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Lexicographic Fréchet Matchings

Günter Rote∗

Abstract

The Fréchet distance between two curves is the max-
imum distance in a simultaneous traversal of the two
curves. We refine this notion by not only looking
at the maximum distance but at all other distances.
Roughly speaking, we want to minimize the time T (s)
during which the distance exceeds a threshold s, sub-
ject to upper speed constraints. We optimize these
times lexicographically, giving more weight to larger
distances s. For polygonal curves in general position,
this criterion produces a unique monotone matching
between the points on the two curves, which is im-
portant for applications like morphing, and we can
compute this matching in polynomial time.

1 Introduction

The classical Fréchet distance is a bottleneck crite-
rion: it measures the maximum distance in the si-
multaneous traversal. Since the maximum is gener-
ically achieved at a single point, the matching is
far from unique. In an attempt to address this is-
sue, Buchin, Buchin, Meulemans, and Speckmann
(ESA’12) [2] have introduced locally correct Fréchet
matchings: The maximum distance of matched points
on any two matched subcurves should not exceed the
Fréchet distance between these subcurves. This cri-
terion still does not yield unique matchings. We will
review this and other related work later in Section 6.
We propose a strengthening of the Fréchet criterion,
which, under general position assumptions, produces
unique matchings.

Let P : [0, LP ] → Rd and Q : [0, LQ] → Rd be two
curves. Two nondecreasing bijections α : [0,M ] →
[0, LP ] and β : [0,M ] → [0, LQ] define a simultane-
ous traversal (P (α(t)), Q(β(t))) (0 ≤ t ≤ M) of
these curves. The classical Fréchet distance looks
for a traversal that minimizes the maximum distance
max{ ‖P (α(t)) − Q(β(t))‖ | 0 ≤ t ≤ M } between
matched points.

To refine this notion, we look not only at the maxi-
mum, but at the whole distance function f : [0,M ]→
R≥0:

f(t) = ‖P (α(t))−Q(β(t))‖

The idea is to minimize this function lexicographi-
cally: we not only minimize the largest value, but
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Figure 1: A function f and its profile f̂

also the “second-largest” value, subject to the largest
being smallest, and so on.

In terms of a continuous function f , we formalize
this as follows. The profile function f̂ : R → R≥0
associated to f measures for each threshold value s
the amount of time that f(t) is at least s:

f̂(s) = µ({ t | f(t) ≥ s }),

where µ denotes the Lebesgue measure.
Figure 1 shows an example. Since the argument

variable s corresponds to the dependent variable of f ,
we have drawn s on the vertical axis, and f̂(s) to the

right. Pictorially, the graph of f̂ can be obtained by
shifting the shaded area below the graph of f hori-
zontally to the left until it abuts the y-axis.

We compare two profiles f̂ and ĝ lexicographically,
giving most weight to values for the largest arguments
s, see Figure 2:

f̂ ≺lex ĝ ⇐⇒ ∃s0 :
[
(∀s ≥ s0 : f̂(s) = ĝ(s))

∧ ∀ε > 0: ∃s ∈ (s0 − ε, s0) : f̂(s) < ĝ(s)
]

For piecewise algebraic functions, this comparison is
always well-defined. The maximum smax = maxt f(t)

can be recovered from f̂ : f̂(s) = 0 for s > smax,

f̂(0) = M , and f̂ is strictly decreasing function be-
tween 0 and smax. (This follows from the continu-

ity of f .) Therefore, lexicographic minimization of f̂
subsumes and extends the classical Fréchet objective
function of minimizing the maximum of f .

The lexicographic minimization of f̂ requires some
normalization in order to make sense. Otherwise we
could simply traverse the two curves at a larger speed
and accordingly scale down f̂ .

We therefore make the following natural assump-
tion.
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Figure 2: ĝ ≺lex f̂ because when the functions first
branch apart as s goes down from larger to smaller
values, ĝ is below f̂ .
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Figure 3: A lexicographic Fréchet matching between
two curves P and Q.

Assumption 1 The speed at which the curves P and
Q are traversed by the parametrizations α and β is
bounded by 1.

Before we go into more details about the lexico-
graphic Fréchet matching, let us look at Figure 3 and
observe some of its features at a small example. Start-
ing in the endpoints pq = p0q0, both points p and q
advance at full speed. At p1q1, the matching edge be-
comes perpendicular to Q. The point p ∈ P contin-
ues to move at full speed, but q follows as the closest
point on Q. At q2 the point q must remain stationary,
because otherwise the distance to p4 would increase.
(The point q2 is defined by the condition p3q2 = p4q2.
This is the classical critical situation for the Fréchet
distance.) The point p advances via the vertex p3 to
p4. It then proceeds to p5 “as fast as possible” while q
remains stationary. Here the distance reaches a local
minimum. Let us look at the situation from the other
end in reverse. Similar to the beginning, p and q move
at full speed till p6q6. The point q continues at full
speed to p2, while p follows, keeping the segment pq
perpendicular to P until p reaches p5.

2 Definitions

P and Q are polygonal chains with m and n edges,
respectively. We assume that they lie in the plane, but
the results generalize easily to arbitrary dimensions.

From now on, we will assume that P and Q are
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Figure 4: Critical events for the Fréchet distance.
(a) A horizontal passage between two cells in a row
opens. (b) A direct passage between adjacent cells
opens. This is a special case of (a).

given by an arc-length parametrization. This is in
contrast to the prevalent convention where a unit-
length parameter interval is allotted to each segment.

We consider the rectangular parameter area R =
[0, LP ] × [0, Lq], where a point (x, y) ∈ R represents
the point pair (P (x), Q(y)) and accordingly defines
the height function

δ(x, y) := ‖P (x)−Q(y)‖2.

A joint parametrization (α(t), β(t)) corresponds to
a continuous curve in R from (0, 0) to the opposite
corner (LP , LQ) that is monotone in x and y direc-
tion, and it leads to the distance function f(t) =
δ(α(t), β(t)) = ‖P (α(t)) − Q(β(t))‖2. We will say
that (α, β) induces a matching between the points
of P and Q although it is not a matching in the
usual technical sense of a one-to-one mapping. (It
is a correspondence.) The speed constraint translates
into the condition that the curve is Lipschitz contin-
uous with respect to the L∞-norm: ‖(α(t2), β(t2)) −
(α(t1), β(t1))‖max ≤ |t2 − t1|.

The free-space diagram Fε for distance ε is the set
{ (x, y) ∈ R | ‖P (x) − Q(y)‖2 ≤ s }. The fundamen-
tal insight of Alt and Godau [1] is that the Fréchet
distance equals the smallest ε for which a monotone
path from (0, 0) to (LP , LQ) exists in Fε.

The parameter region R is divided into mn rectan-
gular cells according to the partition of P and Q into
segments. In each cell, the height function has the
form

δ(x, y) =
√

(x− a)2 + (y − b)2 + λ(x− a)(y − b)

for some parameters a, b, and −2 ≤ λ ≤ 2. Its level
sets δ(x, y) = const are similar ellipses with common
center (a, b) and axes in the ±45◦ directions, possibly
degenerating to parallel strips.

3 The Lexicographic Fréchet Matching

We first sketch the idea for constructing a lexico-
graphic Fréchet matching. As ε varies, the free-space
diagram grows or shrinks and the monotone connec-
tivity of the free-space diagram changes. It is well-
known that the critical values ε, where something
happens look like in Figure 4. There are also vertical
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versions of these events, where the x and y coordi-
nates are interchanged. The Fréchet distance is equal
to one of these critical values.

Let us assume that the Fréchet distance ε is de-
termined by a situation as in Figure 4a. We assume
that the input is in sufficiently general position, and
therefore this is the only critical event with this value.
This implies that any monotone path must go through
points B and A (otherwise the maximum distance
would exceed ε). From B to A the path has no choice
but to go on a straight line, and it will do so at max-
imum speed. This allows us to decompose the prob-
lem: Find the optimum path from (0, 0) to point B,
and from point A to (LP , LQ).

Let us concentrate on the second subpath. The
maximum distance ε is assumed at point A. To mini-
mize the time during which the distance is close to ε,
the distance should decrease as fast as possible.

4 Steepest Descent

As mentioned above, the level sets of the function δ
are concentric ellipses, see Figure 5. The points where
the ellipses have vertical tangents and δ has a horizon-
tal gradient lie on a line ` through the common center,
which separates the region where the gradient points
downward from the region where it points upward.

The region of R that can be reached from A in some
fixed time by a monotone path is a square with lower
endpoint at A. We want to go to the smallest possible
value in this square. There are several cases. (a) A
is above `. Then we see that the path has to move
horizontally to the right in order to decrease δ as fast
as possible. (b) A is below `. Then the path has to
move at 45◦, parallel to the dashed axis of the ellipses.
(c) A lies on `. Then the path remains on `. We also
have the cases that (c′) A is on the line `′ where the
ellipses have horizontal tangents, and (a′) A is to the
right of `′. These cases are analogous to (c) and (a).

When the point moves in the direction of case (a)
or (b), it will eventually hit the line `. In this case, it
switches to case (c) and continues on `. In Figure 3,
such a transition occurs at p1q1 and at p6q6 (coming
from p7q7).

Lemma 1 A steepest-descent path in R is a polygo-
nal path. Before it leaves a cell or arrives in the local
minimum (at the center of the ellipses), it makes at
most one bend inside the cell.

As we follow a steepest-descent path and decrease
the height ε, we must ensure that we can still reach
the target point by a monotone path in the free-space
diagram Fε. Thus, we must watch for events of Fig-
ure 4. In addition we must watch for events involving
the moving point A, as shown in Figure 6.

The general procedure is as follows. We are looking
for an optimal monotone path between two points A

A
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Figure 5: Steepest monotone descent from a point A

A

Figure 6: A critical event when point A moves on a
steepest-descent path

and B in R. If ε = d(A) > d(B), we follow a steepest
descent path from A, and we simultaneously decrease
ε and watch for events in which the monotone con-
nectivity changes: This could be either an event like
in Figure 4, or an event involving the moving point
A, like in Figure 6 (or its vertical counterpart), or the
event that A and B get the same x or y coordinate. In
each case, we identify a point or a horizontal or ver-
tical segment through which the optimum path must
pass, and we can partition the problem into smaller
subproblems (which may be empty). If A moves to an
adjacent cell, we follow a new descent path in this cell.

The case d(B) > d(A) is symmetric. If d(A) =
d(B), we simultaneously follow two steepest descent
paths from A and B.

5 Algorithm

The basic building block of the algorithm is the fol-
lowing. We are given two points A,B ∈ R and want
to find the best monotone path between them. As
described above, we have to watch for events that
might change the connectivity. When A or B leaves
its cell, or when we identify an event that destroys
the connectivity, we have made some progress: ei-
ther the path split into two subpaths at the bound-
ary of a cell or at the optimal path in at least one
cell becomes completely known (or both). It follows
that such major events can happen at most O(m+n)
times. Between two major events, A and B are con-
fined to their cell. We have to search through the
critical values of all potential events of the types of
Figure 4 or Figure 6. This is done by the usual reduc-
tion to the decision problem, which asks for a given ε
whether there is a monotone path between two points
whose height never exceeds ε. This question can be
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decided in O(mn) time. The search with in the crit-
ical values of the events of Figure 4 is addressed in
the classical Fréchet distance algorithm, and it can
be done in O(mn log(m+n)) time [1]. There are only
O(m + n) potential events of the type in Figure 6,
and a binary search will resolve these events also in
O(mn log(m+n)) time. Since we have O(m+n) ma-
jor phases, we obtain:

Theorem 2 In the lexicographic Fréchet matching
between two polygonal chains of m and n pieces, the
simultaneous parametrization has O(m + n) linear
pieces. If the input is in general position, it can be
computed in O(mn(m+ n) log(m+ n)) time.

At least one point always moves at full speed. The
other point can either (a) travel at full speed as well;
(b) remain stationary ; or (c) follow the first point as
the closest point (projection) on its edge.

6 Related Work

The nonuniqueness of the Fréchet matching has been
noted by many. For example, Helmut Alt [private
communication] has considered the path integral of
the height function δ(x, y). Minimization of this func-
tional requires tools from calculus of variations.

As mentioned in the introduction, Buchin et al. [2]
have introduced locally correct Fréchet matchings to
get rid of some of the freedom of the Fréchet match-
ing. Their algorithm is similar to our algorithm, as
it also partitions the problem into subproblems at
critical events. By contrast, we optimize the result-
ing subproblems more aggressively. Locally correct
Fréchet matchings are far from unique. For example,
any parametrization where the distance is monotoni-
cally increasing throughout, or where the distance has
a single local minimum or a single local maximum
(which is, however, required to equal the Fréchet dis-
tance) is locally correct. On the other hand, it is easy
to see that the lexicographic Fréchet matching must
be locally correct: replacing a matching between two
subcurves by a matching with a smaller maximum
would yield a better profile.

Speed limits in connection with the Fréchet dis-
tance have also been considered by Maheshwari, Sack,
Shahbaz, and Zarrabi-Zadeh [4]. They imposed up-
per and lower speed limits on each segment of P
and Q, and computed the (classical, i.e., bottleneck)
Fréchet distance under these constraints. (Without
lower speed limits, their problem becomes equivalent
to the classical Fréchet distance.)

One can of course look at paths on terrains that do
not come from a height function δ resulting from the
distance between two paths, and without the mono-
tonicity constraint. The question of minimizing the
maximum height on a path from A to B has been ad-
dressed by de Berg and van Kreveld [3], besides some

other criteria. It would be interesting to extend our
lexicographic approach to this setting. On polyhedral
terrains, gradient paths are straightforward to find.

7 Degenerate Inputs

Several critical events can occur simultaneously: there
could either be a sequence of critical passages that
have to be passed in succession, or their might be al-
ternative pathways. I have ignored this possibility so
far. Buchin et al. [2] have shown that, for obtaining
a locally correct Fréchet matching in this case, a cer-
tain set of minimal critical events can be arbitrarily
chosen. In our setting, we would have to compare
the steepest-descent paths from the different critical
points on the basis of “how steeply” they descend.
The possiblity of ties would still remain. I have not
properly investigated how to handle degeneracies. It
would be instructive to look at some examples where
the critical section of the Fréchet matching is globally
nonunique.

8 Different Normalizations

We can impose an individual speed limit for each edge
of P and Q. The algorithm and the analysis can easily
accommodate this. Theorem 2 holds without change.

A different assumption would bound the sum of the
speeds instead of their maximum. This corresponds to
the L1 metric in the parameter plane. Our approach
can be modified to deal with this variation. The speed
on one path has to be traded against the speed on the
other path. This has the effect that the “stop-and-
go” case of one point remaining stationary, where the
matching is not one-to-one, occurs more often.

One can also consider the Euclidean metric in the
parameter plane, which translates to the condition
that the sum of the squared speeds is bounded by 1.
This constraint seems somewhat unnatural for the
problem; moreover, it makes the gradient paths non-
linear and may lead to nasty differential equations.
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