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We study interaction-induced backscattering in clean quantum wires with adiabatic contacts exposed to a
voltage bias. Particle backscattering relaxes such systems to a fully equilibrated steady state only on length scales
exponentially large in the ratio of bandwidth of excitations and temperature. Here we focus on shorter wires
in which full equilibration is not accomplished. Signatures of relaxation then are due to backscattering of hole
excitations close to the band bottom which perform a diffusive motion in momentum space while scattering
from excitations at the Fermi level. This is reminiscent to the first passage problem of a Brownian particle and,
regardless of the interaction strength, can be described by an inhomogeneous Fokker-Planck equation. From
general solutions of the latter we calculate the hole backscattering rate for different wire lengths and discuss
the resulting length dependence of interaction-induced correction to the conductance of a clean single channel
quantum wire.
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I. INTRODUCTION

The study of equilibration in many-particle quantum sys-
tems has moved into the focus of recent research interest [1,2].
This interest has been partially driven by the impressive
experimental progress in realizing and manipulating many-
particle quantum systems. One remarkable example is the
recent cold atom realization of the Tonks-Girardeau gas,
which allows one to study the suppression of relaxation in
an integrable many-body system [3].

Clean mesoscopic quantum wires provide another example
of systems in which equilibration is strongly suppressed [4].
Specifically, in clean single channel quantum wires equilibra-
tion is due to backscattering of excitations which occur at
energies of the order of their bandwidth � [5–9]. As a conse-
quence, the equilibration rate displays activated temperature
dependence, τ−1

eq ∝ e−�/T and, when exposed to a finite volt-
age bias, a fully equilibrated steady state only occurs in wires
exceeding an exponentially large length scale �eq ∝ e�/T .

In shorter wires, L � �eq, effects of equilibration on
electrons at the Fermi level can be neglected and signatures of
relaxation are due to backscattering of particles close to the
band bottom [10,11]. The key process for relaxation in this
case is one in which a thermally activated hole overcomes,
as it scatters from excitations at the Fermi level, a barrier of
energetically unfavorable states at the band bottom via random
small steps in momentum space. This picture of a Brownian
particle applies regardless of the interaction strength and thus
opens the possibility to study equilibration of one-dimensional
fermions beyond the weak interaction regime.

Strongly interacting electrons are commonly described
within the Luttinger liquid framework and previous work has
studied scattering of a Brownian particle in a homogeneous
Luttinger liquid [12]. The focus of the present paper is on the
equilibration in voltage biased quantum wires. Here, the nature
of the specific boundary conditions requires one to address a
space-dependent, i.e., inhomogeneous problem.

The outline of the paper is as follows. Section II introduces
the backscattering rate of holes and reviews how a finite rate
affects the conductance of the wire. In Section III we discuss
the relevant kinetic equation. Solutions of the latter, the result-
ing backscattering rate, and interaction-induced correction to
the conductance of the wire are discussed in Secs. IV and V.
Details of the calculations are relegated to the appendices.

II. BACKSCATTERING RATE

Consider interacting electrons in a clean one-dimensional
quantum wire adiabatically connected to two-dimensional
reservoirs via fully transparent contacts. A nonequilibrium
situation arises when reservoirs at left and right contacts are
biased by a finite voltage V . Then, right- and left-moving
electrons injected into the wire from the left and right
reservoirs, respectively, are at different equilibria (see Fig. 1).
In the absence of interactions the conductance of the wire reads

G0 = Gq(1 − e−μ/T ), (1)

where Gq = 2e2/h is the quantum of conductance, and μ is
the chemical potential. Accounting for interactions within the
Luttinger liquid framework, the conductance of a finite wire
remains Gq [13–15]. While electrons inside a realistic voltage
biased wire relax towards a new steady state, excitations within
the Luttinger liquid model have an infinite lifetime. To study
the effects of equilibration on finite temperature transport
coefficients, one thus has to go beyond the Luttinger liquid
model. As we discuss below, this can be accomplished even if
interactions are strong.

Taking into account relaxation into a new steady state, the
latter can be characterized in terms of a local backscattering
rate ṅR(x) of fermions. In the limit of weak interactions,
nR(x) = 2

L

∑
p>0 fp,x is the density of right-moving electrons.

The dot here and in the following refers to the total time
derivative, fp,x is the Fermi distribution of (weakly interacting)
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FIG. 1. One-dimensional quantum wire of length L, adiabatically
connected to two-dimensional reservoirs which are kept at different
equilibria characterized by chemical potentials μL/R = μ ± eV/2.
Right- and left-moving electrons enter the wire from different
reservoirs and relax towards a new equilibrium state through
interaction-induced backscattering of particles.

electrons, and the factor 2 is due to spin degeneracy. The total
backscattering rate of electrons is then ṄR = ∫ L/2

−L/2 dx ṅR(x)
and a finite rate results from backscattering of highly excited
holes close to the band bottom (see Fig. 2).

