
SERIE B � INFORMATIK

A Simple Hypergraph Min Cut

Algorithm�

Regina Klimmek�
Frank Wagner��

B �����
March ����

Abstract

We present an algorithm for �nding the minimum cut of an edge�weighted hyper�
graph� It is simple in every respect� It has a short and compact description� is
easy to implement and has a surprisingly simple proof of correctness� The runtime is
O�jV j� log jV j�jV j�jjEjj	 where jjEjj is the sum of the cardinalities of the hyperedges�

�The second author is supported by a Heisenberg�Stipendium of the Deutsche Forschungsgemeinschaft�
�Fachbereich Mathematik� Technische Universit�at Berlin� Stra�e des �	� Juni �
�� ���
 Berlin�
Charlottenburg� Germany�
��Institut f�ur Informatik� Fachbereich Mathematik und Informatik� Freie Universit�at Berlin� Takustra�e ��
����� Berlin�Dahlem� Germany� e�mail� wagner�inf�fu�berlin�de�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Repository of the Freie Universität Berlin

https://core.ac.uk/display/199425335?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


�

� Introduction

Graph connectivity is one of the classical subjects in graph theory	 and has many
practical applications	 e
 g
 in chip and circuit design	 reliability of communication
networks	 transportation planning and cluster analysis
 Finding the minimum cut
of an undirected edge�weighted graph is a fundamental algorithmical problem
 Pre�
cisely	 it consists in �nding a nontrivial partition of a graph�s vertex set V into two
parts such that the sum of the weights of the edges connecting the two parts is
minimum
 Every such nontrivial partition is called a cut


In most of the applications	 especially in chip design L��	 chapter ��	 MWW��	
Part �� it is of much higher practical interest to cut hypergraphs into pieces	 a more
general structure where the graphs edges	 connecting two vertices each	 are replaced
by hyperedges connecting an arbitrary subset of the vertices


Formally the hypergraph minimum cut problem consists in minimizing the fol�
lowing weight function on the subsets A of V 	 given a set of hyperedges E � �V

that have positive weights w�e��

w�A� �
X
fw�e� j e � E� e � A �� �� e � V n A �� �g

The usual approach to solve this problem for graphs is to use its close relationship
to the maximum �ow problem
 Nagamochi and Ibaraki NI��b� published the �rst
rather complicated minimum cut algorithm that is not based on a �ow algorithm
having a running time of O�jV jjEj� jV j� log jV j�
 In the unweighted case they use
a fast search technique to decompose a graph�s edge set E into subsets E�� � � � � E�

such that the union of the �rst k Ei�s is a k�edge�connected spanning subgraph of
the given graph and has size at most kjV j
 They simulate this approach in the
weighted case
 By avoiding the unnecessary simulated decomposition of the edge
set	 we present in SW��� a remarkably simple minimum cut algorithm with the so
far best deterministic running time established in NI��b�


One possibility to solve the cut problem for hypergraphs would consist in model�
ing hypergraphs by graphs with the same cut properties as suggested in L��	 chapter
�
�
��
 But in IWW��� it is shown that this approach does not work


So far no e�cient algorithm for the hypergraph mincut problem is known
 Queyranne
Q��� generalizes the algorithm from SW��� to the minimization of symmetric sub�
modular functions
 In this paper we �rst show that the hypergraph cut function w is
symmetric and submodular	 thus Queyranne�s generalization yields an O�jV j
 �jjEjj�
algorithm where jjEjj is the sum of the cardinalities of the hyperedges


Then we show that a direct application of the technique from SW��� leads to
an O�jV j� log jV j� jV j � jjEjj� algorithm




A Simple Hypergraph Min Cut Algorithm �

� The Submodularity

In this �rst section we show	 that the cut function w in a hypergraph H is a symmet�
ric submodular function
 It is obvious that it is symmetric	 i
 e
 w�A� � w�V n A�
for every subset A of V 


Given two subsets A and B of V 	 w is submodular i�

w�A � B� � w�A �B� � w�A� � w�B�

We show this by distinguishing the hyperedges of H depending on their inter�
section with the four sets A nB	 B n A	 A � B and V n �A �B��

AnB BnA A�B V n�A � B� w�A�B� w�A�B� w�A� w�B�
j j j j j j j j
j j j j j j
j j j j j j
j j j j j j j

j j j j j j j
j j j j
j j j j
j j j j

j j j j
j j j j

j j j j j j

The left half of the table lists the eleven di�erent types of hyperedges	 that have
vertices in at least two of the four sets
 A j denotes a non�empty intersection
 In
the right half of the table a j marks hyperedges that contribute to the cut above

One can see that those hyperedges that do not contribute twice to w�A� � w�B�	
contribute just once to w�A � B� � w�A � B�	 too
 This shows the submodularity
of w


As is shown by Queyranne Q��� such a function can be minimized using O�jV j
�
function evaluations
 As for a given subset A of V we have to run through all the
hyperedges to �nd w�A�	 this yields an O�jV j
 � jjEjj� algorithm for our problem


� The Faster Algorithm

We will show how to �nd a hypergraph mincut much faster by taking a direct
approach
 The simple hypergraph minimum cut algorithm we describe here consists
of jV j 	 � phases�



�

MinimumCutPhase�G�w� a�
A
 fag
while A �� V

add to A the most tightly connected vertex
store the cut�of�the�phase and shrink G by merging the two vertices added last

A subset A of the hypergraph�s vertices grows starting with an arbitrary single vertex
until A is equal to V 
 In each step the vertex outside of A most tightly connected

with A is added
 Formally	 we add a vertex

z �� A such that w�A� z� � maxfw�A� y� j y �� Ag

where �A� y� is the set of the hyperedges e with y � e and A � e �� �
 w�A� y� is
the sum of the weights of the hyperedges in �A� y�
 At the end of each such phase
the two vertices added last are merged	 i
e
	 the two vertices are replaced by a new
vertex
 Hyperedges containing just the two merged nodes are removed

The cut of V that separates the vertex added last from the rest of the hypergraph is
called the cut�of�the�phase
 The lightest of these cuts�of�the�phase is the result of the
algorithm	 the desired minimum cut
 So overall the hypergraph mincut algorithm
can be described as�

MinimumCut�G�w� a�
while jV j � �

MinimumCutPhase�G�w� a�
if the cut�of�the�phase is lighter than the current minimum cut

then store the cut�of�the�phase as the current minimum cut

Notice that the starting vertex a stays the same throughout the whole algorithm


� Correctness

The core of the proof of correctness is the following somewhat surprising lemma

An s�t cut is a cut that separates the two vertices s and t


Lemma Each cut�of�the�phase is a minimum s�t cut in the current hypergraph�

where s and t are the two vertices added last in the phase�

Proof� The run of aMinimumCutPhase orders the vertices of the current hyper�
graph linearly	 starting with a and ending with s and t	 according to their order of
addition to A
 Now	 we look at an arbitrary s�t cut C of the current hypergraph
and show	 that it is at least as heavy as the cut�of�the�phase


We call a vertex v �� a active �with respect to C� when v and the vertex added
just before v are in the two di�erent parts of C
 Let w�C� be the weight of C	 Av

the set of all vertices added before v �excluding v�	 Cv the cut of Av � fvg induced



A Simple Hypergraph Min Cut Algorithm �

by C	 and w�Cv� the weight of the induced cut	 i
e
	 the sum of the weights of the
hyperedges containing vertices from both parts of the induced partition
 We show
that for every active vertex v

w�Av� v� � w�Cv�

by induction on the set of active vertices�
For the �rst active vertex the inequality is satis�ed with equality
 Let the inequality
be true for all active vertices added up to the active vertex v	 and let u be the next
active vertex that is added
 Then we have

w�Au� u� � w�Av� u� � w��Au n Av� u� n �Av� u�� �� �

Now	 w�Av� u� � w�Av� v� as v was chosen as the vertex most tightly connected
with Av
 By induction w�Av� v� � w�Cv�
 All hyperedges in �Au n Av� u� n �Av� u�
contribute to w�Cu� but not to w�Cv�
 So

