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Abstract

Data warehouses are used to store large amounts of data. This
data is often used for On-Line Analytical Processing (OLAP)
where short response times are essential for on-line decision
support. One of the most important requirements of a data
warehouse server is the query performance. The principal aspect
from the user perspective is how quickly the server processes a
given query: “the data warehouse must be fast”.
The main focus of our research is finding adequate solutions to
improve query response time of typical OLAP queries and
improve scalability using a distributed computation environment
that takes advantage of characteristics specific to the OLAP
context. Our proposal provides very good performance and
scalability even on huge data warehouses.

1 Introduction

In recent years, there has been an explosive growth in the use of databases for
decision support. This was mainly due to the fact that information, one of the most
valuable assets of an organization, can assist in decision making and this way
significantly improve the value of an organization. This phenomenon is a result of
the increased availability of new technologies to support efficient storage and
retrieval of large volumes of data, namely data warehousing and OLAP
applications. Thus, we could define data warehouse as “a repository of data that
has been extracted and integrated from heterogeneous and autonomous
distributed sources” [Kimball96].
Data warehouses usually contain a vast amount of data that must be analyzed and,
OLAP applications provide that analysis, helping in the organizational decision
making process. The success of this kind of support depends heavily on database
systems and correlated analysis tools. Data warehouses and OLAP applications
differ significantly from the traditional database applications. On-line
Transactional Processing (OLTP) systems are oriented towards the access of few
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tuples for read/write access at any time. Data warehouses and OLAP provide a
different context in which huge amounts of data must be processed efficiently and
queries are often complex, but still require interactive response times. In data
warehouse environments the data is used for decision support and large sets of
data are read and analyzed ad-hoc. Most of today’s OLAP applications work on
data warehouses with a centralized structure in which a single database contains
huge amounts of data, which is very expensive from the computation perspective.
Data warehouses tend to be extremely large – the data warehouse of General
Motors, exceeds 1.5 terabytes in size, and contains a fact table with more than 2
billion rows [Gill00] in which queries can take hours to complete. Data
warehouses also tend to grow quite quickly. Therefore, to handle this expansion in
data and processing a highly scalable architecture is vital in a warehouse
environment. In fact, this scalable architecture has to handle very large amounts of
data and at the same time assure interactive response times to OLAP users.
The centralized data warehouse is very expensive because of the large setup costs
and it is not very flexible due to its centralized nature. The use of small data
warehouses (data marts) was the first attempt to solve the problems of space and
performance but data marts are basically stand alone and have data integration
problems in a global data warehouse context.
We propose a round-robin data partitioning approach specially designed for
relational distributed data warehouse environments. This new technique takes
advantage of the specific characteristics of star schemas and typical OLAP query
profile to guarantee optimal load balance of query execution and assure high
scalability. As will be shown in the paper, a huge data warehouse can be
distributed by an arbitrary number of relatively small computers using this
approach, guarantying a scalable and cost effective solution.
The remainder of the paper is organized as follows. Next section contains the
main problems in the field of data warehouse research, and Section 3 outlines the
current knowledge of the problem domain, as well as the state of existing
solutions. Section 4 describes the proposed approach and preliminary results.
Section 5 discusses the identified problems of the approach. Section 6 points out
why our solution is better than existing approaches and Section 7 concludes the
paper and suggests future work.

2 Significant problems in the field of Data Warehouse research

In this section we outline a number of research problems that arise in the
warehousing approach. We classify the open research issues in the data warehouse
field into five groups as identified in [Wu97]:

I. Data warehouse modelling and design
The relational model and the multidimensional model are the main data models
used in data warehousing. However, new design methodologies and design tools
for data warehouses are needed with the appropriate support for aggregation
hierarchies, mapping between the multidimensional and the relational models, and
cost models for partitioning and aggregation that can be used from the early
design stages.



II. Data warehouse architectures
Research into future integration of legacy data warehouses is required, particularly
as many companies are developing data marts of limited scope. Other interesting
architectural issues concern the unbundling/streamlining of relational DBMSs,
since data warehousing does not require full DBMS capabilities, such as,
concurrency control and ACID properties. The data warehouse architecture also
must provide services for efficient storage, retrieval and management of large
amounts of data.