The above picture readily generalizes to strong interactions.
Indeed, one can extend the concept of a hole excitation to
arbitrary interaction strengths by noting that for a system
with concave spectrum the lowest energy excitation at a given
momentum Q is a hole [2,16]. Even though interactions renor-
malize its spectrum εQ, the hole remains a spin-1/2 excitation
with a twofold degeneracy of the energy levels protected
by spin-rotation symmetry. The energy spectrum is periodic,
εQ = εQ+2pF

, and quasimomenta of hole excitations may thus
be restricted to the first Brillouin zone |Q| < pF . Building
on this observation, a backscattering event corresponds to an
umklapp process in which the highly excited hole crosses the
edge of the Brillouin zone. Notice here that the edge of the
Brillouin zone corresponds to the band bottom of the spectrum
of the noninteracting fermions, and both terms will be used

FIG. 2. Left: Spectrum of weakly interacting electrons. Re-
laxation at weak interactions occurs via three-particle scattering
processes in the course of which a highly excited hole at the band
bottom is backscattered. Right: The concept of backscattering of a
highly excited hole also applies at strong interactions. The energy
of a hole excitation εQ is shown as a function of its momentum
Q. First Brillouin zone |Q| < pF corresponds to the momentum Q

of the hole measured from the nearest Fermi point. As a result of
many collisions with low-energy bosonic excitations the latter may
increase its momentum Q and enter the second Brillouin zone, after
which it is more likely to fall toward Q = 2pF than to return to the
vicinity of Q = 0. Each backscattering event thus corresponds to an
umklapp process in which a highly excited hole crosses the edge of
the Brillouin zone (dashed lines).

synonymously below (see also Fig. 2). In particular, in both
pictures the relaxation is due to processes taking place at the
bottom of the band, i.e., involving highly excited holes. To
simplify notation, in the subsequent discussion instead of the
momentum of the hole Q measured from the nearest Fermi
point we will use the momentum of the missing electron near
the bottom of the band, p = pF sgn(Q) − Q.

Regardless of the interaction strength the total backscatter-
ing rate of holes is calculated in terms of the hole distribution
gp,x ,

ṄR = −2
∫ L/2

−L/2
dx

∑
p>0

ġp,x . (2)

In the short wires considered in this paper the backscattering
rate (2) is controlled by momenta close to the band bottom
|p| � pF . We will discuss the hole occupation numbers gp,x

in the following sections. The factor of 2 in Eq. (2) again results
from spin degeneracy, and the minus sign from expressing
the backscattering rate in terms of the hole distribution. A
finite backscattering rate manifests in a reduced steady state
current [6,8],

I = G0V + eṄR, (3)

corresponding to a conductance which differs from that of a
noninteracting system (1),

G = G0 + δG, δG = eṄR

V
. (4)

The backscattering rate (2) recently has been studied in
the limit of relatively short [10,11] (L � �0) and relatively
long (L � �1) wires [6]. While the characteristic scales �0

and �1 are discussed in detail below, we mention here that
the condition L � �0 defines a quasiballistic regime, in which
a hole at the bottom of the band typically scatters at most
once from excitations at the Fermi level during its passage
through the wire. On the other hand, the condition L � �1

defines a homogeneous diffusive regime where the hole suffers
from many collisions granting fully diffusive dynamics in
momentum space on a scale set by temperature. In both cases
the distribution function of the holes at the bottom of the band
is space independent. That is, one effectively deals with a
homogeneous problem and consequently linear dependencies
ṄR ∝ L are found. Slopes, however, are parametrically dif-
ferent in the quasiballistic and homogenous diffusive regimes.
One should therefore expect a nontrivial length dependence
δG(L) in the intermediate regime which at low temperatures
of interest defines a wide region of length scales �0 � L � �1

specified below. As we discuss next, this condition defines an
inhomogeneous diffusive regime, in which the typical range
of diffusive dynamics in momentum space is set by the length
of the wire. This latter is addressed within an inhomogeneous
Fokker-Planck equation.

