
The spatiotemporal master equation: Approximation of reaction-diffusion dynamics
via Markov state modeling
Stefanie Winkelmann and Christof Schütte

Citation: J. Chem. Phys. 145, 214107 (2016); doi: 10.1063/1.4971163
View online: http://dx.doi.org/10.1063/1.4971163
View Table of Contents: http://aip.scitation.org/toc/jcp/145/21
Published by the American Institute of Physics

Articles you may be interested in
Dynamical density functional theory with hydrodynamic interactions in confined geometries
J. Chem. Phys. 145, 214106214106 (2016); 10.1063/1.4968565

 Kinetic Monte Carlo simulation of the classical nucleation process
J. Chem. Phys. 145, 211913211913 (2016); 10.1063/1.4962757

 Overview: Understanding nucleation phenomena from simulations of lattice gas models
J. Chem. Phys. 145, 211701211701 (2016); 10.1063/1.4959235

Critical length of a one-dimensional nucleus
J. Chem. Phys. 145, 211916211916 (2016); 10.1063/1.4962448

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Repository of the Freie Universität Berlin

https://core.ac.uk/display/199425279?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/20939943/x01/AIP-PT/JCP_ArticleDL_0117/PTBG_orange_1640x440.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Winkelmann%2C+Stefanie
http://aip.scitation.org/author/Sch%C3%BCtte%2C+Christof
/loi/jcp
http://dx.doi.org/10.1063/1.4971163
http://aip.scitation.org/toc/jcp/145/21
http://aip.scitation.org/publisher/
/doi/abs/10.1063/1.4968565
/doi/abs/10.1063/1.4962757
/doi/abs/10.1063/1.4959235
/doi/abs/10.1063/1.4962448


THE JOURNAL OF CHEMICAL PHYSICS 145, 214107 (2016)

The spatiotemporal master equation: Approximation of reaction-diffusion
dynamics via Markov state modeling

Stefanie Winkelmann1,2,a) and Christof Schütte1,2,b)
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Accurate modeling and numerical simulation of reaction kinetics is a topic of steady interest. We
consider the spatiotemporal chemical master equation (ST-CME) as a model for stochastic reaction-
diffusion systems that exhibit properties of metastability. The space of motion is decomposed into
metastable compartments, and diffusive motion is approximated by jumps between these compart-
ments. Treating these jumps as first-order reactions, simulation of the resulting stochastic system
is possible by the Gillespie method. We present the theory of Markov state models as a theoretical
foundation of this intuitive approach. By means of Markov state modeling, both the number and shape
of compartments and the transition rates between them can be determined. We consider the ST-CME
for two reaction-diffusion systems and compare it to more detailed models. Moreover, a rigorous
formal justification of the ST-CME by Galerkin projection methods is presented. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4971163]

I. INTRODUCTION

A reaction network is a system involving several chemical
species undergoing multiple reactions. Depending on the parti-
cle concentration and mobility, different mathematical models
are appropriate. In the case of rapid diffusion, the spatial posi-
tion of the particles becomes negligible and the system may
be considered as well-mixed. Then, the state of the system is
defined by the number of particles of each species, and the
dynamics are modeled by a continuous-time Markov chain
with the reactions described by jumps of the chain.1 A char-
acterization of the process is given by the chemical master
equation (CME) which describes the temporal evolution of
the probabilities for the system to occupy each different state.
Numerical methods for solving the CME are usually based on
Monte Carlo simulations of the underlying Markov jump pro-
cess, such as Gillespie’s stochastic simulation algorithm and
its variants.10,12–15 In the limit of high population concentra-
tions (large copy numbers for all species), the dynamics can
be approximated by mass action kinetics,21 leading to a deter-
ministic system described by ordinary differential equations
(ODEs).

In biological applications, the well-mixed assumption of
the CME is often inadequate due to spatial inhomogeneities or
limited speed of the diffusive motion of the particles. In this
case, a higher resolution in space is required, leading to micro-
scopic particle-tracking methods. The most detailed standard
model is given by particle-based reaction-diffusion dynam-
ics (PBRD), where all individual particle paths and reaction
events are explicitly resolved in time and space. Particles are
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modeled as points (or spheres) in space undergoing Brownian
motion. Bimolecular reactions take place with a certain proba-
bility per unit of time when two reactive particles meet within
a predefined reaction radius of each other.2,26,32 An overview
of the existing simulation tools for such detailed dynamics
is given in Ref. 27. Simulations of PBRD-systems are based
on time-discretizations. In each time step, the positions of all
particles are advanced, followed by a check-up for adjacent
reactive particles whose reaction radii overlap such that a reac-
tion could fire. This scheme becomes inefficient when parts of
the system are dense because those parts then continuously
stop the clock, i.e., require extremely small discretization time
steps.

As an alternative there exist finite volume approaches
where the state space is discretized into a collection of nonover-
lapping cells, and diffusion is approximated by a continuous-
time random walk between the cells.9,17,18,20 A common
choice for the discretization is a uniform Cartesian lattice;
however, there also exist approaches with other types of
meshes, e.g., consisting of triangles.8 Bimolecular reactions
occur with a fixed probability per unit of time between reac-
tive particles situated in the same cell. The state of the system
is given by the number of particles of each species in each
cell, and the dynamics are described by the so-called reaction-
diffusion master equation (RDME) which is formally a CME
but with the states having a spatial interpretation. Diffusion
is modeled by first-order reactions, allowing each particle to
change its position by switching between cells. In this kind
of approach, the question of how to choose the mesh size
in order to guarantee a small approximation error is of cen-
tral importance. In fact, a fine discretization of space does not
naturally lead to a high approximation quality because encoun-
ters of particles within the same (small) cell become unlikely
such that bimolecular reactions are suppressed.16,18 In order to
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overcome this problem, the convergent RDME has been devel-
oped which allows particles to react also when being in nearby
cells.19

In such a space discretization by a mesh with uniform
size of the cells, all areas of the space are equally treated,
irrespectively of the structural properties of the reaction-
diffusion system. However, in many applications the diffu-
sive and reactive properties of the system naturally exhibit
certain structural properties which suggest a more flexible
and non-uniform coarse-graining. Especially situations of
metastable diffusion dynamics propose to coarse-grain space
into areas of metastability. Such situations will be considered
in this article. An evident example is given by the process
of gene expression within a eukaryotic cell where some of
the involved reactions (e.g., production of messenger RNA)
take place only in the nucleus of the cell while others (e.g.,
production of proteins) are restricted to the cytoplasm, and
transitions between these two compartments are relatively
rare in time. In this case, a description on the level of a
CME (assuming well-mixed behavior in total space) is obvi-
ously not appropriate; however, a split-up of space into two
compartments (nucleus and cytoplasm) with diffusive tran-
sitions described by jumps might be enough to capture the
dynamics.

Although such a coarse-graining with only a few com-
partments which are chosen in consideration of the dynamical
properties of the system seems natural, its mathematical back-
ground has not yet been examined. In this article, we describe
the theoretical foundation of this approach and present prac-
tical methods to infer a reasonable splitting of space as well
as corresponding transition rates between the compartments
out of experimental data or numerical simulations. The cen-
tral idea is to apply the theory of Markov state models (MSMs)
which proposes a scheme to construct coarse-grained represen-
tations of conformational molecular kinetics. The existence
of metastable sets within the dynamics can be exploited to
provide good approximation properties of the reduced model
on long time scales.28 Instead of conformational dynamics
of an individual molecule, we consider the total reaction-
diffusion system and approximate the diffusion dynamics of
each molecule by a jump process between the metastable com-
partments. With the jumps understood as first-order reactions
and the state of the total system given by the number of parti-
cles in each of the compartments, the total dynamics are again
characterized by a CME with spatial interpretation, which in
this context will be called spatiotemporal CME (ST-CME).
The ST-CME formally conforms to the RDME, but the under-
lying coarse-graining of space follows a completely different
concept, adapting the natural properties of the process and
leading to an incomparably lower number of compartments.
Typical compartments are not “small” such that the problem
of suppressed second-order reactions, which appears for the
RDME in the case of a small mesh size, is circumvented in the
setting of the ST-CME.