III. Data warehouse maintenance
Data warehouse maintenance issues include data cleansing, initial loading, data
refreshing, data purging and metadata management. Support mechanisms and
metadata management for the resolution of conflicts during data cleansing are
required, as well as parallel loading utilities. Strategies for efficient data
refreshing are also required, as well as clear criteria and cost models for data
removal from the data warehouse.

IV. Operational issues
The data partitioning of a large table into small tables avoid scanning a large table
improving query performance. Partitioning algorithms developed as fragmentation
algorithms for distributed databases need to be re-evaluated for data warehousing.
The set of relational operators must be extended to satisfy the user/application
requirements. These extensions must include efficient mapping between the
multidimensional and the relational worlds. These new operators must be
efficiently implemented and the traditional operators, such as joins, must be re-
implemented in an optimized manner for the warehouse requirements, particularly
to support star joins and to take advantage of special indexing. Other operators
that need re-implementation to take advantage of data warehouse characteristics
are large table scans, which must be parallelized, and partial results must be
usable by multiple queries.

V. Optimization
Research in query optimization that exploits the information available in
aggregation hierarchies and join indexes, as well as issues of space/time trade-offs
for computed views is needed. Additionally, data warehousing has special
indexing requirements that are partially satisfied by bitmap indexes. These require
extensions to deal better with sparsity, and to perform selective indexing, domain
transformations and sub-domain indexing.

Our research work focuses mainly in the operational issues and optimization
topics but is also related to data warehouse architectures and design. In our work
we improve query response time by partititioning data among a set of computers
using a distributed computing environment.  This approach can potentially
achieve linear speedup and can significantly improve query response times.

3 Related work

There are several strategies to improve query response time in the data warehouse
context: indexing techniques, materialized views, parallelism, and partitioning of
data.



Indexing techniques are among the first areas on which a database administrator
will focus when good query performance in a read intensive environment is
critical. Specialized indexing structures offer the optimizer alternatives access
strategies for the time consuming full table scans. One of the most popular index
structures is the B-tree and its derivatives [Comer79]. B+tree indexes are the most
common supported structures in RDBMS, but it is a well-known fact that tree
structures have inconveniences when the cardinality of the attribute is small.
Another class of index structures, the bitmap indexes, try to overcome the
problem by using a bit structure to indicate the rows containing specific values of
the indexed attribute [O’Neil97]. Although essential for the right tuning of the
database engine, the performance of index structures depends on many different
parameters such as the number of stored rows, the cardinality of the data space,
block size of the system, bandwidth of disks and latency time, only to mention
some [Jurgens99].
The use of materialized views (or summary tables) is probably the most effective
way to speedup specific queries in a data warehouse environment. Materialized
views pre-compute and store (materialize) aggregates from the base data
[Chaudury97]. The data is grouped using categories from the dimensions tables,
which corresponds to the subjects of interest (dimensions) of the organization.
Storing all possible aggregates poses storage space problems and increases
maintenance cost, since all stored aggregates need to be refreshed as updates are
being made to the source databases. Many algorithms have been proposed for
selecting a representative subset of the possible views for materialization
[Harinarayan96, Meredith96, Ezeife98], corresponding to the most usual query
patterns. But the main problems associated with materialized views are the
difficulty to know in advance the expected set of queries, the problems of
updating materialized views to reflect changes made to base relations and the
large amount of space required to store the materialized views.
It is worth noting that the techniques mentioned above (indexes and materialized
views) are general techniques that can (and should) be used in the data warehouse
approach proposed in the present paper. In fact, in a distributed environment each
individual machine must also be tuned and optimized for performance.
A large body of work exists in applying parallel processing techniques to
relational database systems with the purpose of accelerating query processing
[Lu94, DeWitt92]. The basic idea behind parallel databases is to carry out
evaluation steps in parallel whenever possible, in order to improve performance.
The parallelism is used to improve performance through parallel implementation
of various operations such as loading data, building indexes and evaluating
queries. One of the first works to propose a parallel physical design for the data
warehouse was [Datta98]. In their work they suggest a vertical partitioning of the
star schema including algorithms but without quantifying potential gains.
Partitioning a large data set across several disks is another way to exploit the I/O
bandwidth of the disks by reading and writing them in a parallel fashion. User
queries have long been adopted for fragmenting a database in the relational,
object-oriented and deductive database models [Ozsu99, Ezeife95, Lim96]. That
is, the set of user queries of a database is indicative of how often the database is
accessed and of the portion of the database that is accessed to answer the queries.
There are several ways to horizontally partition a relation. Typically, we can



