated with
the interaction position are not inside the encounter. Outside
the encounter region, we may replace the product of the exact
trajectory densities by the product of the classical propagators,
whereas inside the encounter only a single classical propagator
remains. After coarse graining, the classical propagators are
insensitive to small phase-space difference between Xe and X∗

e ,
so that we may replace X∗

e by Xe. As a result, the integration
over se and ue and the integration over Xe can be performed
separately. The integration over Xe can be performed using a
convolution rule for the classical propagators∫

dXeP (X2,Xe; t2)P (Xe,X1; t1) = P (X2,X1; t1 + t2).

(A20)

The contribution δG
F,2a
AA is then expressed as Eq. (22) with K1

replaced by

K2a(X1,X2; ω)

= −
∫

dX dX′Pin(X)P (X,X1; ω)P (X2,X′; ω)Pout(X′)

× 1

2πh̄

∫ c

−c

ds duP (X′,X; tenc)eiωtenc/h̄
eisu/h̄

tenc
, (A21)

where P (X,X′; ω) is the Fourier transform of P (X,X′; t) [see
Eq. (29)]. The encounter time for this contribution is given
by tenc = λ−1 ln(c2/|su|). In order to perform the integration
over the phase-space coordinates s and u, we make use of the
integral identity

1

2πh̄

∫ c

−c

ds du
eisu/h̄

tenc
f (tenc) = ∂

∂τE
f (τE), (A22)

which holds for an arbitrary function f (t) which is a slow
function of its argument on the time scale λ−1. In this equation,
the Ehrenfest time is defined as

τE = λ−1 ln(c2/h̄). (A23)

One notes that this definition is consistent with Eq. (1) of the
main text since c2 is a classical action characteristic of the
classical motion, which can also be expressed as c2 = pFa,
where a is a length scale characteristic of the classical motion.
The equivalence to Eq. (1) then follows since pF = 2πh̄/λF.
With the equality (A22) the result (25) of the main text follows
immediately.

To prove Eq. (A22), one makes use of the identity

2

π

∫ e−λt

0
dx

sin x

x
= θ (−t), (A24)

where the Heaviside step function θ (t) is broadened
on the scale λ−1. Taking derivatives on each side, we

obtain

2λ

π
sin(e−λt ) = δ(t), (A25)

2λ2

π
e−λ(t) cos(e−λt ) = − ∂

∂t
δ(t). (A26)

These equations can be applied to the left-hand side of
Eq. (A22) after writing the integration in terms of positive
s and u and after a variable change that uses tenc and v = s/c

as the integration variables,

1

2πh̄

∫ c

−c

ds du
eisu/h̄

ts + tu
f (ts + tu)

= 2

π

∫ ∞

0
dtenc

∫ 1

e−λtenc

dv
λe−λ(tenc−τE)

v

cos(e−λ(tenc−τE))

tenc
f (tenc)

= 2λ2

π

∫ ∞

0
dtence

−λ(tenc−τE) cos(e−λ(tenc−τE))f (tenc)

= ∂

∂τE
f (τE), (A27)

where we used Eq. (A26) in the last line.
For the contribution δG

F,2b
AA , the encounter is bounded to

the right by the phase-space point X2 of the interaction. In
this case, the encounter time is given by tenc = λ−1 ln(c/|s|) +
tα , where tα can take values between zero and λ−1 ln(c/|u|).
The expression for δG

F,2b
AA is again of the form (22), with K1

replaced by

K2b(X1,X2; ω)

= −
∫

dX Pin(X)P (X,X1; ω)Pout(X2)
1

2πh̄

×
∫ c

−c

ds du

∫ λ−1 ln(c/|u|)

0
dtαP (X2,X; tenc)eiωtenc/h̄

eisu/h̄

tenc
.

(A28)

The integration over s and u in Eq. (A28) is done with the help
of the identity

1

2πh̄

∫ c

−c

ds du

∫ λ−1 ln(c/|u|)u

0
dtα

eisu/h̄

tenc
f (tenc) = f (τE),

(A29)

which is proven by first performing the integrations over s and
u, and then using the identity (A25). The final result is Eq. (26)
of the main text. The derivation of Eq. (27) of the main text is
similar.