As a prototypical example, we will investigate reaction-
diffusion systems within a eukaryote, where the split-up into
nucleus and cytoplasm is quite obvious. However, the theory of
MSMs also enables to find number and geometry of compart-
ments in cases where they are not known a priori. The resulting

simplified models are readily understood and easy to inter-
pret. By inferring the spatial clustering and the transition rates
from experimental data, particle-based simulations are com-
pletely circumvented, and trajectories of the total system can
directly be generated by Gillespie simulations of the derived
ST-CME. Even if—for lack of experimental data—the MSM-
construction requires simulations of the diffusion dynam-
ics, the numerical complexity is reduced to a large extent
because only the motion of an individual particle (and not the
total population affected by reaction and diffusion) has to be
produced.

In this paper, the ST-CME is viewed as an approx-
imation of microscopic particle-based dynamics with the
spatial resolution reduced to the minimum possible degree,
still maintaining the characteristic properties of the dynam-
ics. Beside the intuitive, heuristic derivation, we give a
concrete mathematical justification showing that the ST-
CME results from a Galerkin projection of the corre-
sponding particle-based dynamics. Again inspired by the
MSM theory, this permits us to derive explicit formulas
for the model parameters depending on the microscopic
variables.

In Section II the ST-CME is introduced as a reaction-
diffusion model with adapted spatial resolution. The con-
struction of the underlying MSM is described, explaining the
procedure of space decomposition and the estimation of transi-
tion rates. Two examples are presented in order to illustrate the
approach. In Section III, we analytically derive the ST-CME
for a reduced reaction system by applying the Galerkin pro-
jection method to the corresponding particle-based dynamical
system. In the first step we consider a simplified model with
not more than two particle species; the more general analy-
sis for larger numbers of species and particles is given in the
Appendix.

II. MODELING REACTION-DIFFUSION PROCESSES
FOR METASTABLE DIFFUSION

In the following we first review some basic approaches
to model reaction-diffusion processes on a stochastic level.
The spatiotemporal master equation is presented as a
model with an intermediate spatial scaling, adapted to
the natural properties of the system of interest. Then, in
Section II B, we give a short introduction to the theory of
Markov state models and apply it to determine the spatial
coarse-graining and the jump parameters appearing in the ST-
CME. Section II C comprises two illustrative examples to
compare the approaches.

A. Modeling reaction-diffusion processes

We consider a set of particles moving in a com-
pact domain Ω ⊂ Rd by continuous diffusion. The particles
belong to different species Sl, l = 1, . . . , L, and may inter-
act with each other through different reaction channels Rk ,
k = 1, . . . , K .

1. Particle-based reaction-diffusion (PBRD)

In the most detailed model of particle-based reaction-
diffusion dynamics, the motion of every individual particle is
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resolved in time and space. Positions of particles are repre-
sented as points or spheres undergoing Brownian motion, and
bimolecular reactions occur with a certain microscopic reac-
tion rate as soon as the particles are located within a predefined
reaction radius of each other (Doi-model).2,7,32 These systems
cannot be explicitly solved but must be sampled by stochas-
tic realizations. Time is discretized, and for each time step,
the positions of all individual particles are advanced accord-
ing to a given rule of motion. Each advance is followed by
a check-up for reactive complexes, i.e., sets of reactive parti-
cles whose reaction radii overlap. Given such a complex, the
reaction can fire; whether this happens or not is decided ran-
domly based on the microscopic reaction rate. Further methods
have been developed in order to include interaction poten-
tials between particles.26 These permit effects such as space
exclusion, molecular crowding, and aggregation to be mod-
eled. The particle-based resolution is appropriate in cases of
low particle concentrations and slow diffusion. Spatial inho-
mogeneities can be taken into account up to a very detailed
level. The simulations, however, can be extremely costly often
requiring several CPU-years in a single simulation for reach-
ing the biological relevant time scales of seconds. If part of
the system is dense, the approach becomes numerically inef-
ficient because reactions would fire in every iteration step.
In such a case, a description of the population by concentra-
tions is more appropriate, leading to PDE formulations of the
dynamics. For low concentration but rapid diffusion over the
total space, the high spatial resolution becomes redundant and
the system can be modeled by the chemical master equation
(CME).

2. The chemical master equation (CME)

In the case of rapid diffusion in a homogeneous envi-
ronment, the system can be considered as well-mixed such
that only the number of particles of each species is rel-
evant while their spatial position is neglected. Let N(t)
= (N1(t), . . . , NL(t)) denote the state of the system at time
t ≥ 0, with Nl(t) referring to the number of particles of
species Sl at time t. Given the state N(t)=n= (nl)l=1,..., L∈ N

L
0

of the system, a reaction is described by transitions of the
form n→n + νk with the integer vector νk =

(
ν1

k , . . . , νL
k

)
giving the change in the number of particles of each
species due to reaction Rk . For example, the chemical
reaction 2Sl→ Sl′ is described by the vector νk with νl

k
= −2, νl′

k = 1, and zeros elsewhere. For each reaction Rk , a
propensity function αk(n) defines the probability per unit of
time for the reaction to occur given that N(t) = n. Accord-
ing to the law of mass action, the propensity is a function
of the corresponding macroscopic rate constant γk > 0 and
the number of particles involved in the reaction: For a uni-
molecular reaction by species l, it holds αk(n) = γk · nl; for
a second-order reaction by two species l, l′, l , l′, one has
αk(n) = γk · nl · nl′ .1,22 With P(n, t) = P (N(t) = n|N(0)= n0)
denoting the probability for the system to be in state n at
time t, the dynamics are characterized by the chemical master
equation

dP(n, t)
dt

=

K∑
k=1

(
αk(n− νk)P(n− νk , t) − αk(n)P(n, t)

)
.

Realizations of the underlying Markov jump process can be
created by Gillespie simulations.

3. The spatiotemporal chemical master equation
(ST-CME)

There exist many applications where the well-mixed
assumption required for the chemical master equation is not
fulfilled. Instead, diffusion of particles might be limited by
local barriers in space, or the environment Ω offers inhomo-
geneities with respect to reaction propensities. An example
that will be investigated in Section II C describes the set-
ting of diffusion within a eukaryotic cell which naturally
decomposes into two compartments, the nucleus and the
cytoplasm. By a reduced permeability of the nuclear mem-
brane, the diffusive flow through the cell is restricted such
that a description by a chemical master equation would fail.
Within each of the two compartment, however, the dynam-
ics can indeed be considered as well-mixed, which motivates
to consider the chemical master equation on the level of
compartments.

Such situations (in which the spaceΩ exhibits a particular
structure with respect to the diffusion and reaction properties)
will be considered here. More precisely, we make the following
central assumption.

Assumption 2.1. There is a decomposition of Ω into
compartments Ωr , r = 1, . . . , M, such that

1. transitions between compartments are rare (metastabil-
ity);

2. within each compartmentΩr , diffusion is rapid compared
to the reaction (well-mixed-property);

3. within each compartment, the reaction rates are
constant, i.e., independent of the position (homo-
geneity).

The first point of Assumption 2.1 delivers the basis for
the construction of a Markov state model for the diffusive
part of the reaction-diffusion network. With the diffusion pro-
cesses of all particles being metastable with respect to the same
space decomposition, they can be approximated by Markov
jump processes on the fixed set of compartments {Ωr : r
= 1, . . . , M}. Within the ST-CME, the jumps are treated as first
order reactions. By the second and third points of Assumption
2.1, we make sure that within each compartment, the reaction
dynamics can accurately be described by a chemical master
equation.

Let N l
r(t) denote the number of particles of species l in

compartment r at time t. We take Nr(t) = (N1
r (t), . . . , NL

r (t))
to denote the state of present species in compartment
r. The total state of the system at some point in time
t is given by the matrix N(t) = (Nr(t))r=1,..., M∈ N

M,L
0 .

Changes of the state are induced by diffusive transi-
tions (jumps) between the compartments and by chemical
reactions.

A jump of a particle of species l from compartment r
to compartment s , r is described by a transition of the
form

N → N + El
s − El

r ,

where El
r is a matrix whose elements are all zero except the

entry (r, l) which is one. Let λl
rs denote the jump rate for each
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individual particle of species l. Since all particles are assumed
to diffuse independently of each other, the total probability per
unit of time for a jump of species l from compartment r to s at
time t is given by λl

rsN
l
r(t).

For each of the reactions Rk , let again νk =
(
ν1

k , . . . , νL
k

)
describe the change in the number of copies of all species
induced by this reaction. Reaction Rk occurring in the rth com-
partment refers to the transition Nr(t) → Nr(t) + νk . In order
to specify where the reaction takes place, the vector νk is mul-
tiplied by a column vector er with the value 1 at entry r and
zeros elsewhere. This gives a matrix erνk whose rth row is
equal to νk while all other rows contain zeros. With this nota-
tion, the change in the total state N due to reaction Rk taking
place in compartment r is given by

N → N + erνk .

The propensity for such a reaction to occur is given by
the function αk

r (n) denoting the probability per unit of
time for reaction Rk to occur in compartment r given that
Nr(t)= nr , i.e., it depends αk

r (n) only on the values of n
referring to compartment r. Note that the rate constants
which determine the reaction propensities may depend on the
compartment such that—in contrast to the CME—spatial inho-
mogeneities in the reaction propensities can be taken into
account.

As in the setting of the CME, let

P(n, t) = P (N(t) = n|N(0)= n0)

be the probability that the process is in state n at time t given
an initial state N(0)= n0. The spatiotemporal chemical master
equation (ST-CME) is then given by

dP(n, t)
dt

=

M∑
r=1

∑
s,r

L∑
l=1

(
λl

sr(nl
s + 1)P(n+El

s −El
r , t)− λl

rsn
l
rP(n, t)

)
+

M∑
r=1

K∑
k=1

(
αk

r (n− erνk)P(n− erνk , t) − αk
r (n)P(n, t)

)
, (1)

where the first line refers to the diffusive part (the transitions
between the compartments), while the second line describes
the chemical reactions within the compartments.

Numerical realizations of the ST-CME can again be cre-
ated using the Gillespie method. Compared to particle-based
simulations in which the trajectory of each single particle has to
be calculated, the simulations of the ST-CME are computation-
ally less expensive. However, due to the spatial interpretation,
the state space of the ST-CME is larger than the one of the
CME.

Remark 2.2. A reaction-diffusion master equation
(RDME) is formally identical to (1) but different regarding
the spatial discretization. In a RDME the underlying space Ω
is discretized by a structured or unstructured mesh leading to
a large number of mesh cells so that the first line of (1) in case
of a RDME model is based on a discretization of the Laplacian
operator underlying the diffusion process.8,11,20

To determine a convenient space discretization as well as
suitable jump rates is the fundamental issue for the represen-
tation of a reaction-diffusion system in terms of a ST-CME. It
can be handled by constructing a Markov state model for the
space of motion.

B. Spatial discretization via Markov state modeling

The theory of Markov state models (MSMs) is a well
established tool to approximate complex molecular kinetics
by Markov chains on a discrete partition of the configura-
tion space.4,23–25,28,30 The underlying process is assumed to
exhibit a number of metastable sets in which the system
remains for a comparatively long period of time before it
switches to another metastable set. A MSM represents the
effective dynamics of such a process by a Markov chain that

jumps between the metastable sets with the transition rates
of the original process. Two main steps are essential for this
approach: the identification of metastable compartments and
the determination of transition rates between them. Both steps
are extensively studied in the literature, providing concrete
practical instructions.3–5 Although usually interpreted in terms
of conformational dynamics, the approaches can directly be
transferred to the kinetic dynamics of individual particles
within a reaction-diffusion system. Within the ST-CME, jumps
and reactions are uncoupled from each other and memoryless
in the sense that a reaction taking place does not influence
the jump propensity of any species, and the reaction rates
within each compartment are independent of the previous
evolution of the system. Thereby, a separate analysis of the
diffusion properties is justified. In the following, we apply
the MSM-theory to the pure diffusion process of an individ-
ual particle, fading out its interaction with other particles by
reactions.

1. Spatial coarse-graining

Assuming that the space of motion consists of metastable
areas where the reaction-diffusion dynamics can be considered
to be well-mixed, the first task is to identify the location and
shape of these areas. While in certain applications the spatial
clustering might be obvious (like, e.g., for the process of gene
expression), others will require an analysis of available data
(either from simulations or experiment) to define the number
and geometry of compartments.

The MSM approach to perform this step of space decom-
position is based on a two-stage process exploiting both
geometry and kinetics.4,5,29 Starting with a geometric clus-
tering of space into small volume elements, the kinetic
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relevance of this clustering is checked for the given sim-
ulation data, followed by a merging of elements which
are kinetically strongly connected. As a concrete example
we shortly sketch the automatic state decomposition algo-
rithm introduced in Ref. 5: The iteration alternates between
a split step (splitting the space into microstates) and a
lump step (lumping microstates together to get macrostates
with maximum possible metastability). Each macrostate is
subsequently again fragmented into microstates, which are
lumped again to redefine the macrostates. By this alterna-
tion, the boundaries between the macrostates are iteratively
refined. The splitting is based on geometric criteria, while the
lumping considers kinetic aspects, taking metastability as a
measure.

To illustrate the relevance of both geometric and kinetic
aspects for the space discretization, one can consider the exam-
ple of nuclear membrane transport: By the reduced perme-
ability of the nuclear membrane, the cell decomposes into
two metastable regions (nucleus and cytoplasm). A small
geometric distance between two points is the first indica-
tion for belonging to the same compartment; however, this
would also group together close points which are located
on different sides of the nuclear membrane and are thereby
kinetically distant. While other clustering methods might
fail to capture the kinetic properties of the system under
consideration, the MSM approach incorporates the relevant
kinetic information and allocates such points into different
compartments.3

The theoretical foundation of Markov state modeling
comprises the spectral analysis of the transfer operator which
describes how the process propagates functions in state space
over time. The dominant eigenvalues refer to long implied
time scales, with the associated eigenvectors giving informa-
tion about the metastable areas in space and the aggregate
transition dynamics between them.

The algorithms used for spatial clustering by MSMs
require the availability of large amount of data sets. Transitions
between metastable sets are infrequent events which even in
long (but finite) trajectories might be small in number. Fortu-
nately, for MSMs there exist methods to validate the model and
to quantify the statistical error, allowing to rerun simulations in
case of high uncertainty (so called adaptive sampling).4,23,24

The development of standards for the number and length of
simulations needed for a statistically reliable modeling is in
progress.5

2. Estimation of transition rates
Once a suitable space partitioning for the problem under

consideration is given (known in advance or determined by
Markov state modeling as described before), the rates for tran-
sitions between the compartments have to be estimated. The
theory of MSM also delivers concrete practical techniques to
determine the transition rates out of trajectory data. Applied to
the diffusion dynamics of a particle in space, the rate estimation
can shortly be summarized as follows.

Let the space Ω of motion be decomposed into com-
partments Ωr , r = 1, . . . , M, with

⋃M
r=1 Ωr = Ω and (intΩr )

∩ (intΩs ) = ∅ for all r , s where intΩr denotes the interior
of Ωr . The diffusion of a single particle in Ω is given by a

homogeneous, time-continuous Markov process (Xt)t≥0 with
X t denoting the position of the particle in Ω at time t ≥ 0. We
assume that (X t) has a unique, positive invariant probability
measure µ on Ω. Fixing a lag time τ > 0, the MSM process
is a discrete-time Markov chain (X̃n)n∈N on {1, . . . , M} with
transition probabilities

Prs = Pµ(Xτ ∈ Ωs |X0 ∈ Ωr), (2)

where the subscript µ indicates that X0 ∼ µ. The Markov
process (X̃n) serves as an approximation of the process (X̂n)
defined by X̂n = r⇔Xn ·τ ∈Ωr which, in general, is itself
not Markovian but has a memory. For details about the
approximation quality see Ref. 24.

Given a trajectory (x0, x1, . . . , xN ) of the diffusion pro-
cess (Xt)t≥0 with xn =Xn ·∆t for a fixed time step ∆t > 0 (given
from experimental data or separated simulation), the transition
matrix P is estimated by counting the transitions between the
compartments: Let the lag time τ = l∆t (l ∈ N) be a multiple
of ∆t and set

P̂rs =
Crs∑
s′ Crs′

, Crs =

N−l∑
n=0

χr(xn)χs(xn+l), (3)

with χr denoting the indicator function of Ωr . Then P̂ is a
maximum-likelihood estimator for the transition matrix P.23,25

In order to turn from discrete time to continuous time
within the coarse-grained setting, the matrix estimation is
repeated for a range of lag times τ and the resulting transi-
tion matrices Pτ are used to determine appropriate transition
rates λrs > 0 between the compartments in the setting of a
continuous-time Markov jump process. More precisely, we
aim for a rate matrixΛ = (λrs)r,s=1,..., M with λrs > 0 for r , s
and λrr = −

∑
s,r λrs which describes the time-evolution of a

memoryless system by the master equation

dpT
t

dt
= pT

t Λ, (4)

where pt(r) denotes the probability for the diffusion process
to be in compartment r at time t.31 With p0 denoting the initial
distribution, the solution to (4) is given by pT

t = pT
0 eΛt which

suggests the relation Pτ ≈ eΛτ . On short time scales, the “true”
process (Xt)t≥0 cannot be accurately approximated by such a
memoryless system because recrossings between the compart-
ments induce memory effects.6 For τ not too small, however,
it indeed holds4,28

1
τ

log(Pτ) ≈ constant

such that we can set Λ = 1
τ log(Pτ). The entries of the matrix

Λ are the jump rates appearing in the ST-CME. The dis-
cretization error arising with the coarse-graining can even be
quantitatively bounded.4

Remark 2.3. The estimation of the rate matrix can be made
more accurate by forcing it to fulfill certain side constraints
like detailed balance or the keep of an equilibrium distribution
which is known a priori.4

C. Illustrative examples

For an illustration we consider two different reaction-
diffusion systems within the cell of a eukaryote. The cell natu-
rally decomposes into two compartments, the nucleus and the
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cytoplasm, with the nuclear membrane exhibiting a reduced
permeability which induces a metastability of the diffusion
dynamics. The cellular membrane is assumed to be imperme-
able such that the cell’s exterior is out of interest. Particles
are assumed to move independently and not to influence each
other in their crossing behavior. Reactions between particles
can only take place if the particles are in the same compart-
ment. The cell is modeled in two dimensions as two concentric
circles representing the membranes of nucleus and cytoplasm.

The first system under consideration is a quite artifi-
cial binding-unbinding network which is used to compare
the dynamics characterized by the ST-CME to the underly-
ing particle-based dynamics. The congruence of the quantita-
tive evolution of the systems (in terms of average population
numbers) is revealed. Then, the more applied setting of gene
expression is investigated, comparing the qualitative proper-
ties of the ST-CME system to those induced by a RDME with
Cartesian grid as given in Ref. 20. Both examples illustrate
the ability of the ST-CME to reproduce the dynamics of more
detailed and complex model descriptions.

1. Binding and unbinding
As a first example we formulate a very general reaction-

diffusion system consisting of three species S1 = A, S2 = B, S3

= C which diffuse within the cell and undergo the binding and
unbinding reactions

R1 : A + B→ C, R2 : C → A + B. (5)

We assume that the binding reaction takes place only in the
cytoplasm while unbinding is restricted to the nucleus. This
separation of reactions, combined with the metastability of
diffusion due to a reduced permeability of the nuclear mem-
brane, obviously keeps the process from being well-mixed in
total space, such that a description by a CME is not appropri-
ate. Minimum spatial information—as it is given by a ST-CME
—is needed to capture the characteristics of the dynamics. In
the following, we compare the ST-CME dynamics to appro-
priate particle-based dynamics where the diffusion of each
particle is modeled by a process of Brownian motion with
reflecting boundary conditions at the cellular membrane and
limited flux through the nuclear membrane; see Figure 1 for an
illustration.

FIG. 1. Brownian motion on disk with metastable compartments. Brownian
particle moving on a disk (cell) containing a nucleus. The nuclear membrane
exhibits a reduced permeability, rejecting most of the crossing trials of the
trajectory.

Given the microscopic parameters of the system (i.e.,
diffusion constants, microscopic reaction rates, and reaction
radius for the Doi-model) as well as an initial population (we
choose 5 A-particles uniformly distributed in the nucleus and
5 B-particles uniformly distributed in the cytoplasm), numeri-
cal realizations of the particle-based reaction-diffusion system
are produced by the Euler-Maruyama method. For all time
steps of a realization, the number of particles of each species
in each compartment is recorded. Then, a MSM for the dif-
fusion process of each species is constructed as described in
Section II B, yielding the jump rates between the two compart-
ments necessary for the ST-CME. The average binding time
for two particles A and B within the cytoplasm is estimated
numerically in order to take its inverse for the macroscopic
binding rate. Gillespie simulations of the resulting ST-CME
give realizations of the total system on the spatially discretized
level.

For both approaches (particle-based dynamics and ST-
CME), the average evolution of the population over time is
estimated by Monte Carlo samples. In Figure 2 the results are
shown, with an apparent consistency of both models.

FIG. 2. Mean number of particles in conformation A (left), B (middle), and C (right) in the nucleus and the cytoplasm, respectively, for separated reactions.
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This binding-unbinding network will again be investi-
gated in Section III where a formal derivation of the ST-CME
is derived.

2. Gene expression

A more applied setting is given by the process of gene
expression by which information encoded in DNA is used for
the production of functional proteins. This process is a com-
plex network of chemical reactions. In eukaryotes some of the
involved reactions take place in the nucleus while others are
restricted to the cytoplasm. On a very coarse level, the pro-
cess can be described as follows. In a first step, the gene is
transcribed into messenger RNA (mRNA); this takes place
in the nucleus. The mRNA molecule is then exported to the
cytoplasm where it is translated into proteins. The proteins
are imported into the nucleus where they can repress the gene,
meaning that its functionality in transcription is interrupted.
Both mRNA and protein molecules are degradable in both
compartments.

Some of these steps contain themselves a complex series
of chemical events. For example, the crossing of the nuclear
membrane by mRNA and protein molecules requires the assis-
tance of import and export receptors because the pores of
the nuclear membrane are too small for the molecules to
pass through by diffusion. For the ST-CME, such details
are omitted and the crossing of the nuclear membrane is
described by a single jump event with the jump rate chosen
in a way to take account of all the involved steps. For many
questions of interest, a modeling on such a coarse level is
appropriate.

In Ref. 20 the process of gene expression is analyzed in
terms of the reaction-diffusion master equation. With the cell
and its nucleus also modeled by concentric circles, the space
is discretized by a regular 37 × 37 Cartesian mesh. Transitions
of mRNA and proteins between nucleus and cytoplasm are
modeled by binding and unbinding to export (or import) recep-
tors which are assumed to be uniformly distributed throughout
nucleus and cytoplasm at certain steady-state concentrations.
After binding to the receptor, the molecule can freely dif-
fuse across the membrane. After this transition, the molecule
has to unbind from the receptor before it can undergo fur-
ther reactions. For the ST-CME the three steps (binding to
receptor, transition, and unbinding from receptor) are merged
and replaced by a jump event. In Ref. 20, simulations of
the total system show a periodicity in the total number of
nuclear proteins. This periodicity is reproducible by the ST-
CME with only two compartments as will be demonstrated
now.

The process of gene expression perfectly complies with
the requirements of the ST-CME: Two of the reactions (tran-
scription and translation) are restricted to certain areas of
space, namely, nucleus or cytoplasm. Transitions between
these two compartments are of central relevance for the total
dynamics. Due to the complexity of membrane transition, the
diffusion dynamics can be considered as metastable. Within
each compartment, local information is redundant and the
dynamics can be considered as well-mixed.

More precisely, the following model is plausible. The
transcription in the nucleus is given by the reaction

DNA
α1

r
→ DNA + mRNA,

with the index r referring to compartment Ωr and α1
1 > 0 in

the nucleus (=Ω1) while α1
2 = 0 in the cytoplasm (=Ω2).

Translation of mRNA into proteins P is given by

mRNA
α2

r
→ mRNA + P,

with α2
1 = 0 in the nucleus and α2

2 > 0 in the cytoplasm.
Repressing of DNA by a protein molecule refers to the reaction

DNA + P
α3

r
→ DNA∗,

where DNA∗ denotes the repressed DNA. The repressing can
be reversed by

DNA∗
α4

r
→ DNA + P.

Both mRNA and protein are degradable which is described by

mRNA
α5

r
→ ∅

and

P
α6

r
→ ∅,

respectively. Transitions between nucleus and cytoplasm (pos-
sible for mRNA and protein molecules) are described by jumps
with jump rates λmRNA

12 > 0 (export of mRNA) and λP
21 > 0

(import of protein).
In the RDME-formulation given in Ref. 20 most of these

reactions are decomposed into several steps. Then, the pro-
tein production is shown to occur in bursts, which is due
to its repressing function: Given a large number of proteins,
the repressing of the gene becomes very likely. If the gene
is repressed, no new mRNA is transcribed, and the existing
mRNA-molecules quickly vanish because of the large decay
rateα5

r . The translation into proteins is interrupted, and the pro-
tein population simply decays over time. With a smaller protein
population, the repressing of the gene becomes less likely and
transcription can start again. Such a periodic evolution of the
number of proteins exists in our coarse-grained model; see
Figure 3 which looks much like Figure 8 in Ref. 20. The

FIG. 3. Number of nuclear proteins over time in one realization of the
ST-CME. The protein production occurs in bursts.
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chosen reaction rates roughly follow those given in Ref. 20;
however, without any claim to reproduce reality, we simply
intend to maintain the fundamental qualitative behavior of
the system. Concretely, we set α1

1 = 0.05 (transcription in
nucleus), α2

2 = 0.5 (translation in cytoplasm), α3
1 = 0.01

(repressing in nucleus), α4
1 = 0.01 (reversal of repressing in

nucleus), α5
2 = 0.3 (degradation of mRNA in the cytoplasm),

α6
r = 0.0025 (degradation of protein in both compartments),

and λmRNA
12 = λP

21 = 0.4 (jump rates).

III. FORMAL DERIVATION OF THE ST-CME
FOR A REDUCED MODEL

In Section II B we presented the theory of Markov state
models as a practical tool to significantly coarsen the diffusion
dynamics by finding suitable space decompositions as well as
rates for transitions between the compartments. Beside the
practical and algorithmic details, MSMs also provide a well
understood mathematical background, with the coarse-grained
dynamics arising from Galerkin projections of the original
process.28

In this section, we apply the technical concepts and for-
mally derive the ST-CME from a given particle-based model by
means of a Galerkin approximation of the associated evolution
equations. To this end, we study a reduced model consist-
ing of two particles, one of species A and one of species B,
that diffuse independently in space Ω and undergo the bind-
ing reaction A + B → C with a position-independent rate
γ1

micro when getting closer than ε1 > 0. The resulting C-
particle diffuses in space and can unbind again with a fixed
rate γ2

micro, see the reaction system given in (5). In this setting,

the state space of the ST-CME reduces to states n ∈ NM,3
0 of

either the form n= E1
r + E2

s —which refers to finding an A-
particle in compartment Ωr and a B-particle in compartment
Ωs while species C is absent—or n= E3

r referring to the exis-
tence of a C-particle in compartment Ωr , while A and B are
absent.

This is a totally over-simplified case that nevertheless
allows to perform the formal derivation of the ST-CME in
all details. As one can see in the Appendix, the approach
can be transferred to larger populations (particle and species
numbers).

A. The particle-based model

As for the particle-based dynamics we make the follow-
ing assumptions. Given A and B undergoing a reaction, the
resulting C-particle is placed at the position x ∈ Ω of the A-
particle. After an unbinding reaction, the particles A and B are
placed within a ball Bε2 (z) of radius ε2 > 0 around the position
z ∈ Ω of the preceding C-particle, with the positions x and y of
A and B is chosen independently of each other, both uniformly
distributed on Bε2 (z).

We denote by p(x,y,t) the probability density for the parti-
cles A and B to be unbound and located at x and y, respectively,
at time t ≥ 0, and by p̃(z, t) the probability density for the par-
ticles to be bound with the C-particle located at z at time t ≥ 0.

With this notation, it holds∫
Ω2

p(x, y, t) dxdy +
∫
Ω

p̃(z, t) dz = 1

for all times t ≥ 0.
The time evolution of the two functions p and p̃ is given

by a coupled system of differential equations

∂tp(x, y, t) = (L1p)(x, y, t) + (L2p)(x, y, t)

− γ1
micro φε1 (x, y)p(x, y, t)

+
γ2

micro

|Bε2 |
2

∫
φε2 (x, z)φε2 (y, z) p̃ (z, t) dz, (6)

∂t p̃(z, t) = (L3p̃)(z, t) + γ1
micro

∫
φε1 (z, y) p (z, y, t) dy

− γ2
micro p̃(z, t), (7)

where L1, L2, L3 denote the generators of the diffusion pro-
cesses of species A, B, C (in flat spaces without energy barriers
these are Laplacian operators), respectively, and φεk (k = 1, 2)
is given by

φεk (x, y) = Φ

(
|x − y|
εk

)
,

where Φ denotes the indicator function of the ball B1(0). In
(6), outflow is induced by the binding reaction in cases where
the positions x and y are ε1-close to each other (2nd line),
while inflow is induced in case of an existing C-particle with
its location being able to produce the given positions x and
y after unbinding (3rd line). In (7), binding induces inflow
(2nd line) where the position of the former A-particle has to
be at the given position z of the resulting C-particle, while
unbinding induces outflow (3rd line), see the given placement
assumptions.

B. Galerkin projection

The dynamics described by the coupled Equations (6)
and (7) have a full spatial resolution, breaking down the
exact positions of the particles in space. For the ST-CME
the information must be coarsened to the level of compart-
ments. This is done by projecting the dynamics onto a suitable
low-dimensional ansatz space.

We consider a partition of Ω into subsets Ωr ,
r = 1, . . . , M, and denote by χr the indicator function of
Ωr . That is, χr is 1 inside of Ωr and 0 outside. Let 〈 f , g〉
be the usual L2-scalar product of functions f and g that
depend on Ω, i.e., 〈 f , g〉 = ∫Ω f (x)g(x)dx. If the generators
L1, L2, L3 do not denote flat diffusion but diffusion in an
energy landscape, then the scalar product must be weighted
with the respective product invariant measure, see Ref. 28.
Define

µr = 〈1, χr〉 ,

where 1 is the constant 1-function on Ω. The Galerkin projec-
tion Q : L2(Ω) → D onto the finite-dimensional ansatz space
D = span{ χr : r = 1, . . . , M} is given by

Q3 =
M∑

r=1

1
µr
〈χr , 3〉 χr , 3 ∈ L2(Ω).
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We further use the functions

χrs(x, y) = χr(x)χs(y), r, s = 1, . . . , M,

as a partition of unity of Ω × Ω. Parallel to the definitions
before, we set

µrs = 〈1, χrs〉 ,

where in this context 〈·, ·〉 refers to the L2-scalar product on
Ω ×Ω, and

Q3 =
M∑

r,s=1

1
µrs
〈χrs, 3〉 χrs, 3 ∈ L2

(
Ω

2
)

,

as a projection onto D = span{ χrs : r, s = 1, . . . , M}. By
definition, it holds

µrs = µr µs.

Applying the projection to the density functions p and p̃
gives the ansatz

(Qp)(x, y, t) =
M∑

r,s=1

prs(t)χrs(x, y),

(Qp̃)(z, t) =
M∑

r=1

p̃r(t)χr(z),

with time dependent coefficients prs(t) and p̃r(t). Inserting into
(6) and (7) yields

M∑
r,s=1

∂tprs(t)χrs(x, y) =
M∑

r,s=1

prs(t)
(
L1 χrs(x, y) + L2 χrs(x, y)

)
− γ1

micro

M∑
r,s=1

prs(t)φε1 (x, y)χrs(x, y)

+
γ2

micro

|Bε2 |
2

∑
i

p̃i(t)
∫
φε2 (x, z)φε2 ( y, z)

· χr(z) dz, (8)

M∑
r=1

∂t p̃r(t)χr(z) =
M∑

r=1

p̃r(t)L3 χr(z)

+ γ1
micro

M∑
r,s=1

prs(t)
∫
φε1 (z, y)χrs(z, y) dy

− γ2
micro

M∑
r=1

p̃r(t)χr(z). (9)

The local coordinates x, y, z of the particles still appear as argu-
ments. In order to eliminate them, the coupled Equations (8)
and (9) are themselves projected onto the given ansatz space,
which refers to taking local averages of the terms for each
combination of compartments. This automatically delivers the
formal relation between the microscopic and the macroscopic
model parameters. In fact, we define the macroscopic reaction
rate constant for r, s, r ′ = 1, . . . , M by the averages

γ1
rs := γ1

micro ·
1
µrs

∫
χr(x)χs( y)φε1 (x, y) dx dy,

γ2
rsr′ :=

γ2
micro

|Bε2 |
2
·

1
µr

∫
χr(x)χs( y)χr′(z)φε2 (x, z)φε2 (y, z)

· dx dy dz,

which depend on the microscopic reaction rate and the reaction
radius. Similarly, the jump rates are given by

λl
rs :=

1
µr

∫
χs(x)Ll χr(x) dx =

1
µr
〈χs, Ll χr〉 , l = 1, 2, 3.

Since Ll, l = 1,2, only acts on xl, we have that

〈χrs, L1 χr′s′〉 =

{
µs 〈χr , L1 χr′〉 = µr′sλ

1
r′r for s = s′,
0 otherwise,

〈χrs, L2 χr′s′〉 =

{
µr 〈χs, L2 χs′〉 = µrs′λ

2
s′s for r = r ′,
0 otherwise.

With this observation and the notations from above we get, by
multiplication of (8) with 〈χrs, ·〉 and by multiplication of (9)
with 〈χr , ·〉, the system

µrs∂tprs(t) =
M∑

r′=1

λ1
r′r · µr′spr′s(t) +

M∑
s′=1

λ2
s′s · µrs′prs′(t)

− γ1
rs · µrsprs(t) +

M∑
r′=1

γ2
rsr′ · µr′ p̃r′(t), (10)

µr∂t p̃r(t) =
M∑

r′=1

λ3
r′r · µr′ p̃r′(t)

+

M∑
s=1

γ1
rs · µrsprs(t) − γ

2
micro · µr p̃r(t), (11)

which does not contain any local coordinates, any-
more. The system of Equations (10) and (11) actually
can be understood as a spatiotemporal master equation,
given the assumption that reactions are also possible between
particles suited in different compartments. With respect to the
notation given in (1), we have the relation

P(n, t) =



µrs · prs(t) for n= E1
r+E2

s ,
µr · p̃r(t) for n= E3

r ,
0 otherwise,

where P(n, t) is the probability to find the system in state n at
time t, see Section II A.

In order to reveal the parallelism to the ST-CME
given in (1), we assume that such “mixed” reactions are
suppressed, i.e., reactions take place only between parti-
cles located within the same compartment, and the prod-
uct of a reaction is placed in the compartment of the
reagents. This refers to setting γ1

rs = 0, γ2
rsr′ = 0 for all mixed

(non constant) combinations of indices. For comparatively
large compartments and small ε1, ε2, all these values are
close to zero for mixed indices by definition, anyway.
For the reaction rate functions appearing in (1), we then
obtain

α1
r (n) =



γ1

micro
|Bε1 |

µr
for n= E1

r+E2
r ,

0 otherwise,

α2
r (n) =

{
γ2

micro for n= E3
r ,

0 otherwise.
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Now, the equations simplify to

µrs∂tprs(t) =
M∑

r′=1

λ1
r′r · µr′spr′s(t) +

M∑
s′=1

λ2
s′s · µrs′prs′(t)

− δrsγ
1
micro

|Bε1 |

µr
· µrsprs(t) + δrsγ

2
micro · µr p̃r(t),

µr∂t p̃r(t) =
M∑

r′=1

λ3
r′r · µr′ p̃r′(t) + γ

1
micro

|Bε1 |

µr
· µrrprr(t)

− γ2
micro · µr p̃r(t),

where δrs is the Kronecker delta. Noting that by definition
it holds λl

rr = −
∑

r′,r λ
l
rr′ for all l = 1, 2, 3 this is just a

reformulation of the ST-CME (1).
Remark 3.1. The available theory of Markov state mod-

els shows that one may also use ansatz functions χr that are
different from indicator functions as long as they form a par-
tition of unity of Ω.28,30 That is, along these lines we can also
derive versions of the ST-CME where spatial discretization is
not based on sets/compartments but on smooth functions, e.g.,
committor functions for core sets as in Ref. 30 or radial basis
functions as in meshless discretization.33 This increases the
flexibility of our approach significantly and is known to allow
for superior approximation quality if recrossing scenarios are
important.28

IV. CONCLUSION

We introduced the spatiotemporal master equation as a
framework for modeling reaction-diffusion dynamics in situa-
tions where the diffusion process exhibits metastability. By the
construction of a Markov state model for the diffusive part, the
structural properties of the dynamics are preserved and diffu-
sion is replaced by a jump process on a comparatively small set
of compartments. Although in the literature usually related to
conformational dynamics of an individual molecule, the theory
of MSM is a powerful tool for finding adequate space decom-
positions and estimating the related transition parameters in a
reaction-diffusion system of several molecules. In application,
the method can directly process experimental data such that
particle-based simulations are completely circumvented.

For the ST-CME approach to by valid, the well-mixed
assumption does not have to apply for the total dynamics (as it
does for the CME) but only on the level of compartments. As
for the spatial resolution the ST-CME lies between the CME
which excludes all spatial information and more detailed mod-
els like the RDME (where space is discretized by meshes)
or particle-based reaction-diffusion systems (where the exact
positions of all particles are retraced). The same is true for
the numerical effort induced by simulations of the respective
systems. We compared the models for two reaction-diffusion
systems within a eukaryotic cell and showed that the ST-CME
is able to replicate the more detailed models regarding quan-
titative and qualitative properties.

Describing a reaction-diffusion system which behaves
well-mixed in spatial subareas by a ST-CME is an intuitive
approach. We showed that this approach has a clear mathemat-
ical foundation, with the ST-CME arising from a Galerkin pro-
jection of the corresponding particle-based dynamical system

onto the subspace spanned by appropriate ansatz functions.
In the standard case, these ansatz functions are the indicator
functions of the compartments, and the ST-CME is a combina-
tion of jump processes between compartments and the reaction
part. However, other families of ansatz functions may provide
superior approximation properties. The analysis given in the
Appendix shows that, in principle, the ansatz functions used
for the Galerkin approach could not only discretize the spatial
domain but also the particle number space. A detailed analysis
of how to choose the ansatz functions is not given here but will
have to be a part of future research.

Another topic of interest is the combination of the dif-
ferent models in situations where parts of a system are well-
mixed, while others require a particle-based resolution. Then,
the ST-CME has to be coupled to the stochastic dynamics of
some particles that are individually tracked in certain areas
of space. In contrast, also parts of the system could show
high density allowing for a description by ODE’s which leads
to a stochastic-deterministic evolution equation comprising a
ST-CME. The development of such hybrid approaches to han-
dle multi-scale reaction-diffusion dynamics is the subject of
ongoing work.
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APPENDIX: GENERALIZED FORMAL DERIVATION
OF THE ST-CME

In Section III we formally derived the ST-CME from a
given particle-based model of binding and unbinding with not
more than one particle of each species. We will here gener-
alize the analysis to systems with larger populations: Several
particles of species A and B diffuse independently in space Ω
and undergo the binding reaction A + B→ C with a position-
independent rate γ1

micro when getting closer than ε1 > 0. The
resulting C-particles diffuse in space and can unbind again
with a fixed rate γ2

micro.

1. Particle numbers

Subsequently we assume that we never have more than n
particles of every individual type in our system. That is, if a,
b, c denote the numbers of molecules of types A, B, C in the
system, then

(a, b, c) ∈ N, N = {(a, b, c) : a, b, c ≤ n, a + b + 2c ≤ 2n}.

2. Notation

In addition to the given space of motion Ω, we introduce
the artificial void state V indicating that the particle is absent.
For every individual particle in the system, the position then
comes from S = V ×Ω. The positions of the n particles of type
A are denoted by

X = (x1, . . . , xn)∈ Sn,
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and those of B and C by

Y = (y1, . . . , yn)∈ S n, Z = (z1, . . . , zn)∈ S n,

such that the state of the entire system is given by

(X , Y , Z) ∈ S3n.

In the following we consider only those (X,Y,Z) with

*
,

∑
i

χΩ(xi),
∑

i

χΩ( yi),
∑

i

χΩ(zi)+
-
∈ N.

3. Placement assumption

Given the positions xi ∈ Ω and yj ∈ Ω of an A- and a
B-particle undergoing a reaction, the resulting C-particle is
placed at the position xi of the A-particle. After an unbind-
ing reaction, the particles A and B are placed within a ball
Bε2 (z) of radius ε2 around the position zk ∈ Ω of the preced-
ing C-particle, with the positions xi and yj of A and B chosen

independently of each other, both uniformly distributed on
Bε2 (zk).

The index of a C-particle resulting from a binding reaction
is chosen to be the first index of a void state in Z. Equivalently,
the positions of the A- and B-particles resulting from unbinding
are inserted into X and Y at the respective first void entry. The
insertion of a position x ∈ Ω at index k into state X∈ S n is
denoted by

X+k (x) = (x1, . . . , xk−1, x, xk+1, . . . , xn),

while setting position xk in state X∈ S n to void is denoted by

X−k = (x1, . . . , xk−1, V , xk+1, . . . , xn).

Equivalent notations are chosen for Y and Z.

4. The particle-based dynamics

By p(X, Y, Z, t) we denote the probability density function
of finding the system in state (X, Y , Z) ∈ S3n at time t. For
integration we use the notation, for example,

∫
S

p(x1, . . . , xn, Y , Z , t)dx1 = p(V , x2, . . . , xn, Y , Z , t) +
∫
Ω

p(x1, . . . , xn, Y , Z , t)dx1.

Let Lxi, Lyj, Lzk denote the generators of the diffusion processes of species A, B, C acting on coordinate xj, yj, and zk on Ω,
respectively. Then we define

LAp(x1, . . . , xn, Y , Z , t) =
n∑

i=1

χΩ(xi)Lxi p(x1, . . . , xn, Y , Z , t).

The time evolution of the function p is given by the following differential equation:

∂tp(X, Y , Z , t) = (LA + LB + LC)p(X , Y , Z , t)

−γ1
micro

n∑
i, j=1

χΩ(xi)χΩ(yj)φε1 (xi, yj)p(X, Y , Z , t)

+ γ1
micro

n∑
k=1

k∏
l=1

χΩ(zl)
n∑

i, j=1

χV (xi)χV ( yj)
∫
Ω

φε1 (zk , y)p
(
X+i (zk), Y+j (y), Z−k , t

)
dy

− γ2
micro

n∑
k=1

χΩ(zk)p(X , Y , Z , t)

+
γ2

micro

|Bε2 |
2

n∑
k=1

χV (zk)
n∑

i, j=1

i∏
l=1

χΩ(xl)
j∏

l=1

χΩ(yl) ·
∫
Ω

φε2 (xi, z)φε2 (yj, z)p
(
X−i , Y−j , Z+k (z) , t

)
dz, (A1)

where φε is given by

φε(x1, x2) = Φ

(
|x1 − x2 |

ε

)
,

with Φ denoting the indicator function of the ball B1(0).
Explanation:

• The first line in Equation (A1) refers to the independent
diffusion of all particles.

• The second line refers to the outflow from state (X, Y, Z)
induced by the binding reaction.

• The third line refers to the inflow induced by the
binding reaction of the form

(
X+i (zk), Y+j ( y), Z−k

)
→ (X, Y , Z).

For the state (X,Y,Z) to result from this reaction, the entry zk

of Z has to be located in Ω and must fulfill zl ∈ Ω for all l < k
because the new positions are assumed to be located at the first
index of a void state in Z. The actual positions xi and yj of X
and Y have to be void, whereas before they were given by zk

and y with y located in an ε1-environment around zk .

• The 4th line refers to the outflow from (X,Y,Z) by
unbinding.

• The 5th line refers to the inflow induced by unbinding
of the form
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X−i , Y−j , Z+k (z)

)
→ (X, Y , Z).

Here, the actual position zk must be void, while the positions
xi and yj both have to be in Ω with no preceding void-entries
(again because the new positions resulting from unbinding are
placed at the respective first void-entries). Both xi and yj must
be ε2-close to the z-particle they result from. As both positions
are chosen uniformly distributed in the Bε2 -ball around z, the
unbinding rate is divided by its size squared.

5. Galerkin projection
a. Ansatz functions

We consider a partition of Ω into subsets Ω1, . . . ,Ωm and
define the indicator function for the system to have exactly
ar ∈ {0, . . . , n} molecules of type A in set Ωr ⊂ Ω,

χar (X |Ωr) =

{
1 if

∑n
i=1 χr(xi) = ar ,

0 otherwise,

where χr is the indicator function of Ωr . Then, the indicator
function for having exactly ar molecules of type A and br

molecules of type B and cr molecules of type C in set Ωr

(ar , br , cr ∈ {0, . . . , n}) is given by

χar ,br ,cr (X, Y , Z |Ωr) = χar (X |Ωr)χbr (Y |Ωr)χcr (Z |Ωr).

For the total system we use the ansatz functions

χa,b,c(X, Y , Z) =
m∏

r=1

χar ,br ,cr (X, Y , Z |Ωr),

where a = (ar)r=1,..., m, b = (br)r=1,..., m, c = (cr)r=1,..., m with
ar , br , cr ∈ {0, . . . , n} and

*
,

m∑
r=1

ar ,
m∑

r=1

br ,
m∑

r=1

cr
+
-
∈ N.

The allowed index set of the three vector-indices of our ansatz
functions will be denoted I. It is important to notice that these
ansatz functions do not overlap,

〈χa,b,c, χã,b̃,c̃〉 = µa,b,c δaãδbb̃δcc̃, µa,b,c > 0,

but form a partition of unity of the accessible state space.

b. Galerkin ansatz

We consider the Galerkin projection Q : L2
(
S3n

)
→ D

onto the finite-dimensional ansatz space D = span{ χa,b,c :
(a, b, c) ∈ I} given by

Qv =
∑

(a,b,c)∈I

1
µa,b,c

〈
χa,b,c, v

〉
χa,b,c, v ∈ L2

(
S3n

)
,

with

µa,b,c =
〈
1, χa,b,c

〉
and

〈u, v〉 =
∫
S
. . .

∫
S

u(X, Y , Z)v(X , Y , Z)dx1 . . . dxndy1 . . . dyndz1 . . . dzn.

The ansatz for p(X,Y,Z,t) now is

(Qp)(X, Y , Z , t) =
∑

(a,b,c)∈I
pa,b,c(t) χa,b,c(X, Y , Z),

with

pa,b,c(t) =
1

µa,b,c
〈χa,b,c, p(·, t)〉.

Inserting into (A1) gives∑
(a,b,c)∈I

∂tpa,b,c(t)χa,b,c(X , Y , Z) =
∑

(a,b,c)∈I
pa,b,c(t)(LA + LB + LC)χa,b,c(X, Y , Z)

− γ1
micro

∑
(a,b,c)∈I

pa,b,c(t)
n∑

i,j=1

χΩ(xi)χΩ(yj)φε1 (xi, yj)χa,b,c(X, Y , Z)

+ γ1
micro

∑
(a,b,c)∈I

pa,b,c(t)
n∑

i,j,k=1

k∏
l=1

χΩ(zl)χV (xi)χV (yj)

·

∫
Ω

φε1 (zk , y)χa,b,c

(
X+i (zk), Y+j (y), Z−k

)
dy

− γ2
micro

∑
(a,b,c)∈I

pa,b,c(t)
n∑

k=1

χΩ(zk)χa,b,c(X , Y , Z)

+
γ2

micro

|Bε2 |
2

∑
(a,b,c)∈I

pa,b,c(t)
n∑

i,j,k=1

χV (zk)
i∏

l=1

χΩ(xl)
j∏

l=1

χΩ(yl)

·

∫
Ω

φε2 (xi, z)φε2 (yj, z)χa,b,c

(
X−i , Y−j , Z+k (z)

)
dz.
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Multiplication by
〈
χã,b̃,c̃, ·

〉
gives

µã,b̃,c̃ · ∂tpã,b̃,c̃(t) =
∑

(a,b,c)∈I

〈
χ ã,b̃,c̃, (LA + LB + LC)χa,b,c

〉
· pa,b,c(t)

− γ1
micro

∑
(a,b,c)∈I

〈
χã,b̃,c̃,

n∑
i, j=1

χΩ(xi)χΩ(yj)φε1 (xi, yj)χa,b,c

〉
· pa,b,c(t)

+ γ1
micro

∑
(a,b,c)∈I

〈
χã,b̃,c̃,

n∑
i, j,k=1

k∏
l=1

χΩ(zl)χV (xi)χV (yj)

·

∫
Ω

φε1 (zk , y)χa,b,c

(
X+i (zk), Y+j (y), Z−k

)
dy

〉
· pa,b,c(t)

− γ2
micro

∑
(a,b,c)∈I

〈
χã,b̃,c̃,

n∑
k=1

χΩ(zk)χa,b,c

〉
· pa,b,c(t)

+
γ2

micro

|Bε2 |
2

∑
(a,b,c)∈I

〈
χã,b̃,c̃,

n∑
i, j,k=1

χV (zk)
i∏

l=1

χΩ(xl)
j∏

l=1

χΩ(yl)

·

∫
Ω

φε2 (xi, z)φε2 (yj, z)χa,b,c

(
X−i , Y−j , Z+k (z)

)
dz

〉
· pa,b,c(t).

Due to the scalar product structure, most of the summands vanish. For the remaining summands, we choose the following notations:

α1(a, b, c) := γ1
micro ·

1
µa,b,c

∫ ∑
i, j

χΩ(xi)χΩ(yj)φε1 (xi, yj)χa,b,c(X , Y , Z) dX dY dZ

α1
rr′(a, b, c) := γ1

micro ·
1

µa,b,c

∫ n∑
i, j,k=1

k−1∏
l=1

χΩ(zl)χr(zk)χV (xi)χV (yj)
∫
Ωr′

φε1 (zk , y)χa,b,c

(
X+i (zk), Y+j (y), Z−k

)
dy dX dY dZ

= γ1
micro ·

1
µa,b,c

∫ n∑
i, j,k=1

k−1∏
l=1

χΩ(zl)χV (zk)χr(xi)χr′(yj)φε1 (xi, yj)χa,b,c (X , Y , Z) dX dY dZ

= γ1
micro ·

1
µa,b,c

∫ n∑
i, j=1

χr(xi)χr′(yj)φr′(yj)φε1 (xi, yj)χa,b,c (X, Y , Z) dX dY dZ ,

which implies ∑
r,r′

α1
rr′(a, b, c) = α1(a, b, c)

for all a, b, c ∈ I, and

α2(a, b, c) := γ2
micro ·

1
µa,b,c

∫ ∑
k

χΩ(zk)χa,b,c(X, Y , Z) dX dY dZ

α2
rr′(a, b, c) :=

γ2
micro

|Bε2 |
2
·

1
µa,b,c

∫ n∑
i,j,k=1

χV (zk)
i−1∏
l=1

χΩ(xl)χr(xi)
j−1∏
l=1

χΩ(yl)χr′(yj)

·

∫
Ωr

φε2 (xi, z)φε2 (yj, z)χa,b,c

(
X−i , Y−j , Z+k (z)

)
dz dX dY dZ

=
γ2

micro

|Bε2 |
2
·

1
µa,b,c

∫ n∑
i,j,k=1

χr(zk)
i−1∏
l=1

χΩ(xl)χr(xi)
j−1∏
l=1

χΩ(yl)χr′(yj)

· φε2 (xi, zk)φε2 (yj, zk)χa,b,c

(
X−i , Y−j , Z

)
dX dY dZ

=
γ2

micro

|Bε2 |
2
·

1
µa,b,c

∫ n∑
i,j,k=1

χr(zk)
i−1∏
l=1

χΩ(xl)χV (xi)
j−1∏
l=1

χΩ(yl)χV (yj)

·

∫
Ωr

∫
Ωr′

φε2 (x, zk)φε2 (y, zk) dx dy · χa,b,c (X, Y , Z) dX dY dZ

=
γ2

micro

|Bε2 |
2
·

1
µa,b,c

∫ n∑
k=1

χr(zk) · |Br
ε2

(zk)| · |Br′
ε2

(zk)| · χa,b,c (X, Y , Z) dX dY dZ ,
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where

|Br
ε2

(z)| :=
∫
Ωr

φε2 (x, z) dx

such that
∑m

r=1 |B
r
ε2

(z)| = |Bε2 | for all z ∈ Ω and therefore∑
r,r′

α2
rr′(a, b, c) = α2(a, b, c)

for all a, b, c ∈ I.
For the diffusion part we have〈

χã,b̃,c̃, (LA + LB + LC)χa,b,c

〉
=

〈
χã,b̃,c̃, LA χa,b,c

〉
+

〈
χã,b̃,c̃, LB χa,b,c

〉
+

〈
χã,b̃,c̃, LC χa,b,c

〉
and 〈

χã,b̃,c̃, LA χa,b,c

〉
=

〈
χã,b̃,c̃,

n∑
i=1

χΩ(xi)Lxi χa,b,c

〉
. (A2)

In each of these summands, the generator only acts on the coordinates X i of one individual particle of species A which means
that the related scalar product can be nonzero only for those a, b, c with a = ã + 1r′ − 1r for some r, r ′ ∈ {1, . . . , m}, while b̃ = b
and c̃ = c. (In an equivalent notation, this statement holds for species B and C.)

We assume that all particles of one species follow the same diffusion dynamics (i.e., Lxi = L1 for all i; equivalently for yi,zi).
Then, for r, r ′ = 1, . . . , m and l = 1,2,3, we define the jump rate from Ωr′ to Ωr by

λl
r′r :=

1
µr′
〈χr , Ll χr′〉

which—by the properties of the propagator Ll—fulfills λl
r′r ≥ 0 for r ′ , r and λl

rr = −
∑

r′,r λ
l
rr′ for all r.

Fixing one xi (for simplicity i = 1), we have〈
χã,b̃,c̃, χΩ(x1)Lx1 χa,b,c

〉
=

∑
r

〈
χã,b̃,c̃, χr(x1)Lx1 χa,b,c

〉
=

∑
r

∫
χã,b̃,c̃(X, Y , Z)χr(x1)(Lx1 χa,b,c)(X , Y , Z) dX dY dZ

=
∑

r: ãr>0
r′: ar′>0

∫
χr(x1)(Lx1 χr′)(x1)χã−1r (x2, . . . , xn)χa−1r′

(x2, . . . , xn)

· χã(Y )χb(Y )χã(Z)χc(Z) dX dY dZ

=
∑

r: ãr>0
r′: ar′>0

µr′λ
1
r′r · δa−1r′ ,ã−1r

∫
χã − 1r(x2, . . . , xn) dx2 . . . dxn · δb̃,b µb̃ · δc̃,c µc̃

=
∑

r: ãr>0
r′: ar′>0

δa−1r′ ,ã−1r · δb̃,b · δc̃,c · λ
1
r′r µã+1r′ −1r,b̃,c̃.

In (A2) we sum up over all i = 1, . . . , n, which leads to a multiplication of λ1
r′r by ar′ = (ã + 1r′ − 1r)r′ giving〈

χã,b̃,c̃, LA χã+1r′ −1r ,b̃,c̃

〉
=

∑
r,r′

(ã + 1r′ − 1r)r′ · λ
1
r′r · µã+1r′ −1r ,b̃,c̃

=
∑

r

*
,
ãr · λ

1
rr · µã,b̃,c̃ +

∑
r′,r

(ãr′ + 1) · λ1
r′r · µã+1r′ −1r,b̃,c̃

+
-

.

We finally get

µã,b̃,c̃ · ∂tpã,b̃,c̃(t) =
∑

r

∑
r′,r

(
λ1

r′r(ãr′ + 1)µã+1r′ −1r,b̃,c̃pã+1r′ −1r,b̃,c̃ − λ
1
rr′ ãr µã,b̃,c̃pã,b̃,c̃

)
+

∑
r

∑
r′,r

(
λ2

r′r(b̃r′ + 1)µã,b̃+1r′ −1r,c̃pã,b̃+1r′ −1r,c̃ − λ
2
rr′ b̃r µã,b̃,c̃pã,b̃,c̃

)
+

∑
r

∑
r′,r

(
λ3

r′r(c̃r′ + 1)µã,b̃,c̃+1r′ −1r
pã,b̃,c̃+1r′ −1r

− λ3
rr′ c̃r µã,b̃,c̃pã,b̃,c̃

)
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− α1(ã, b̃, c̃) · µã,b̃,c̃ · pã,b̃,c̃(t) +
∑

r,r′:c̃r>0

α1
rr′(ã + 1r, b̃ + 1r′ , c̃ − 1r)

· µã+1r,b̃+1r′ ,c̃−1r
· pã+1r,b̃+1r′ ,c̃−1r

(t) − α2(ã, b̃, c̃) · µã,b̃,c̃ · pã,b̃,c̃(t)

+
∑

r,r′:ãr>0,br′>0

α2
rr′(ã − 1r, b̃ − 1r′ , c̃ + 1r) · µã−1r,b̃−1r′ ,c̃+1r

· pã−1r,b̃−1r′ ,c̃+1r
(t).

Setting α1
rr′ = 0, α2

rr′ = 0 for r , r ′, this is the ST-CME
given in (1), where n is given by (ã, b̃, c̃) with n1

r = ãr , n2
r = b̃r ,

n3
r = c̃r , and

P(n, t) = µã,b̃,c̃ · pã,b̃,c̃(t)

for n = (ã, b̃, c̃).
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