III. FOKKER-PLANCK EQUATION

The Fokker-Planck equation (FPE) describes the paradig-
matic situation in which a heavy “Brownian” particle prop-
agates in a dilute gas of light particles. Collisions between
heavy and light particles then lead to a diffusive motion of the

165405-2



INTERACTION-INDUCED BACKSCATTERING IN SHORT . . . PHYSICAL REVIEW B 90, 165405 (2014)

former. In our context, the typical momentum δp transferred
in a collision between a hole at the band bottom and thermally
excited electron-hole excitations (plasmons) is restricted due
to Fermi blocking to be of the order of δp ∼ T/v, where v is the
velocity of excitations at the Fermi level. Below we consider
the case in which the dispersion of a hole at the bottom of the
band is quadratic,

εp = � − p2

2m∗ , (5)

with m∗ being the effective mass of the hole. We then encounter
the above situation at low enough temperatures where the
typical momentum of the hole p0 ∼ √

m∗T � δp (see also
Fig. 3).

Formally, we start out from the Boltzmann equation

p

m∗ ∂xgp,x = Ip,x[g] (6)

for the hole distribution gp,x = 1 − fp,x in a steady state
∂tgp,x = 0. Employing the small parameter δp/p0 � 1 one
may perform a Kramers-Moyal expansion and approximate
the collision integral by the Fokker-Planck form

Ip,x[g] � −∂p

{
A(p)gp,x − 1

2∂p[B(p)gp,x]
}
. (7)

The Fokker-Planck operator describes an interplay of drift
and diffusion which sends the system into the new steady
state. Coefficients A(p) and B(p) in Eq. (7) are model specific
functions. In all cases of interest, variation of the coefficient

FIG. 3. A hole in the vicinity of the bottom of the band with
dispersion Eq. (5) performs a random walk in momentum space.
In the process of equilibration the holes reverses its direction. The
backscattering occurs in a sequence of collisions with excitations at
the Fermi level, in which a small relative momentum δp/p0 � 1 is
transferred to the hole. Inset: Evolution of the hole-distribution at
small momenta as the wire length is increased. In the quasiballistic
regime of relatively short wires L � �0 a hole close to the band
bottom suffers on average less than one collision when traversing
the wire. The voltage induced jump at p = 0 in this regime is not
affected by backscattering and remains of the order ∼e−�/T eV/T .
Once L � �0 such hole typically experiences many collisions during
its passage through the wire which turn its motion in momentum
space diffusive. For wires in the inhomogeneous diffusive regime,
�0 � L � �1, holes then redistribute in a momentum range scaling
with the length of the wire as �p ∝ L1/3. Only upon entering the
homogeneous diffusive regime, L � �1, this range saturates at a
momentum-scale set by temperature �p ∼ √

m∗T , implying that the
hole-distribution becomes a smooth function on this scale.

B(p) occurs on a momentum scale much larger than p0,
and it may thus be approximated by a constant B(p) =
B. Employing common statistical mechanics arguments, we
further know that in a homogeneous equilibrium situation,
eV = 0, the dilute hole at the band bottom is described by a
Boltzmann distribution. This fixes A(p) = Bp/(2m∗T ), and
the (dilute) hole distribution thus follows the space-dependent
FPE, also known as Kramers equation [17,18]

p

m∗ ∂xgp,x = B

2
∂p

(
−pgp,x

m∗T
+ ∂pgp,x

)
. (8)

All microscopic details are stored in the single constant B,
which physically speaking has the meaning of a diffusion con-
stant in momentum space. It can be explicitly calculated in the
special cases of either weak or strong interactions [6,9,11,19].
Interestingly, one can also obtain a phenomenological expres-
sion for B in terms of the spectrum of the mobile impurity
(hole) in the Luttinger liquid [7,16,20]. Inhomogeneity in
Eq. (8) is induced by the boundary conditions taking into
account the finite voltage bias. For a dilute hole at the band
bottom the latter can be approximated by a classical Boltzmann
form

gp,−L/2 = eεp/T e−(�+eV/2)/T for p > 0, (9a)

gp,L/2 = eεp/T e−(�−eV/2)/T for p < 0, (9b)

where � is the bandwidth of the hole excitations [see Eq. (5)].
While the above expressions (9a) and (9b) are obvious in

the limit of weak interactions, let us notice that independent of
the interaction strength the occupation of (dilute) high-energy
excitations in a fluid at rest is given by the Boltzmann factor
gQ = e−εQ/T , where εQ is the excitation spectrum. A finite
voltage bias sets the fluid in motion and changes the excitation
spectrum of the Galilean invariant system in the stationary
frame according to εQ → εQ + uQ where u = I/(en) is the
fluid velocity expressed in terms of the electric current I

and the particle density n. Restricting then |Q| � pF to the
first Brillouin zone and measuring momenta from the zone
boundary we substitute Q = pF sgn(p) − p, where for our
purposes |p| ∼ √

m∗T � pF . Substituting further particle
density n = 4pF /h and current I � GqV , one arrives at the
above boundary conditions.