Finally, for the fourth and last contribution δG
F,2d
AA , the

encounter is bounded by both phase-space points X1 and X2

of the interaction vertices. The encounter time is here given by
tenc = tα + tβ , where tα and tβ vary between 0 and λ−1 ln(c/|u|)
and between 0 and λ−1 ln(c/|s|), respectively. The expres-
sion for δG

F,2d
AA takes the form (22), with K1 replaced
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by

K2d(X1,X2; ω)

= −
∫

dX Pin(X1)Pout(X2)
1

2πh̄

∫ c

−c

ds du

×
∫ λ−1 ln(c/|s|)

0
dtβ

∫ λ−1 ln(c/|u|)

0
dtα

×P (X2,X; tenc)eiω(tenc)/h̄ eisu/h̄

tenc
. (A30)

The integrations over s and u can be performed with
the help of Eq. (A24) and yield Eq. (28) of the main
text.

APPENDIX B: DETAILS OF THE DISCUSSION

In this Appendix, we add some technical details to the
discussion of Sec. III. The function gm(x) of Eq. (66) can be
cast in the following closed analytic expression:

gm(x) = 8

π2(m2 + x)2
+ 32m2a tanhs

(
a

π
√

x

2

)
π3

√
x(m2 + x)(m2 + ax)2

∣∣∣∣∣
a=1

a→0

+ 24Fσ
0 m2

π2(m2 + x)2
[(

1 + Fσ
0

)
m2 + x

]

−
96b3/2m2 tanhs

(
π

√
x

2
√

b

)
π3

√
x(m2 + x)(bm2 + x)2

∣∣∣∣
b=1+Fσ

0

b=1

, (B1)

where s = ±1 for m even (odd). In the regime τD � τT ,τE,
we may write this as

gm(nτD/τT ) = 8

π2

τ 2
T

τ 2
D

1(
m2 τT

τD
+ n

)2

[
1 + 3Fσ

0

m2 τT

τD

(
1 + Fσ

0

) + n

]

×
[

1 + O
(√

τT

τD

)]
, (B2)

where terms with an additional factor
√

τT /τD ∝ 1
L

correspond
to finite-size corrections and will be neglected.

After replacing the summation over m in Eq. (65) by an
integration, we obtain

δGAA = −4e2

πh

√
τT

τD

∞∑
n=1

e
−n

τE
τT n

(
τE

τT

)5/2

×
[
f1

(
n

τE

τT

)
− f ′

1

(
n

τE

τT

)]
, (B3)

with

f1(x) =
∫ ∞

0
dz

1√
z

1

(z + x)2

[
1 + 3Fσ

0 z

z
(
1 + Fσ

0

) + x

]
e−z.

(B4)

Apart from the prefactor
√

τT /τD, the interaction correction
δGAA is a function of the ratio τE/τT only. The limiting
behavior for small and large ratios τE/τT is given in the main
text.

For the case τT � τE,τD, we replace the summation over n

in Eq. (65) by an integration and find

δGAA = −e2

h

∞∑
m=1

e
−m2 τE

τD

∫ ∞

0
dx

(
1 + τE

τD
x

)
gm(x)e−x

τE
τD .

(B5)

This is a function of the ratio τE/τD only.
For the case of a large two-dimensional antidot array, we use

the residue technique to perform the ω integration of Eq. (73),
and obtain

δGAA = −e2

h

W

L

1

π

∞∑
n=1

e
−n

τE
τT n

τ 2
E

τ 2
T

×
[
f2

(
n

τE

τT

)
− f ′

2

(
n

τE

τT

)]
, (B6)

with

f2(x) =
∫ ∞

0
dz

1

(z + x)2

[
1 + 3Fσ

0 z

z
(
1 + Fσ

0

) + x

]
e−z. (B7)
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