assign tuples to processors in a round-robin fashion (round-robin partitioning),
we can use hashing (hash partitioning), or we can assign tuples to processors by
ranges of values (range partitioning).
Most of today’s OLAP tools require data warehouses with a centralized structure
where a single database contains all the data. However, the centralized data
warehouse is very expensive because of great setup costs and lack of structural
flexibility in data storage.
More importantly, “the world is distributed'”: world-wide enterprises operate in a
global manner and do not fit in a centralized structure. Thus, a new paradigm is
necessary. The first step in a new direction was the recent introduction of data
marts, “small data warehouses” containing only data on specific subjects
([Informatica97, HP97]). But this approach doesn’t solve our problems of space
and performance. Data marts provide more flexibility in the distribution of data
but they still consist of static, self-contained units with fixed locations. By
distributing small static portions of data to fixed locations, the system becomes
more flexible, but on the other hand new problems arise, related to intra data mart
communication, especially in what concerns the processing of queries. Many of
today’s data marts are basically stand-alone, because of the unsophisticated and
rudimentary integration in the global data warehouse context.
In spite of the potential advantages of distributed data warehouses, especially
when the organization has a clear distributed nature, these systems are always
very complex and have a difficult global management [Albrecht98]. On the other
hand, the performance of many distributed queries is normally poor, mainly due to
load balance problems. Furthermore, each individual data mart is primarily
designed and tuned to answer the queries related to its own subject area and the
response to global queries is dependent on global system tuning and network
speed.
The proposed approach is inspired in both the distributed data warehouse
architecture and in classical round-robin partitioning techniques. The data is
partitioned in such a way that the query processing load is uniformly distributed
by all the available computers and, at the same time, the need of communication
among computers during the query execution is kept to a minimum.

4  Proposed approach and preliminary results

Before presenting our approach let us briefly review the star schema and some
key aspects of a data warehouse implemented over a relational repository. In
OLTP environments a highly normalized schema offers superior performance and
efficient storage because only a few records are accessed by a particular
transaction. The star schema, provides similar benefits for data warehouses where
most queries aggregate a large amount of data. A star schema, as illustrated in
Figure 1, consists of a large central fact table and several smaller dimension tables
that are related to the fact table by foreign keys.



FACT TABLE

      n rows

PK_Dimension3
Attributes_3

Dimension_3

PK_Dimension4
Attributes_4

Dimension_4

PK_Dimension1
Attributes_1

Dimension_1

PK_Dimension2
Attributes_2

Dimension_2

FK_Dimension1
FK_Dimension2
FK_Dimension3
FK_Dimension4
Numeric Facts

Figure 1: Example of a star schema.

The fact table is the center of a star schema, which has predominantly numeric
data (the facts) such as counts and amounts. The dimension tables have
descriptive attributes, providing information about each row in the fact table.
Typical queries calculate sums, counts, maximums, minimums, etc, by
aggregating the data facts according to attributes of one or more dimensions.
Normally, one or more star schemas compose a data warehouse, each star
corresponding to a business process.
The fact table accounts for most of the space occupied by all the tables in the star
for most of the cases [Kimball96]. However, this table is highly normalized,
which means that it really represents the most effective (concerning storage space)
relational way to store the facts. The dimension tables are very denormalized, but
these tables usually represent a small percentage of the space in the star. The star
schema is also particularly optimized for the execution of complex queries that
aggregate a large amount of data from the fact table.
A star schema provides an intuitive way to represent in a relational system the
typical multidimensional data of businesses.

4.1 Data Warehouse Striping

To solve the problems associated with centralized data warehouses we propose a
new approximation that distributes the data warehouse. Our approach is inspired
in the RAID-3 [Patterson88] scheme, and that is why we call it data warehouse
striping (DWS). In fact, the small size of the chunks (strips) used in RAID-3
assures that any disk access is uniformly distributed by all the disks of the array,
improving the disk access speed by the number N of disks in the array. In a
similar way, one major goal of data warehouse striping is to improve query
execution speed by the number N of computers in a DWS system.
In the data warehouse striping approach, the data of each star schema is
distributed by an arbitrary number of computers that have the same star schema of
the equivalent centralized version (see Figure 2).

n rows  / NComputers

Dimension_1 FACT TABLE

Dimension_2

Dimension_3

Dimension_4

Computer 1

n rows  / NComputers

Dimension_1 FACT TABLE

Dimension_2

Dimension_3

Dimension_4

Computer 2 …

n rows  / NComputers

Dimension_1 FACT TABLE

Dimension_2

Dimension_3

Dimension_4

Computer N

Figure 2: Data Warehouse Striping.



The usually much smaller dimension tables of the star schema are replicated in all
computers that constitute the DWS system. The fact table of equivalent
centralized version is distributed by the fact tables of each computer using a
round-robin partitioning approach. That is, the fact rows are evenly distributed by
the fact tables of each computer. Each computer has 1/N rows of the total amount
of fact rows in the star, with N being the number of computers.
In data warehouse striping the fact tables are disseminated by an arbitrary number
of computers and the queries are executed in parallel by all the computers,
guarantying a nearly linear speedup and significantly improved query response
times. Figure 3 illustrates this process using an example with five computers.

     D1,D2,…Dn         D1,D2,…Dn           D1,D2,…Dn           D1,D2,…Dn            D1,D2,…Dn
     Facts1         Facts2                     Facts3                      Facts4                      Facts5

ResultQuery

Query Distribution and Processing Layer

Figure 3: Distributed query execution using five computers.

Typical queries usually filter rows based on any number of dimensional attributes
and aggregate the corresponding measures from the fact table. By distributing the
often huge fact table (which usually represents more than 90% of the space
occupied by all the tables in the star schema) by several computers, a significant
gain can be achieved in the speed of the query.
The DWS system has the following phases:

1) Distributed loading phase
In this phase the dimensions are replicated in all computers and the
fact tables rows are evenly distributed in a round robin fashion
between all the computers.

2) Query distribution phase
A query is transformed into N partial queries that are executed in an
independent way in each of the N computers. Generically, this phase
distributes the same query to all computers but some types of queries
require query re-writing.

3) Query processing phase
In this phase the partial queries are simultaneously executed in all
computers; this distributed execution is one of the main reasons for the
speedup and superior scalability offered by the approach.



4) Result merging phase
Generically, this phase collects the small partial results from the
computers, “merges” them and delivers the final result to the end user.

The query distribution and processing layer is a software layer that implements
the last three phases described above. The first phase, distributed loading phase, is
independent from the others; it is executed once at the beginning of the load of the
data warehouse data and only when more data need to be added it must be
executed again.

4.2 Research methodology

We have used the APB-1 Benchmark of the OLAP Council [APB98] to validate
our distributed data warehouse. The use of this benchmark allows other
researchers to compare our results.
The APB-1 benchmark simulates a realistic On-Line Analytical Processing
(OLAP) business situation that exercises server-based software and a simplified
star schema is illustrated in figure 4.

Customer_level
Product_level
Channel_level
Time_level
UnitsSold
DollarSales
DollarCost

ACTVARS

1.239.300 rows

Store_level
Retailer_level

    900 rows

CUSTLEVEL

Code_level
Class_level
Group_level
Family_level
Line_level
Division_level

    9.000 rows

PRODLEVEL

Base_level
All_level

    9 rows

CHANLEVEL

Month_level
Quarter_level
Year_level

    24 rows

TIMELEVEL

Figure 4: APB-1 simplified star schema.

The experimental setup was made in a PC environment, where all the computers
have the same characteristics and are linked together in an Ethernet network. The
fact table (ACTVARS) is evenly distributed by the five computers, where each one
of them received 247,860 fact rows. The dimension tables (PRODLEVEL,
CUSTLEVEL, TIMELEVEL and CHANLEVEL) are replicated in all five computers.

4.3 Preliminary results

We have made some experiments comparing the performance using one and five
computers with the same characteristics. The results with one computer (1PC)
simulate the centralized data warehouse and 5PC is data warehouse striping
applied to five computers. The results of figure 5 illustrate the case of using any



subset of the aggregate functions sum, count, max and min with this type of
query:

select aggregate_function(unitssold) from actvars

D ata W arehouse S trip ing
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Figure 5. Results for simple fact aggregation.

From the figure we measure an average gain of 4.71 times between using one
computer (1PC) and with DWS using five computers (5PC). This near optimal
speedup is explained by the fact that the partial queries only access a small part of
the fact table. We also tested data warehouse striping with more realistic queries
like the following:

select p.division_level, count(dollarsales), sum(a.unitssold)
from actvars a, prodlevel p, timelevel, custlevel, chanlevel
where
< ... join conditions ... >
group by  p.division_level
order by p.division_level

Figure 6: Example of 4-join query.

This query makes a join of the fact table with all four dimensions. This is a more
realistic decision support query and the figure 7 illustrates the results obtained.
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Figure 7: Results using a 4-join query.



The first two columns of figure 7 shows the result of the query of figure 6
excluding the group by and order by portion of the query, while the last ones
depict the results of the query as is. In this case we have a potential gain of about
4.75 times using five computers, near the optimal value of 5. This could be
explained by the gain obtained by distributing the 4-join between our five
computers, meaning that when we distribute the data we are working on more
manageable data sets.

5  Identified problems

The proposal seems to provide a very promising contribution to the scalability and
efficient processing of huge data warehouses. However, we have identified some
problems that must be dealt with:
� Query distribution phase

♦ Queries that contain aggregation functions such as AVERAGE,
STANDARD DEVIATION or VARIANCE must be transformed into new
queries. For example an average function is transformed into SUM and
COUNT functions.

� Result merging phase
♦ For some simple aggregating functions such as sums, or counts the

layer collecting the results simply has to sum the partial results. But,
queries that returns more than one row (e.g with group by predicates)
also require post-processing in the merging phase.

♦ Correlated queries also pose difficulties.
These problems that were identified must be dealt within the Query

Distribution and Processing software layer that is currently been developed.

� Big dimensions
Typically, dimensions will be small in size. However, there are exceptions to
this rule, in which case the space overhead becomes more significant.

6  Contributions

The proposed DWS architecture is scalable to support gigabytes or even terabytes
of information, solving the traditional problems of data warehouses related to
heavy storage loads and performance problems. As the need for additional data
stores arises, only additional computers need to be added. The problem of
scalability is pointed out by Jim Gray, in his Turing Lecture Award as the first
long range IT systems research goals [Gray99].
We think that our proposal for distributed data warehousing affords several
advantages to businesses, including suppliers and distributors. First and foremost,
it is a cost-effective solution. By initially investing in a local Windows NT server,
a department could build a small individual data store that could later be
connected to additional ones, forming a “distributed” data warehouse. Instead of
undertaking the painstaking task of integrating them all into one central store, the
two or more could be virtually combined using network hardware and software.



The main contributions of this work are the following:
• A new approach for improving query response time in data warehouses named

data warehouse striping. DWS can potentially achieve linear speedup and can
significantly improve query response times.

• A simple but efficient algorithm for distributing the fact table solving the
problems posed by its large volume.

• Takes advantage of the availability and low cost of microcomputers to
interconnect these computers into networks which provide the distributed and
parallel processing capabilities needed for handling very large data
warehouses.

• This modular approach can be incorporated into a relational DBMS without
significant modifications.

This technique also has the following advantages:
• Potential gains in performance;
• Large scalability;
• Approximately ideal load balancing between the processors;
• Reduction in equipment price because we could choose computers with the

best cost/performance relation;
• Takes advantages of star schema characteristic of data warehouses;

7  Future work

The approach we have presented is preliminary, leaving open some issues. Future
work in this area includes the implementation of software layer that handles the
partial results and sends the result to the end user. We intend to test the approach
increasing the size of the APB-1 Benchmark and using a different number of
computers. It is also important to test the idea using another data set like
benchmark TPC-H [TPC99].
Another future direction is to explore some peculiarities of the multidimensional
schema to improve our partitioning. We are also working on other partition
strategies such as vertical partitioning of the fact table according to its
dimensions.
The availability of computers that form a distributed data warehouse is a factor of
prior importance. We are studying strategies in order to make the DWS system
robust enough to cope with the momentarily unavailability of one of more
computers.
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