Using Eq. (7) one finds the backscattering rate in the
Fokker-Planck approximation

ṄR = B

h

∫ L/2

−L/2
dx(∂pgp,x)|p=0. (10)

Here (∂pgp,x)|p=0 affords the interpretation of the current
of the holes in momentum space through the band bottom,
resulting in the interaction-induced correction δG(L) to the
conductance of noninteracting electrons [see Eq. (4)].

Before we start a detailed analysis of the Kramers equa-
tion (8), it is instructive to obtain the characteristic scales of
distance �1 and momentum p0 inherent to it. Assuming that
the expression in the left-hand side of Eq. (8) is of the same
order of magnitude as each of the terms in the right-hand side,
we obtain

p0

m∗�1
∼ B

m∗T
∼ B

p2
0

. (11)
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The above conditions are satisfied for p0 ∼ √
m∗T and �1 ∼√

m∗T 3/B. The two scales can be understood as follows.
The boundary conditions (9) for the hole distribution function
are discontinuous at p = 0. In the presence of scattering in
the wire, B 
= 0, the discontinuity smears. Such smearing is
weak in short wires, such that L � �1. In this case the typical
momentum scale of the smeared distribution is small compared
to p0, and grows with the length of the wire. In wires longer
than �1 the smearing reaches its final value p0 dictated by the
temperature of the system and mass of the holes, but not the
scattering rate (see also Fig. 3). We start the detailed analysis
of the Kramers equation (8) with boundary conditions (9) with
the study of the inhomogeneous diffusive regime L � �1.

IV. INHOMOGENEOUS DIFFUSIVE REGIME

To quantify the above qualitative considerations let us
return to Kramers equation (8) and restrict ourselves to
short wires �0 � L � �1 in the diffusive regime and small
momenta, specified momentarily. We then observe that in this
inhomogeneous diffusive regime the Fokker-Planck operator
is dominated by the second derivative “smearing” operator,
and thus a simplified analysis applies where drift is neglected,

p

m∗ ∂xgp,x = B

2
∂2
pgp,x. (12)

Indeed, if the discontinuity of the hole distribution occurs on a
scale �p � √

m∗T in momentum space one may estimate
∂pg ∼ g/�p. Neglecting drift then amounts to dropping
contributions p�p/m∗T � 1 much smaller than unity for
small momenta p ∼ �p of interest [21].

It is convenient to define the length scale �1 =
√

8m∗T 3/B

and to introduce the dimensionless variables,

q = p√
2m∗T

, y = x

�1
, � = L

2�1
, (13)

in terms of which Eq. (12) takes the form(
∂2
q − 2q∂y

)
gq,y = 0. (14)

Let us now insert the separation ansatz

gq,y =
∫ ∞

−∞
da b(a)eayϕa,q, (15)

where the functions ϕa,q satisfy the differential equation(
∂2
q − 2qa

)
ϕa(q) = 0. (16)

Then solutions of Eq. (14) in the linear response regime assume
the form

gq,y =
∫ ∞

0
da b(a)[eayϕa(q) − e−ayϕa(−q)], (17)

where

ϕa(q) = (2a)−2/3Ai((2a)1/3q) (18)

and Ai(x) is the Airy function. In obtaining Eq. (17) we took
advantage of the fact that in the linear response regime the
distribution in the center of the wire gq,0 is antisymmetric in
q. Finally, coefficients b(a) are fixed by imposing the boundary

conditions,

θ (q)gq,−� + θ (−q)gq,� = −e−�/T eV

2T
sgn(q). (19)

For a detailed discussion on this procedure we refer to
Appendix B and move on to the physical implications of our
solution.

Our result for the backscattering rate at �0 � L � �1 has
the form

ṄR = −ζ
2eV

h

(
L

�1

)2/3

e−�/T , (20)

where ζ is a numerical coefficient defined through an integral
equation and numerically found to be ζ ≈ 1.25, as discussed in
Appendix B. The resulting power-law dependence δG ∝ L2/3

in the wire length L is a consequence of the scaling form of
the Kramers equation and can be understood as follows [6].

In combination with Eq. (10) the power-law scaling ṄR ∝
L2/3 implies that the discontinuity at p = 0 in the distribution
of right-moving excitations broadens with the distance x from
the left lead as ∂pgp,x |p↘0 ∼ g/�p ∼ x−1/3. This scaling (and
correspondingly for distribution of left-moving excitations
with distance from the right lead) reflects the diffusive nature
of the backscattering processes. Excitations entering, e.g.,
from the right lead with momentum �p, move to the left,
gradually decrease their velocity in collisions, and eventually
return to the right lead. In order to lose momentum of
order �p an excitation has to experience sufficiently many
collisions in the wire, which requires a time t determined from
the standard diffusion condition (�p)2 ∼ Bt . Propagating
through the wire at a typical velocity �p/m∗ until the turning
point, the excitation thus moves a distance (�p/m∗)t ∼ x

from the lead. Combining these two observations, one obtains
�p ∼ (Bm∗x)1/3, and thus ṄR ∝ ∫

dx(g/�p) ∝ L2/3.
Finally, let us address the crossover from the inhomo-

geneous diffusive to the quasiballistic regime. The latter is
characterized by a length of the wire shorter than the average
length scale on which a hole at the bottom of the band
scatters off low-energy excitations. This regime recently has
been studied by Lunde et al. [10] for weakly interacting
electrons within a perturbative treatment of the Boltzmann
equation. This approach builds on the observation that, as the
typical highly excited hole participates in at most one collision,
backscattering occurs via a single collision and smearing of
the hole distribution near p = 0 can be neglected. Of course,
in this regime the picture of diffusive dynamics in momentum
space underlying the Fokker-Planck approximation does not
apply.

To elaborate this point let us recall that the Fokker-
Planck approximation relies on a gradient expansion of the
collision integral. The latter applies if the typical momentum
exchange q ∼ T/v in a collision is small compared to the
momentum scale �p ∼ (Bm∗x)1/3 on which the distribution
varies. Applying this criterion, we find that the inhomo-
geneous diffusive regime is limited to length scales larger
than �0 ∼ T 3/(v3Bm∗). Notice that �0 ∼ �1(T/m∗v2)3/2 and
at low temperatures T � m∗v2 the result (20) for the in-
homogeneous diffusive regime thus applies within a broad
region. At the crossover L ∼ �0 the characteristic scale
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(L/�1)2/3 ∼ T/(m∗v2), and the backscattering rate

ṄR ∼ −eV

h

T

m∗v2
e−�/T (21)

is thus independent of B.
For weak interactions �1 has been calculated from a

microscopic theory. It was shown to be related to the
typical time scale for a three-particle collision τeee as �1 ∼
(μ/T )1/2vF τeee [6]. Building on this result we find that at weak
interactions the limit of the inhomogeneous diffusive regime
is set by �0 ∼ (T/pF )τeee. Notice that T/pF is the velocity of
a hole which can backscatter in a single three-particle collision
with typical momentum exchange q ∼ T/vF . We thus observe
that in wires of length L � �0 such hole will typically suffer
at most one collision when traversing the wire, i.e., L ∼ �0

also defines the limit below which the quasiballistic regime of
Lunde et al. [10] applies. We thus expect that for L � �0

the perturbative calculation of Lunde et al. holds. Indeed,
their result ṄR ∼ − eV

h
T
μ

L
�0

e−μ/T at L ∼ �0 matches Eq. (21).

The linear scaling ṄR ∝ L here simply reflects the fact that
in the quasiballistic regime the probability of backscattering
linearly increases with the time spent in the wire. As this
linear dependence does not rely on the assumption of weak
interactions, one can use Eq. (21) to extend the result by Lunde
et al. to arbitrary interaction strength,

ṄR ∼ −eV

h

T

m∗v2

L

�0
e−�/T . (22)

Precise determination of the numerical prefactor in Eq. (22)
would require a more careful treatment.

V. CROSSOVER TO HOMOGENEOUS
DIFFUSIVE REGIME

We next discuss how the result for the inhomogeneous diffu-
sive regime �0 � L � �1 crosses over into the homogeneous
diffusive regime �1 � L � �eq. To this end we need to address
the full inhomogeneous Fokker-Planck equation (8) subject to
the boundary conditions (9).

Following the procedure of the previous section we decom-
pose the hole distribution gp,x into a spatially homogeneous
and an inhomogeneous part

gp,x = g0
p + δgp,x, (23)

where the homogeneous part is readily found as [6]

g0
p = eεp/T

[
1 − eV√

2πm∗T 3

∫ p

0
dp′ e−εp′ /T

]
e−�/T . (24)

The homogeneous distribution (24) gives a contribution to the
backscattering rate (10) that scales linearly with the length of
the wire and dominates at L � �1.

To find the inhomogeneous solution we return to the
dimensionless variables q and y in Eq. (13) and start out from
the ansatz

δgq,y = ea(y−q)h(q). (25)

This leads us to the differential equation for h,

∂2
qh − 2(q + a)∂qh + 2

(
−1 + a2

2

)
h = 0, (26)

which for the special values of the parameter, an =
±√

2(n + 1) and n = 0,1, . . . is solved by Hermite polyno-
mials with shifted arguments Hn(q ± an). Using again that in
the linear response regime δgq,y=0 is antisymmetric in q and
noting that Hn(q) = (−1)nHn(−q), the general solution to (8)
reads

δgq,y =
∞∑

n=0

bn[eanyψn(q) − e−anyψn(−q)], (27)

where

ψn(q) = 1√
Nn

e−anqHn(q + an), (28)

and we introduced the normalization constant Nn =√
πan2nn!e2(n+1). Expansion coefficients bn are found from

matching ansatz (27) to the boundary conditions,

θ (q)gq,−� + θ (−q)gq,� = − eV
2T

eq2−�/T [sgn(q) − erf(q)],

(29)

and details of this calculation can be found in Appendix C.
Accounting then for homogeneous and inhomogeneous con-
tributions to the distribution function the backscattering rate
reads

ṄR = −2eV

h

(
L√
π�1

+ I t (1 + OX)−1XI

)
e−�/T , (30)

where we introduced vector I and matrices X, O, respectively,
with coefficients

Im = −ψ ′
m(0)/am, (31)

Xmn = δmn(1 − e−2an�)/2, (32)

Omn =
{

cmm + ∫ ∞
0 dp2 e−p2−a2

mψ2
m(p), m = n

2
a2

m−a2
n

(
a2

mcmn − a2
ncnm

)
, m 
= n,

(33)

and cmn = Imψn(0).
In the inhomogeneous diffusive regime �0 � L � �1 main

contributions to Eq. (30) originate from coefficients with large
index n � �1/L. This allows one to approximate Hermite
polynomials in the eigenfunctions (28) by Airy functions
according to [23] Hn(z) � √

2π (2n)nn1/6Ai(
√

2n1/6(x −√
2n))e− 3

2 n+√
2nz. Reassuringly, upon this substitution one

recovers Eq. (20).
In the opposite limit L � �1 one may approximate 2X � 1

and thus finds the backscattering rate

ṄR = −2eV

h

(
L√
π�1

+ ξ

)
e−�/T , (34)

with a universal offset numerically calculated as ξ � 0.275.
To address the crossover regime at arbitrary ratios L/�1 we

numerically evaluated (30). The resulting backscattering rate
leads to a finite temperature correction to the conductance (1)
shown in Fig. 4. We observe that the characteristic power law
ṄR ∝ L2/3 of the inhomogeneous diffusive regime extends up
to lengths of the wire L � 0.4�1. Once the wire length exceeds
L � 0.8�1, the correction follows the linear length dependence
of the homogeneous diffusive regime with the universal offset
ξ � 0.275. These features hold for weak as well as strong
interaction, and the peculiar power-law dependence of δG
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FIG. 4. (Color online) Length dependence of the interaction-
induced correction to the conductance Eq. (1), found from the
backscattering rate of quantum wires �0 � L � �eq. Solid line
shows the result obtained from numerically solving Eqs. (30)–
(33). Asymptotic results for wires much shorter and much longer
than �1, Eqs. (20) and (34) respectively, are indicated by dashed
and dash-dotted lines. The characteristic scaling δG ∝ L2/3 in the
inhomogeneous diffusive regime holds up to L � 0.4�1, and then
crosses over to the result for the homogeneous diffusive regime with
its linear length dependence and universal ofset ξ � 0.275.

on the wire length is, therefore, characteristic to short clean
quantum wires �0 � L � �eq.

VI. SUMMARY AND DISCUSSION

We have studied the interaction-induced backscattering
rate ṄR in a voltage-biased clean quantum wire, in which
conservation laws suppress relaxation. Our calculations apply
for wires in a broad range of lengths �0 � L � �eq ∝ e�/T ,
which are short in the sense that equilibration has not fully
established, but long enough to guarantee diffusive motion
in momentum space due to interaction-induced collisions. In
these wires, a finite rate ṄR arises due to the backscattering of
mobile holes at the band bottom performing the random motion
of a Brownian particle in momentum space while scattering
from excitations at the Fermi level. Reminiscent of the first
passage problem the dynamics of the hole is described by an
inhomogeneous Fokker-Planck equation.

From solutions of the latter we have derived the wire
length dependence of the interaction-induced correction to the
conductance (1), and found a power -law scaling δG ∝ L2/3

as a characteristic feature of these wires. We have identified
the length scale �0 which separates the diffusive from the
quasiballistic regime. The latter has previously been studied
by Lunde et al. [10] in the limit of weak interactions. We
confirmed that for weakly interacting electrons backscattering
rates in both regimes match at the crossover scale L ∼ �0, and
were able to generalize the results by Lunde et al. to arbitrary
interaction strengths.

Our results hold for weakly as well as strongly interacting
electrons. They depend on the interaction strength via the
bandwidth of excitations �, which sets the activation energy
e−�/T , and effective mass m∗ and diffusion constant B, which
both define the relevant length scale of the problem, �1.

The activation behavior e−�/T dominates the temperature
dependence of the backscattering rate and corresponding
correction to the conductance. An additional temperature
dependence enters via the diffusion constant defining the
preexponential factor. The diffusion constant has been studied
for spin-polarized electrons at arbitrary interactions [6,7,9,20]
where a temperature dependence B ∼ T 5 was found. While
a generalization accounting for spin degree of freedom and
applicable at arbitrary interaction strength is still an open
problem, the strongly interacting limit of a Wigner crystal
has been addressed recently [19]. There, a scaling B ∼ T 3

was found, and a similar result holds at arbitrary interaction
strength [24].
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APPENDIX A: ORTHOGONALITY RELATIONS

The inhomogeneous solution to the FPE (8) is expanded in
functions ψn(±q) which are eigenfunctions of the differential
operator

D = 1

q
∂q

(
1

2
∂q − q

)
, (A1)

i.e., Dψm(sq) = samψm(sq), with s = ±, and are orthogonal
with respect to a weight function w(q) to be determined in the
following way. From the eigenvalue problem it follows that

ψn(sq)Dψm(s ′q) − ψm(s ′q)Dψn(sq)

= (s ′am − san)ψn(sq)ψm(s ′q), s,s ′ = ±. (A2)

Multiplying both sides with a yet to be determined function
w(q), integrating over the entire momentum range and impos-
ing an orthogonality condition∫ ∞

−∞
dq w(q)ψn(sq)ψm(s ′q) = −sδss ′δn,m, (A3)

we find the weight function to be determined by the differential
equation

− 1

2q
∂qw(q) + w(q)

(
1

2q2
− 1

)
= 0, (A4)

resulting in w(q) = qe−q2
.

In the inhomogeneous diffusive regime the differential
operator of interest reads

D = 1

2q
∂2
q , (A5)
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and following the same steps as above one arrives at the
orthogonality relation for Airy functions∫ ∞

−∞
dq qAi(αq)Ai(βq) = − 1

3α
δ(α − β). (A6)

APPENDIX B: DETAILS ON THE INHOMOGENEOUS
DIFFUSIVE REGIME

We give details on the derivation of the expansion coeffi-
cients defining the hole distribution function in (15) and the
backscattering rate in the inhomogeneous diffusive regime.

Coefficients b(a) are found from matching (17) to the
boundary condition

θ (q)gq,−� + θ (−q)gq,� = −e−�/T eV

2T
sgn(q). (B1)

Inserting the explicit form of the general solution gq,y and
expressing ex = cosh x + sinh x one finds∫ ∞

0
da

b(a)

(2a)2/3
{ea� Ai((2a)1/3q) − e−a� Ai(−(2a)1/3q)

− 2�(q) sinh(a�)[Ai((2a)1/3q) + Ai(−(2a)1/3q)]}
= −e−�/T eV

2T
sgn(q). (B2)

Coefficients b(a) can then be extracted using the orthog-
onality relation for Airy functions (A6), i.e., by multiplying
left- and right-hand sides of (B2) with “q Ai((2a0)1/3q)” where
a0 > 0 and integrating over all q. For the right-hand side
of (B2) we may further use that∫ ∞

−∞
dq |q| Ai((2a0)1/3q) = −21/3a

−2/3
0 Ai′(0), (B3)

where we used the defining differential equation for
Airy functions, to calculate, e.g., α3

∫ ∞
0 dq q Ai(αq) =∫ ∞

0 dq ∂2
q Ai(αq) = −α Ai′(0). We then find

b(a0)ea0�

(16a0)1/3
+

∫ ∞

0
da

b(a)

(2a)2/3
sinh(a�)F(a,a0)

= −21/3 Ai′(0)

a
2/3
0

eV

2T
e−�/T , (B4)

where

F(a,a0) = 2
∫ ∞

0
dq q Ai((2a0)1/3q)

× [Ai((2a)1/3q) + Ai(−(2a)1/3q)]. (B5)

The function F can be further calculated with the help of the
identity

[2a − s2a0]
∫ ∞

0
dq q Ai((2a)1/3q) Ai(s(2a0)1/3q)

= −[(2a)1/3 − s(2a0)1/3] Ai′(0) Ai(0), (B6)

which again results from using the defining differential equa-
tion for the Airy function to express q Ai(αq) = α−3∂2

q Ai(αq),

and gives

F(a,a0) = − Ai′(0) Ai(0)
(2a)4/3 − (2a0)4/3

a2 − a2
0

. (B7)

We thus find from orthogonal projection the integral
equation

β(a0�) + a
2/3
0√
3π

∫ ∞

0

da

a
β(a�)(1 − e−a�)

a
4/3
0 − a4/3

a2
0 − a2

= 1,

(B8)

where we introduced

b(a) = −22/3Ai′(0)

a1/3

eV

T
e−�/T e−a�β(2a�), (B9)

and employed that Ai′(0) Ai(0) = −(2
√

3π )−1. Rescaling a

and a0 by the factor 1/� one arrives at the expression stated
in the main text.

Finally, the backscattering rate expressed in dimensionless
variables

ṄR = 2T

h

∫ �

−�

dy (∂qgq,y)|q=0 (B10)

is readily calculated as

ṄR = 28/3 Ai′(0)
T

h

∫ ∞

0

da

a4/3
b(a) sinh(a�), (B11)

or expressed in terms of β(a) [see Eq. (B9)],

ṄR = −[2 Ai′(0)]2 2eV

h
e−�/T

∫ ∞

0

da

a5/3
β(a�)(1 − e−a�).

(B12)

We may now scale � out of the integral and find the result,
Eq. (20), stated in the main text, with a numerical constant
ζ = (4/3)2/3

�2(1/3)

∫ ∞
0 da

β(a)
a5/3 (1 − e−a), where the latter involves a

solution of the integral equation,

β(a0) + γ a
2/3
0

∫ ∞

0

da

a
(1 − e−a)

a4/3 − a
4/3
0

a2 − a2
0

β(a) = 1,

(B13)

and γ = 1/
√

3π . Solving (B13) numerically we find ζ �
1.25.

APPENDIX C: DETAILS ON THE CROSSOVER REGIME

We give details on the derivation of the expansion co-
efficients defining the hole distribution function and the
backscattering rate in the crossover regime.

Coefficients bn entering the general solution (27) are
derived from the boundary conditions discussed in the main
text in a similar way as discussed in the previous section.
Employing the orthogonality relation (A3) for the general
eigenfunctions and proceeding analogously as in the inhomo-
geneous diffusive regime we arrive at the following equation,
generalizing (B8) to the crossover regime:

βn + 1

2

∞∑
m=0

Onm(1 − e−2an�)βm = In. (C1)
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Here we introduced [similar to (B9)]

bn = eV

2T
e−�/T e−an�βn, (C2)

and vector and matrix elements Im and Omn, respectively, are
defined as

In =
∫ ∞

−∞
dq qψm(q)[sgn(q) − erf(q)], (C3)

Omn = 2
∫ ∞

0
dq qe−q2

ψm(q)[ψn(q) + ψn(−q)]. (C4)

The above integrals can be evaluated using eigenvalue
equations below (A1). We may express vector elements, e.g.,
as

Im = 1

am

∫ ∞

−∞
dq Lψm(sq)[sgn(q) − erf(q)], (C5)

with L = qD and D from Eq. (A1), and upon integration by
parts (notice that boundary terms vanish) find

Im = − 1

am

{
[∂qψm(q) − 2qψm(q)]|q=0

−
∫ ∞

−∞

dq√
π

∂q[e−q2
ψm(q)]

}
, (C6)

as stated in the main text.

In a similar way we calculate integrals defining matrix
elements Omn starting out from∫ ∞

0
dq qe−q2

ψm(q)ψn(sq)

= 1

am

∫ ∞

0
dq e−q2Lψm(q)ψn(sq). (C7)

Upon partial integration and further algebraic manipulations
we arrive at

2
∫ ∞

0
dq qe−q2

ψm(q)ψn(sq)

= 1

am − san

[sψm(0)ψ ′
n(0) − ψn(0)ψ ′

m(0)], (C8)

which applies for all m, n (m 
= n) if s = − (s = +), and leads
to the result stated in the main text.

Finally, the backscattering rate is found from the general
expression

ṄR = 8T

h

∑
n

bn

an

ψ ′
n(0) sinh(an�), (C9)

upon introducing In = ψ ′(0)/an and inserting the formal
solution to Eq. (C1),

βn =
∑
m

[(1 + OX)−1]nmIm, (C10)

with βn defined in Eq. (C2).
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