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Abstract

In this paper we study the following weighted closest pair problem� Given a set of
planar objects with centerpoints� determine the maximal scaling factor �max� such
that the objects scaled by �max are pairwise disjoint�
We describe a method to compute the maximal scaling factor in optimal O�n log n�
time for a wide class of objects� including disks generated by Lp�norms �� � p � ���
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� Introduction

In this paper we study the following weighted closest pair problem	 Given a set of
planar objects with centerpoints
 determine the maximal scaling factor �max
 such
that the objects scaled by �max are pairwise disjoint� Clearly �max can be computed
in O�n� time
 by taking the minimum of all

�
n

�

�
pairwise maximal scaling factors�

�It is assumed
 that the computation of the maximal scaling factor of two objects is
a primitive operation that can be done in O�� time� The goal of this article is to
beat the O�n� time bound�

If all the objects considered are unit�disks then we are faced with the ordinary
closest pair problem
 that is to determine the closest distance between any pair
of points� This is a well�studied fundamental problem of computational geometry
�cf� �HNS���
 �HS���
 �BS���� Another related problem is �nding the closest pair
among a set of objects �cf� �BH���
 �For���
 �Sha���
 �Yap����
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Figure �	 �ve objects �solid scaled by �max �dashed

Figure � illustrates the aforementioned closeness concepts� Five objects are
drawn in solid lines in their original size� The �max�scaled objects are shown in
dashed lines ��max � �� The square around a and the disk around b are the closest
weighted pair
 points c and d are the closest pair �in the Euclidean metric and
the shortest distance between any pair of objects �the Hausdor��distance occurs
between the square around d and the circle around e�

In principle
 we could determine the maximal scaling factor via a Voronoi dia�
gram approach� For example we are given a set of disks with di�erent radii� From
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the center p of a disk we measure the weighted distance from p as

dp�x 	�
k p � x k

rp
�

where rp denotes the radius of the disk around p� The bisector of two disks with
centers p and q will be the set of points in the plane that have equal weighted distance
to p and to q� Then we could de�ne a pair p� q as closest pair if it minimizes the
shortest weighted distance to its bisector among all pairs� Exactly the closest pairs
of �max�scaled disks will touch� This approach doesn�t lead to an e�cient solution

because the Voronoi diagram might have quadratic complexity �cf� �AE����

We describe a method to compute the maximal scaling factor in optimalO�n log n
time for a wide class of objects� The basic idea is as follows	 In a preprocessing step
we compute an over�estimate � � �max for �max� Clearly
 if � � �max then there are
intersections in the set of ��scaled objects� We ensure
 that after the preprocessing
step only a linear number of pairs of the ��scaled objects will intersect� We detect
these intersections in O�n log n time by a standard sweep�technique and compute
the related pairwise maximal scaling factors� The minimum of � and these O�n
numbers will determine �max�

Potential applications arise in computer graphics �simultaneously resizing win�
dows on a screen such that there is no overlap
 robotics �maximizing the minimal
workspace of stationary rotating robots
 computational cartography �e�g� maximiz�
ing rectangular labels attached to certain geographical sites etc�

The paper proceeds as follows� In Section � we show how to compute maximal
scaling factors for a set of disks with possibly di�erent weights� Section � discusses
generalizations of this result for disks generated by di�erent Lp�norms with di�erent
weights� Section � addresses further generalizations�

� Weighted Closest Pairs for Disks

In this section we will describe how to compute the maximal scaling factor for a
set of �topologically open disks with �possibly di�erent radii� Firstly we de�ne
a certain property
 the halfmoon property for disks� Then we show that if that
property holds for a set of disks
 then the number of intersecting pairs of disks is
only linear� We will then present an algorithm to preprocess a set of disks � we
scale them � such that the halfmoon property is ful�lled� On the way we describe
how we glue everything together to an algorithm for computing the maximal scaling
factor�

Let us now start with a de�nition�

De�nition � Let D � fD��D�� � � � �Dng be a set of disks in R
�� We say� that D

ful�lls the halfmoon�property if no disk in D cuts the vertical diameter of another
disk of D� For a disk Di � D we will call the two parts of Di to the left and to the
right of the vertical diameter left resp� right halfmoon of Di and denote them by
D�i resp� D�

i �
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We sum up some simple facts about a set of disks that ful�lls the halfmoon�
property�

Observation � Let D � fD��D�� � � � �Dng be a set of disks with the halfmoon prop�
erty�

��� No two left and no two right halfmoons intersect�

�	� No disk is completely contained in another�

�
� No point in the plane is covered by more than 	 disks of D�

Proof� �� and �� are immediately clear� Note
 that Fact �� is equivalent to the
halfmoon property� If �� is violated
 then we have a point in two left halfmoons or
in two right halfmoons � a contradiction to ���

We are now ready to present our main lemma	

Lemma � The number of intersecting pairs in set of disks that ful�lls the halfmoon
property is at most �n� ��

Proof� Let D � fD��D�� � � � �Dng be a set of disks with the halfmoon property� We
will show
 that the graph G formed by putting vertices at the centers of the disks
and drawing edges by straight line segments between centers of intersecting disks is
plane� Then the claim follows�

Look at two embedded edges ab and rs with disjoint endpoints� There must be
a point c on ab that is contained in the disk around a and also in the disk around
b by de�nition of the edges� Similarly
 there is a point t on rs that is contained
in the disks around r and s� The points c and t must be distinct
 otherwise we
have found a point c � t that is contained in four disks
 a contradiction to Ob�
servation ���� Now draw the perpendicular bisector g between c and t� s and c

must lie on di�erent sides of g
 otherwise the disk around s contains c and there�
fore c is contained in three disks� Similarly r and c must lie on di�erent sides of
g� Therefore s� t and r lie on the same side of g� By mirrorsymmetric arguments
a� b and c lie on the other side of g� Therefore the segments ab and rs do not cross�

In the proof of the Observation above
 we have shown that the �intersection graph�
of a set of disks with the halfmoon property is planar� The converse is also true

Koebe �Koe��� showed that any planar graph can be realized as the �contact graph�
of a set of nonoverlapping disks in the plane� An elementary proof of this result
 as
well as two generalizations are given in �PR�� An alternative proof of Lemma � may
be obtained via power diagrams �see �Aur��� for the apparatus of power diagrams�
Note
 that the regions of two intersecting disks are neighbours in the power diagram
because of Observation ���� Therefore the edges of G are a subgraph of the dual
graph of the power diagram
 which is planar�

Let us now turn our attention to the description of our main algorithm� Similarly
to the halfmoon property we could de�ne two properties as follows�
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De�nition � Let D � fD��D�� � � � �Dng be a set of disks in R
�� We say� that D

ful�lls the left �resp� right� halfmoon�property if no two left �resp� right� halfmoons
in the set D�� �D

�

� � � � � �D
�

n �resp� D�
� �D

�
� � � � � �D

�
n � intersect�

Similarly to the de�nition of the maximal scaling factor �max we de�ne the maximal
left scaling factor ��max of a set of disks as the maximal number such that in the set
of ��max�scaled disks no two left halfmoons intersect
 ��max is analogously de�ned as
the maximal right scaling factor� Clearly �max � minf��max� �

�
maxg and if we scale

the disks by minf��max� �
�
maxg then the left and the right halfmoon properties and

therefore also the halfmoon property itself holds for the scaled disks� After that
scaling process we can run a standard intersection detecting algorithm �cf� �BO���
that will output at most �n�� intersecting pairs of disks� Then we take the minimum
of those pairwise scaling factors and minf��max� �

�
maxg� This number clearly is �max

the output of our algorithm�
So far we have reduced our original problem to that of computing the maxi�

mal left and right scaling factors� Without loss of generality we describe only the
algorithm for computing the maximal right scaling factor ��max� The basic idea of
that algorithm is as follows	 We start with an initial assumption about ��max
 say
we set � 	� ��� Then we sweep in the plane with a vertical line from left to
right� Whenever we meet a centerpoint of a disk Di
 we insert that disk into the
vertical structure� If the right halfmoon of the newly inserted disk has intersections
with right halfmoons of disks inserted before
 we decrease � so that the intersections
disappear� When all disks have been processed the algorithm stops and outputs
��max � ��

In order to work correctly our algorithm will maintain the following two invari�
ants	

Invariant �� All ��scaled disks whose right halfmoon cuts the sweepline are stored
in the vertical structure �sweepline�status ordered by the y�coordinates of
their centerpoints� All ��scaled disks whose right halfmoon is to the right of
the sweepline are not stored in the vertical structure�

Invariant �� The right halfmoons of the ��scaled disks already processed do not
intersect�

It is clear that we have to insert a disk into the vertical structure exactly when the
sweepline passes the centerpoint of that disk� Invariant � allows
 that disks whose
right halfmoon does no longer cut the sweepline
 remain in the sweepline� Note that
neither Invariant � nor Invariant � is destroyed if we decrease ��

The only problem appears when a new disk Di is inserted into the sweepline� Its
right halfmoon may intersect other right halfmoons already processed and we have
to decrease �� We detect such situations and handle them as follows	
Look at the upper neighbour Dj of Di in the vertical structure�

�� Dj lies completely behind the sweepline� Then it is clear that D�
j � D�

i � �
and we may delete Dj from the vertical structure�
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�� D�
j � D�

i � �� Then it is clear
 that Di also does not cut any right half�
moon which is in the vertical structure and whose centerpoint is above the
centerpoint of Di�

�� D�
j �D�

i 	� �� Then we compute the pairwise maximal right scaling factor of
D�

j and D�
i � This number �ij must be lower than the current � and we set

� 	� �ij� Two cases may appear	

�a D�
j now lies completely behind the sweepline� We proceed as in Case ��

�b D�
j still cuts the sweepline� We proceed as in Case ��

After that process Di might have a new upper neighbour �in Cases � and �a and
we have to repeat this process until either Case � occurs or Di does no longer have
an upper neighbour� A similar processing is done for the lower neighbour of Di�
Finally we will have again established Invariant ��

As already said we start the sweeping process with � 	� ��� If the sweepline
is to the left of the leftmost centerpoint the vertical structure is empty and we can
scale the disks by �� without violating Invariant �� During the algorithm � will
only be decreased when required and only so much that still two right halfmoons
will touch� Then it is clear that the �nal value of � equals ��max� Note
 that for our
purpose it is not necessary to compute the pairwise maximal right scaling factor in
Case �� In an actual implementation we could compute the pairwise maximal scaling
factor instead
 since the maximal scaling factor is really what we are interested in�

Lemma � The maximal right scaling factor ��max of a set of n disks in the plane
can be computed in O�n log n time�

Proof� By the discussion above our algorithm computes ��max� We only have to
analyze the runtime� If we use some appropriate balanced tree scheme for the
vertical structure then an insertion or deletion of a disk can be done in O�log n
time� But when we process an inserted disk in order to maintain the invariants
 we
may have to look at many other disks�

The amount of work done for one of these disks is O�log n �neighbour��nding
and computing the pairwise maximal right scaling factor� If the disk is deleted we
charge that work to the deletion� At most two disks � the topmost and bottommost
processed � are not deleted� That work is charged to the insertion�

Now insertions and deletions cost at most O�log n time� Note that every disk is
inserted exactly once and deleted at most once� Therefore the total runtime of our
algorithm is O�n log n�

We have now described all ingredients to solve the weighted closest pair problem
and sum up in the following Theorem�

Theorem � The maximal scaling factor of a set of disks can be computed inO�n log n
time�
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Since our problem is a generalization of the closest pair problem
 the ��n log n
lower bound of this problem �see �PS��� also applies in our more general setting�
It is easy to see
 that the space requirement of our algorithm is O�n�

� Weighted Closest Pairs for Generalized Disks

In this section we will brie�y indicate how the method developed for disks in
Section � can be used for other objects shapes� Although the method works for
more general shapes
 we only demonstrate it for unit�disks generated by Lp�norms
�� � p �� in order to keep the presentation simple�

So our setting is as follows	
Given a set of n convex planar �gures �henceforth called bodies
 each of them being
a disk of some Lp�norm �� � p � � scaled by some positive number �weight

determine the maximal scaling factor �max
 such that the bodies scaled by �max are
pairwise disjoint�

Note that di�erent bodies are allowed to be disks from di�erent Lp�norms and
with di�erent weights� In a typical robot environment for example
 some robots
could be abstracted as ordinary disks �L�
 others could be squares �L�
 L� �see
Figure ��

In the sequel we again de�ne a halfmoon property for bodies as we did it for disks
in Section �� Unfortunately it is no longer true
 that the straight line embedding of
the �intersection graph� for a set of bodies with the halfmoon property is plane
 but
it is still planar
 i�e� there is some other embedding of the graph which is crossing�free

but the straight line embedding has crossings� So again
 the number of intersecting
pairs of bodies is only linear� These intersections can be determined by a plane�
sweep algorithm
 the minimum of only linearly many pairwise scaling factors could
be computed etc� similarly as demonstrated for disks in Section �� This section
shows only the planarity result� The actual computation of �max is done similar as
for ordinary disks and therefore not described�

By the vertical diameter of a body we understand the intersection of the vertical
line through the centerpoint of the body with the body� Analogously as done for
disks in Section � we de�ne the halfmoon�property for bodies�

De�nition � Let B � fB�� B�� � � � � Bng be a set of bodies in R
�� We say� that B

ful�lls the halfmoon�property if no body in B cuts the vertical diameter of another
body of B� For a body Bi � B we will call the two parts of Bi to the left and to the
right of the vertical diameter left resp� right halfmoon of Bi and denote them by B�i
resp� B�

i �

The main common feature of bodies can be stated as follows	

Observation � Any body has horizontal tangents in the endpoints of its vertical
diameter�

This simple observation enables us to prove the following facts	



�

Observation � Let B � fB�� B�� � � � � Bng be a set of bodies with the halfmoon
property�

��� No two left and no two right halfmoons intersect�

�	� No disk is completely contained in another�

�
� No point in the plane is covered by more than 	 disks of B�

Proof� By Observation � it is clear that Facts �� and �� hold� By Fact �� a point
must lie in di�erent halfmoons of di�erent bodies and therefore Fact �� holds�

Let us now state the main lemma of this section�

Lemma � Let B � fB�� B�� � � � � Bng be a set of bodies with the halfmoon property�
The graph G with the vertex set B and edges between any pair of intersecting bodies
is planar�

Proof� We place the vertices at the centerpoints of the bodies� Let us now take a
look at some right �w�l�o�g� halfmoon B�

i of some body Bi� By Observation � and
the fact that all bodies are convex it follows that the intersections of B�

i with left
halfmoons of other bodies all lie in disjoint open horizontal stripes and to the right
of the vertical diameter� A similar argument holds for the left halfmoon B�i � If we
now look at the relative complement of fBj j � � j � n� i 	� jg with respect to Bi

residue�Bi 	� Bi n fBj j � � j � n� i 	� jg

we observe that this is a simply connected area containing the vertical diameter�
As already stated
 the straight�line embedding of the edges of G is not plane
 i�e

there may be intersections� So we will give another layout for the edges� Any edge
will be laid out completely in the two bodies
 whose intersection de�nes it� So we
split an edge going from Bi to Bj into three parts
 the part which will be laid out in
residue�Bi
 the part in Bi � Bj and the part in residue�Bj� The �rst parts of all
edges with one endpoint inBi can now be easily laid out star�like in residue�Bi since
this is a simply connected area and no intersections with other edges will appear�
By symmetry
 the third part of an edge can be laid out like its �rst part� The second
part of an edge going from Bi to Bj is the only edge that must be laid out in Bi�Bj

and is therefore crossing�free� It can easily be laid out to link the two other parts�

� Further Extensions and Discussion

In the previous section we have extended our original ideas for circular disks to more
general disks
 i�e� for unit disks generated by Lp�norms� There the most important
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feature was the existence of horizontal tangents in the endpoints of the vertical
diameter of bodies �Observation �� Of course we could also use our ideas for other
convex shapes with the property cited above
 for example convex polygons with
that property� Also the choice of the vertical diameter with horizontal tangents is
in some sense arbitrary� For other shapes other directions can
 or have to be chosen�
Furthermore also the convexity assumption can be relaxed�

Recall that it is assumed
 that the computation of the maximal scaling factor of
two objects is a O�� time operation
 therefore we have to restrict ourself to simple
classes of objects to attain the promised runtime of O�n log n� So for example in
Section � we have to restrict ourself to some �nite class of norms�

Furthermore
 we have used multiplicative weights� Our methods also work for
additive weights
 but here we could also compute the Voronoi diagram �cf� �For��� of
the boundary of the �gures and extract the closest pair from the set of neighbouring
regions� Our approach may be more practicable�
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