� � w�Cv� � w��Au n Av� u� n �Av� u�� � w�Cu�

As t is always an active vertex with respect to C we can conclude that w�At� t� �
w�Ct� which says exactly that the cut�of�the�phase is at most as heavy as C


Using the lemma we can show as in SW��� by a simple case distinction	 that the
smallest of these cuts�of�the�phase is indeed the �unrestricted� minimum cut we are
looking for�

Theorem The smallest of the jV j 	 � cuts�of�the�phase considered during the algo�

rithm is the minimum cut of the hypergraph�

� Running Time

As the running time of the algorithm MinimumCut is essentially equal to the
added running time of the jV j 	 � runs of MinimumCutPhase	 which is called on
hypergraphs with decreasing number of vertices and hyperedges	 it su�ces to show
that a single MinimumCutPhase needs at most O�jjEjj� jV j log jV j� time
 This
yields an overall running time of O�jV j � jjEjj� jV j� log jV j�

The key to implementing a phase e�ciently is to make it easy to select the next
vertex to be added to the set A	 the most tightly connected vertex
 During execution
of a phase	 all vertices that are not in A reside in a priority queue based on a key
�eld
 The key of a vertex v is the sum of the weights of the hyperedges connecting
it to the current A	 i
e
	 w�A� v�
 Whenever a vertex v is added to A we have to
perform an update of the queue
 v has to be deleted from the queue	 and for every
hyperedge e that contains v and a vertex w	 not in A	 the key of w has to be increased
by the weight of the hyperedge	 if e is cut for the �rst time
 Thus	 the increase has



�

to performed if and only if v is the �rst vertex of e added to A
 Else the weight of
e is already counted in the key of w
 We mark a hyperedge when its �rst vertex is
moved to A
 So	 if a vertex V moves to A we have to perform changes of the keys
as follows�

for all hyperedges e with v � e do

if e is not marked then

mark e
for all u � e n fvg do IncreaseKey by w�e�

In order to do this fast we need the hypergraph to be stored in the following way�
Every vertex is linked to the hyperedges it is contained in	 every hyperedge is linked
to the vertices it contains and can be marked as �already touched�

The marker prevents us from using the links between the edges and the vertices
more than once in each direction


Overall we have to perform jV j ExtractMax and jjEjj IncreaseKey opera�
tions
 Using Fibonacci heaps FT���	 we can perform an ExtractMax operation
in O�log jV j� amortized time and an IncreaseKey operation in O��� amortized
time

Thus the time we need for this key step that dominates the rest of the phase	 is
O�jjEjj� jV j log jV j�


References

FT��� M� L� Fredman and R� E� Tarjan	 Fibonacci heaps and their uses in

improved network optimization algorithms	 Journal of the ACM �� ������ ����
���

IWW��� E� Ihler� D� Wagner and F� Wagner	 Information Processing Let�
ters �� ������ �������

L��� T� Lengauer	 Combinatorial Algorithms for Integrated Circuit Layout	
Wiley�Teubner	 Chichester�Stuttgart ������

MWW��� R� H� M�ohring� D� Wagner and F� Wagner	 VLSI Network De�

sign	 in� Handbook in Operations Research and Management Science	 Volume
� Networks	 Elsevier Science	 Amsterdam ������ �������

NI��b� H� Nagamochi and T� Ibaraki	 Computing edge�connectivity in multi�

graphs and capacitated graphs	 SIAM Journal on Discrete Mathematics � ������
�����

Q��� M� Queyranne	 A Combinatorial Algorithm for Minimizing Symmetric Sub�

modular Functions	 Proceedings of the �th ACM�SIAM Symposium on Discrete
Mathematics ������ ������



A Simple Hypergraph Min Cut Algorithm �

SW��� M� Stoer� F� Wagner A Simple Min Cut Algorithm	 Proceedings of the
�nd Annual European Symposium on Algorithms	 Lecture Notes in Computer
Science ��� ������ �������


