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Meta-analysis of GWAS of over 16,000
individuals with autism spectrum disorder
highlights a novel locus at 10q24.32 and a
significant overlap with schizophrenia
The Autism Spectrum Disorders Working Group of The Psychiatric Genomics Consortium

Abstract

Background: Over the past decade genome-wide association studies (GWAS) have been applied to aid in the
understanding of the biology of traits. The success of this approach is governed by the underlying effect sizes carried
by the true risk variants and the corresponding statistical power to observe such effects given the study design and
sample size under investigation. Previous ASD GWAS have identified genome-wide significant (GWS) risk loci; however,
these studies were of only of low statistical power to identify GWS loci at the lower effect sizes (odds ratio (OR) <1.15).

Methods: We conducted a large-scale coordinated international collaboration to combine independent genotyping
data to improve the statistical power and aid in robust discovery of GWS loci. This study uses genome-wide
genotyping data from a discovery sample (7387 ASD cases and 8567 controls) followed by meta-analysis of summary
statistics from two replication sets (7783 ASD cases and 11359 controls; and 1369 ASD cases and 137308 controls).

Results: We observe a GWS locus at 10q24.32 that overlaps several genes including PITX3, which encodes a transcription
factor identified as playing a role in neuronal differentiation and CUEDC2 previously reported to be associated with social
skills in an independent population cohort. We also observe overlap with regions previously implicated in schizophrenia
which was further supported by a strong genetic correlation between these disorders (Rg = 0.23; P = 9 × 10−6). We further
combined these Psychiatric Genomics Consortium (PGC) ASD GWAS data with the recent PGC schizophrenia GWAS to
identify additional regions which may be important in a common neurodevelopmental phenotype and identified 12
novel GWS loci. These include loci previously implicated in ASD such as FOXP1 at 3p13, ATP2B2 at 3p25.3, and a
‘neurodevelopmental hub’ on chromosome 8p11.23.

Conclusions: This study is an important step in the ongoing endeavour to identify the loci which underpin the common
variant signal in ASD. In addition to novel GWS loci, we have identified a significant genetic correlation with schizophrenia
and association of ASD with several neurodevelopmental-related genes such as EXT1, ASTN2, MACROD2, and HDAC4.
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Background
Autism spectrum disorder (ASD) is diagnosed in roughly
1% of the population [1, 2] and has complex genetic
roots. The recurrence risk of developing ASD in siblings
of an affected individual is approximately 7–19% [3–5],
and estimates of heritability are high from both twin (64
−91%) [6] and whole genome genotyping studies (31
−71%) [7]. Analysis of rare and de novo structural and
sequence variation in ASD has had recent success in
identifying genes and the biology underpinning ASD, al-
beit with direct relevance to only a small proportion of
cases. The establishment of a number of robust risk
genes such as CHD8, GRIN2B, SCN2A, and SYNGAP1
[8], and gene-set analyses from associated structural
variation have identified synaptic functioning, chromatin
remodelling, Wnt signalling, transcriptional regulation,
fragile X mental retardation protein (FMRP) interactors
and, more broadly, MAPK signalling, as putative bio-
logical processes that are disrupted in ASD [9–13].
Importantly, common genetic variation explains roughly

half of this genetic risk in ASD [7], making the genome-
wide association study (GWAS) an efficient design for
identifying risk variants. Early GWAS [12, 14–17] were
performed using a variety of genotyping arrays, and the in-
dependent samples sizes were of low statistical power to
robustly identify genome-wide significant (GWS) loci at
the lower effect sizes (OR <1.15) [18]. Recently, large-scale
coordinated international collaborations have been estab-
lished to combine independent genotyping data to im-
prove statistical power, a strategy that has been fruitful for
both schizophrenia [19] and bipolar disorder [20]. In this
study, we report the first meta-analyses of a coordinated
international effort in ASD from the ASD Working Group
of the Psychiatric Genomics Consortium (PGC). By com-
bining published and unpublished GWAS data, we are
now able to provide more robust estimates of the under-
lying common variant structure.
In addition to identifying risk loci, we have examined

whether gene-sets previously implicated in ASD are
similarly impacted with associated common genetic risk
variants. The converging evidence across the variant
spectrum should reinforce and expand our understand-
ing of ASD biology. To uncover new biology, we have
also examined enrichment of association across numer-
ous functional and cellular annotations, as well as within
canonical gene-sets.
Finally, evidence that common structural variation is

shared by individuals with ASD, schizophrenia and intel-
lectual disability (ID) continues to fuel a common bio-
logical model of ID-ASD-schizophrenia [21]. For
example, FMRP biology has also been implicated in all
three diagnoses [11]. The hypothesis of a shared patho-
physiology for neurodevelopmental disorders is not
novel, with Craddock and Owen [22] suggesting that

autism exists along a continuum between mental retard-
ation (intellectual disability (ID)) and schizophrenia.
Using results from the PGC Schizophrenia Working
Group GWAS [19], we have directly tested the relation-
ship between ASD and schizophrenia and extended the
meta-analyses by combining these data to identify
neurodevelopment-related variants implicated across
disorders.

Methods
Participants
Using meta-analysis, we examined association from 14
independent cohorts contributed by eight academic
studies (see Table 1). Each contributing site confirmed
all affected individuals had an ASD diagnosis; details of
diagnostic processes are provided in the Additional file 1
and where available, study specific details are described
elsewhere [7, 12, 16, 17, 23–25]. Where data permitted,
we excluded individuals assessed at under 36 months of
age or if there was any evidence of diagnostic criteria
not being met from either the Autism Diagnostic
Interview-Revised (ADI-R) [26] or the Autism Diagnos-
tic Observation Schedule (ADOS) [27]. The primary
meta-analysis (Worldwide ancestry (WW)) was based on
data from 7387 ASD cases and 8567 controls. An add-
itional meta-analysis on a more ancestrally homogenous
subset (see Additional file 1) was also performed; this
subset included data from 6197 ASD cases and 7377
controls of ‘European ancestry’.
We sought independent replication of our results

using summary GWAS findings from two additional
sources; the Danish iPSYCH Project (7783 ASD cases
and 11359 controls) and a combined deCODE Collec-
tion (from Iceland plus a collection of individuals from
Ukraine, Georgia and Serbia) and the ‘Study to Explore
Early Development’ (SEED) (1369 ASD cases and
137308 controls). A detailed description of each cohort
is provided in the Additional file 1.

Statistical analyses
Genotyping quality control
Genotyping quality control and imputation of the 14 in-
dependent cohorts were performed by the PGC Statis-
tical Analysis Group. Each dataset was processed
separately. Experimental details are described in the
Additional file 1.

Association, meta-analyses, and binomial sign test
We tested all 14 cohorts individually for association
under an additive logistic regression model using PLINK
[28]. For samples derived from parent child trios, we ap-
plied a case-pseudocontrol design in which the pseudo-
control was created with the non-transmitted alleles
from the parents. Since these pseudocontrols are
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perfectly matched to each case, no covariates were used
in association analysis from these trio cohorts. For the
non-trio cohorts, each regression included derived prin-
cipal components as covariates [29]. To minimise the
putative reduction in power observed when non-
confounding covariates are included in GWAS for rare
disease [30], sex was not included as a covariate in these
analyses. Individual PP plots for each cohort are re-
ported in the Additional file 1: Figure S1).
We performed a meta-analysis of the individual GWAS

using an inverse-weighted fixed effects model [31] imple-
mented in METAL (http://csg.sph.umich.edu//abecasis/
Metal/) [32]. A fixed effects meta-analysis was chosen over
a random effects model to maximise power and improved
discover of associated SNPs [33]. An additional meta-
analysis was performed including 13 of the cohorts, omit-
ting the Swedish PAGES collection, this was named
noSWM3. The Swedish PAGES collection include control
individuals that overlap with the PGC schizophrenia
GWAS, and we wished to preclude any potential for con-
founding of our results which rely upon comparison of
these datasets. We performed a cross-disorder meta-
analysis of the noSWM3 ASD GWAS and the PGC
schizophrenia GWAS [19] using an inverse-weighted fixed
effects model as described above. We applied a GWS
threshold of P = 5 × 10−8. This is based on the Bonferroni
approach, controlling the observed associations at P = 0.05
given approximately 1000000 independent tests.

To aid interpretation, we report findings as linkage
disequilibrium (LD) independent SNPs and the corre-
sponding ranges attributed to the LD. LD pruning was
performed using the clump flag in PLINK v1.9 [28, 34].
Clumping was used to link additional associated markers
within a 0.5Mb window surrounding the primary associ-
ation. Markers were linked if they were also associated
at P < .05 and had an estimated LD with the index SNP
of r2 ≥ 0.2. Associated regions were defined for each
index SNP as the location spanning all linked markers.
All LD statistics were calculated using the 1000 genomes
project phase 1 integrated reference haplotypes.
Binomial sign tests to evaluate the random direction

effect between studies were implemented in STATA
(version 13, Statacorp, College Station, TX, USA).

Gene-based and gene-set analyses
Combining association signals for multiple loci across
genes and gene-sets has the potential to capture a
greater proportion of variance leading to an increase in
power [35]. We performed gene-based association ana-
lyses, using the VEGAS2 method (performed at: https://
vegas2.qimrberghofer.edu.au/) [36]. This method calcu-
lates a test statistic from the sum of test statistics within
a gene region. The LD between markers within a gene
region is calculated and adjusted for within the software
using the 1000 genomes reference genotypes. Analyses
were limited to the top 10%, by P value, of SNPs per

Table 1 Study design and sample size of the contributing ASD collections. For some collections, more than one genotyping panel
was used or the study design differed, i.e., trios or case-control; in such cases, the sample was split into ‘sets’ based on genotyping
array and design

Study name Set Design Sample size M:F ratio % Euro

Case Control

Autism Center of Excellence Network (ACE) Trios 372 372a 3.1:1 82.1

Autism Genetic Resource Exchange (AGRE) [1] Trios 572 572a 3.5:1 100.0

[2] Trios 1045 1045a 3.9:1 86.1

Autism Genome Project (AGP) [1] Trios 1259 1259a 5.4:1 95.9

[2] Trios 941 941a 8.6:1 84.4

Finnish Case-Control ASD Collection CaCo 159 526 3.3:1 99.7

NIMH Repository and Montreal/Boston (MonBos) Collection Trios 117 117a 4.1:1 95.5

Population-Based Autism Genetics and Environment Study (PAGES) CaCo 305 1200 2.2:1 100.0

Simons Simplex Collection (SSC) [1] Trios 396 396a 7.1:1 86.2

[2] Trios 617 617a 6.2:1 84.7

[3] Trios 804 804a 5.9:1 82.0

[4] Trios 372 372a 7.5:1 87.8

Weiss Laboratory Autism Collection [1] CaCo 331 249 7.2:1 100.0

[2] Trios 97 97a 1.2:1 100.0

Total 7387 8567 4.9:1 90.8
aFor trio designs, the control individuals are pseudocontrols generated from non-transmitted alleles. M:F ratio proportions derived from case-only; % Euro is an
approximation defined as similarity to reference genotypes from 1000 genomes project (see Additional file 1). All sample sizes reported are post-imputation
quality control
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gene, an approach which has been shown to give rise to
higher sensitivity and lower false positive rates compared
to other gene-set methods [37].
To explore the converging biology hypothesis of ASD

we examined enrichment within gene-sets derived from
previously implicated genes and pathways (candidate
gene-set) using the Interval-based Enrichment Analysis
Tool for Genome Wide Association Studies (INRICH)
method [38]. To identify new biology, we examined
gene-set enrichment using established canonical gene-
sets including gene ontology and the Kyoto Encyclopedia
of Genes and Genomes (KEGG) gene-sets. INRICH is a
pathway-based GWAS tool that tests for enrichment of
association signals against predefined gene-sets across
independent genomic intervals. INRICH analysis was
performed in interval mode. The interval mode de-
scribes an enrichment statistic E for each gene-set that
is the number of intervals that overlap at least one target
gene in the gene-set. The significance of E is approxi-
mated using permutation and an empirical P value is
generated from a null set of intervals which match the
interval size, overlapping gene, and SNP number to the
original input intervals. A detailed description of the
gene-set compositions for the candidate gene-set and ca-
nonical gene-sets is reported in the Additional file 1. A
summary of the sources of each candidate gene-set are
also reported in Additional file 1: Table S1.

LD score-based heritability
SNP-based heritability, genetic correlation estimation,
and partitioned heritability analyses were performed
using the LD score approach [39] (scripts available at
https://github.com/bulik/ldsc). Partitioned heritability
was performed to examine enrichment of the heritability
estimates within SNPs annotated per functional classes
based on gene structure (promoter, intron, coding, UTR)
and regulatory elements (Histone and DNASE-I hyper-
sensitivity sites). We also examined cell type-specific his-
tone binding elements to identify whether enrichment
was limited to specific cell and tissue types. Finally, we
applied the partitioned heritability method to examine
whether enrichment existed in genes and gene-pathways
previously implicated in ASD (see Additional file 1).

Results
Association analyses
Following quality control, the primary meta-analysis
(Worldwide ancestry (WW)) included data on 6695386
common variants across all chromosomes (1−22, X)
(minor allele frequency, MAF >0.05; imputation quality
score (INFO) >0.60). The secondary GWAS, restricted
to individuals defined as being of European (EUR) ances-
try, included data on 6632956 common variants that
surpassed quality control criteria. Summary Manhattan

and PP plots for each analysis are reported in Additional
file 1: Figures S2 (WW) and S3 (EUR). We applied a
genomewide significance threshold of P ≤ 5 × 10−8. None
of the markers investigated exceeded this threshold in
the WW meta-analysis. A summary table, containing de-
tails of linkage independent associations at P < 10−4 is re-
ported in the Additional file 2 (WW) and Additional file 3
(EUR). Complete summary statistics for these analyses
are available at https://www.med.unc.edu/pgc/results-
and-downloads.

Replication
Although none of the discovery markers exceeded the
GWS threshold, we wanted to further test the existence of
true positive signal in our top associated regions and sought
replication in independent samples. Previously, when com-
paring the results of an early iteration of the PGC schizo-
phrenia GWAS (PGC1) [40], which is of similar size to that
of reported here for the PGC ASD GWAS, to more recent
and larger PGC schizophrenia GWAS (PGC2) [19], we
noted that of the association signals 5 × 10−8 ≤ P < 10−4 in
the schizophrenia PGC1 study, over 10% (20 of 183 inde-
pendent loci) were subsequently reported as GWS in the
schizophrenia PGC2 analysis. Others have also observed
this, revealing in their sample that a substantial minority of
associations with borderline genome-wide significance rep-
resent replicable and possibly genuine associations [41].
Therefore, we sought replication of the primary PGC

ASD GWAS (WW). Summary association data were ob-
tained from the Danish iPSYCH ASD GWAS for all
180 LD-independent markers that were associated at
P < 10−4. Of these, 11 (6.1%) met the nominal P < 0.05
threshold in the iPSYCH sample, a non-significant en-
richment (Pr(K > = 11/180) = 0.29 where K is the num-
ber with P < 0.05). A step-wise binomial sign test was
then performed to evaluate the concordance of direc-
tion of the effect for each pair of markers below a
given rank. This analysis revealed significant enrich-
ment for markers ranked within the top 100 associa-
tions (see Fig. 1a). Of the 11 (of 180) markers that
were nominally associated in the Danish iPSYCH
ASD GWAS, all ranked within the top 100 PGC ASD
GWAS association signals (see Additional file 4).
A second replication set from the deCODE/SEED

ASD GWAS was also available. Due to platform differ-
ences, information from only 159 of the 180 LD-
independent markers was available. From these 159
markers, 8 (5%) resulted in association exceeding the
nominal P < .05 (Pr(K > = 8/159 = 0.54). The step-wise bi-
nomial sign test revealed a smaller concordance effect,
with the maximum concordance achieved with approxi-
mately the top 70 ranked PGC ASD GWAS association
signals, again all nominally associated markers reside
within this set (see Fig. 1b).
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When the top association signals from the PGC ASD
GWAS (P < 10−4) were meta-analysed against the
Danish iPSYCH data a single GWS association was ob-
served for rs1409313-T (OR = 1.12 (95% CI 1.08–1.16);
P = 1.058 × 10−8). This marker has previously been im-
plicated as a paternally inherited risk marker for ASD
within the Simons Simplex Collection (SSC) data [25].
The SSC is not independent as the PGC ASD GWAS
data as these individuals are included within our ana-
lyses. Examination of the LD between adjacent associ-
ated markers and rs1409313 using the clump routine in
PLINK, reveals that rs1409313 is correlated with nom-
inally associated markers across a 405 kb region on
chromosome 10q24.32 that includes 13 genes
(C10orf76, CUEDC2, ELOVL3, FBXL15, GBF1, HPS6,
LDB1, MIR146B, NFKB2, NOLC1, PITX3, PPRC1, and
PSD). A summary linkage disequilibrium locus plot of
these data is shown in Fig. 2.
Meta-analysis of the PGC ASD—deCODE/SEED data

did not result in any GWS findings. However, the top-

ranked loci do identify genes previously implicated in
ASD such as EXOC4 [42], ANO4 [43], EXT1 [44], and
ASTN2 [45]. Similarly, a combined meta-analysis of both
PGC plus iPSYCH plus deCODE/SEED datasets did not
identify markers exceeding the GWS threshold. The top-
ranked locus resulting from this analysis was again
rs1409313-T, albeit not achieving GWS (OR = 1.10 (95%
CI 1.06–1.14); P = 1.47 × 10−6). In addition to rs1409313-
T, the top-ranked associations include markers tag-
ging HDAC4, MACROD2, and EXOC4. A summary
of the meta-analysis results is provided in the
Additional file 4.

SNP-heritability estimate
We performed LD-score regression to determine the
additive heritability attributed to the genome-wide SNPs.
The heritability from the WW sample on the observed
scale is 0.326 (SE = 0.043, unconstrained, intersect 0.97
(0.007), liability scale h2 (assuming population preva-
lence of 1%; 0.18 (SE = .02)). This estimate was based on

Fig. 1 Sign test of concordance of the direction of effect (odds ratio) of the discovery (PGC worldwide) and the replication sample (a replication
set 1: iPSYCH; b replication set 2: deCODE/SEED). Blue line is the –log10(P) of the binomial sign test for all associated markers below the rank. The
green line describes the concordance, and the grey markers the association in the discovery set
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data from 1095,173 high-confidence SNPs, which show
an association inflation, Lambda = 1.06. For the
European ancestry samples, the heritability estimate is
nearly identical (1,081,358 SNPs; observed scale h2 =
0.334 (SE = 0.035; unconstrained; intersect 0.99 (0.008);
liability scale h2 (assuming population prevalence of 1%;
0.19 (SE = .02); Lambda = 1.07)). Both estimates are con-
sistent with previous PGC-based estimates of SNP herit-
ability from a subset of these data (liability scale h2 =
0.17 (SE = 0.025) [46]).
Using the noSWM3 ASD data and the summary

GWAS data from the PGC schizophrenia study, we esti-
mate the genetic correlation between ASD and schizo-
phrenia at approximately 23% (genetic correlation (Rg)
= 0.23 (SE = 0.05); P = 9 × 10−6; total liability scale genetic
covariance = 0.09 (SE 0.02)). This genetic covariance is
almost threefold larger than previous reports [47]. As a
null comparison, we estimated the genetic correlation
against the unrelated Rheumatoid Arthritis GWAS and
found no significant correlation with ASD.

Gene-based and gene-set analyses
Gene-based association, performed using the VEGAS2 al-
gorithm, tested the significance of 17,322 genes (Bonferroni
threshold P < 2.89 × 10−6) (see Additional file 5). No gene-
level associations were significant after Bonferroni correc-
tion. The minimum P value achieved, P = 7 × 10−6, was for
3 genes from chromosome 6p21.1 (ENPP4, ENPP5, and
CLIC5) and was driven by association of rs7762549, the 4th
ranked association interval. To the best of our knowledge,
none of these genes have previously been implicated in
ASD or ASD-related traits.

Association enrichment was performed using the
INRICH method [38]. Using the WW data, we observe
enrichment at an empirical P ≤ .05 for the synaptic co-
expression network M13 [48], Mendelian disease genes
[11], and both human (HARs) and primate-accelerated
regions (PARs) [49]. None of these enrichments
exceeded the experiment-wise corrected P ≤ .05. Due to
overlapping samples between the ASD and PGC GWAS,
INRICH analyses against the PGC schizophrenia study
[19] was restricted to the noSWM3 ASD GWAS includ-
ing the worldwide dataset minus the Swedish PAGES
sample. This set was analysed in isolation and exceeded
the experiment-wise correction (P = .008), with 19 of the
82 blocks included in the analysis overlapping these an-
notations. Finally, none of the 9708 canonical gene-sets
examined in these analyses met the experiment-wise
corrected P ≤ .05. A full summary of the INRICH ana-
lyses and associated files are given in the Additional files
6, 7, 8, 9, 10, 11, and 12. Of the top-ranked enrichments
from canonical pathways, some of the gene-sets overlap
those previously highlighted in ASD biology and include
processes such as glutamate receptor activity, adheren/
cell junctions and the beta-catenin nuclear pathway.
Using the LD Score approach, we also estimated the

proportion of heritability that can be attributed to spe-
cific partitions of the genome, such as those attributed
to gene-sets [39]. Analyses were divided into two sets;
WW ASD GWAS against candidate gene-sets, func-
tional annotations and cell type annotation and
noSWM3 ASD GWAS against PGC schizophrenia GWS
loci. A summary of observed enrichment at an uncor-
rected P ≤ .05 is given in Table 2, full enrichment data
are provided in the Additional file 13. We again observe

Fig. 2 Association locus plot for the index SNP rs1409313 in the GWAS of all (worldwide) ancestries autism spectrum disorder. The GWS
association (pink diamond) refers to the combined PGC-iPSYCH meta-analyses. Additional panels include gene location and location of
eQTL markers

The Autism Spectrum Disorders Working Group of The Psychiatric Genomics Consortium Molecular Autism
 (2017) 8:21 

Page 6 of 17



evidence of an overlap with schizophrenia, with a 2.5-
fold enrichment in heritability for those markers within
the PGC schizophrenia GWS loci (P = 0.021). The most
significant enrichments were observed for annotations
tagging gene enhancers, conserved elements and histone
marks indexing expression in the mid-frontal lobe. We
do not observe evidence for FMRP targets in either the
INRICH or LD score analyses.

Overlap of ASD and schizophrenia GWAS
In addition to the significant genetic correlation between
ASD and schizophrenia, and enrichment in the heritabil-
ity, we see further support for an etiological overlap
when considering the PGC ASD data as a ‘replication
set’ for schizophrenia. When considering the GWS loci
reported in the PGC schizophrenia GWAS, 118 of
the markers pass QC in the ASD WWW GWAS
sample. Eleven of these 118 schizophrenia-associated
markers are also associated with ASD at P ≤ .05
(Pr(K > = 11/118) = 0.035). Moreover, when applying the
binomial sign test, we observe strong concordance of the
direction of these markers (concordance 64.4%; Pr(K > =
76/118) = 0.0011) (see Additional file 1: Figure S14 Panel
A). As a comparison, we did not observe any similar en-
richment with a Rheumatoid Arthritis dataset (see Add-
itional file 1: Figure S14 Panel B).
Given these observations regarding ASD and schizo-

phrenia, and to further identify novel loci, we meta-
analysed the PGC schizophrenia and PGC ASD GWAS
data (see Additional file 1: Figure S12 for Manhattan
and PP plot). After removing significant loci (+/−1 Mb)
previously reported in the PGC schizophrenia analyses,
we observed 12 new GWS loci (see Table 3; Additional
file 14 and Additional file 15).

Discussion
Genomewide association study of ASD
We present here the results from a large inter-
national collaborative GWAS meta-analysis and fol-
low up of 16539 ASD cases and 157234 controls.
Despite the considerable increase in the sample size
and statistical power of these new analyses to iden-
tify associations, we do not observe individual vari-
ants that exceed the accepted GWS threshold (P ≤
5 × 10−8) in the discovery GWAS (n = 7387 ASD
cases and 8567 controls). This does not, however,
disqualify the loci which fall within the upper-ranked
associations from further interrogation, through rep-
lication or through supporting biology. There is evi-
dence to support the hypothesis that a substantial
proportion of ‘borderline’ association represent genu-
ine associations and deserve an attempt at replica-
tion [41]. A PGC schizophrenia GWAS [40], which
was of comparable size to this, yielded 5 GWS loci
and 183 non-GWS loci at P < 10−4. In a follow-up
study [19], 20 of these markers were elevated beyond
GWS; these were not limited to the most highly
ranked markers, as the newly GWS markers ranged
from 7 to 188 in the original study.
We have sought to assess the veracity of these upper-

ranked associations through replication and meta-
analysis using summary GWAS findings from the
Danish iPSYCH Project (n = 7783 ASD cases and 11359
controls) and the combined deCODE and SEED collec-
tion (n = 1369 ASD cases and 137308 controls). These
analyses show that the concordance of the direction of
effect is highly significant for the top 100 and top 70
markers, for the iPSYCH and deCODE/SEED ASD data-
sets, respectively.

Table 2 Enriched heritability by functional, cellular, and candidate gene-set annotations. prSNPs refers to proportion of SNPs in the
model, prH2 refers to proportion on the heritability (SE) attributed to the annotation set, and enrichment refers to the enrichment
(SE; P value) in heritability given the number of SNPs in the model

Category prSNPs prH2 Enrichment

Function: weak enhancer +/−500 bp 0.106 0.299 (0.06) 2.82 (0.61); P = 0.0045

Function: conserved 0.052 0.258 (0.08) 4.94 (1.46); P = 0.0047

Cell: CNS: mid-frontal lobe: H3k27ac 0.027 0.132 (0.04) 4.89 (1.34); P = 0.0056

Function: enhancer +/−500 bp 0.180 0.402 (0.08) 2.24 (0.44); P = 0.0065

Function: DNASE I hypersensitivity site (foetal) +/−500 bp 0.362 0.666 (0.11) 1.84 (0.32); P = 0.0099

Candidate: Mendelian disease [11] genes 0.018 0.040 (0.01) 2.19 (0.49); P = 0.0132

Candidate: PGC schizophrenia GWAS loci [19] 0.014 0.035 (0.01) 2.50 (0.70); P = 0.0211

Function: H3k4me1 0.538 0.771 (0.10) 1.43 (0.19); P = 0.0303

Function: CCCTC-binding factor 0.027 0.129 (0.05) 4.71 (1.75); P = 0.0326

Cell: CNS: hippocampus middle: H3k4me1 0.077 0.211 (0.06) 2.76 (0.81); P = 0.0351

Cell: CNS: angular gyrus: H3k27ac 0.033 0.106 (0.03) 3.25 (1.03); P = 0.0365

Function: digital genomic footprint +/−500 bp 0.621 0.836 (0.10) 1.35 (0.17); P = 0.0399

Function: conserved +/−500 bp 0.449 0.603 (0.07) 1.34 (0.17); P = 0.0488

The Autism Spectrum Disorders Working Group of The Psychiatric Genomics Consortium Molecular Autism
 (2017) 8:21 

Page 7 of 17



The combined meta-analysis of the PGC ASD GWAS
and iPSYCH samples show a single GWS association at
rs1409313-T, a marker located on chromosome
10q24.32 within intron 1 of CUEDC2. CUEDC2 encodes
the protein ‘CUE domain containing 2’, shown to be in-
volved in the ubiquitination-proteasomal degradation
pathway. Others have previously identified associations
at this region with the social skills domain of the autism
quotient in a population cohort (independent of the
PGC ASD GWAS [50]); identifying an association with
rs927821 (P = 3.4 × 10−6), a marker in strong linkage dis-
equilibrium with rs1409313 (1000 genomes project all
ancestries: r2 = 0.82; D’ = 0.91; European ancestries: r2 =
0.68; D’ = 0.85). Other genes in this region include
PITX3 which encodes the transcription factor Pitx3
(paired-like homeodomain 3) which plays an important
role in the differentiation and maintenance of midbrain
dopaminergic neurons during development. It is import-
ant to note that the PGC ASD association does not
overlap with the 10q24.32 association observed in the
recent PGC schizophrenia GWAS. The ASD signal oc-
curs directly upstream of the schizophrenia signal and is
separated by a recombination hotspot (see Additional
file 1: Figure S13). Other notable genes within the top-
ranked associations observed in the PGC-iPSYCH meta-
analysis are HDAC4 and MACROD2. GWS associations
have previously been reported for MACROD2 by the
Autism Genome Project, a subset of the data included in
these analyses [12]. HDAC4 encodes the gene histone
deacetylase 4 and is involved in the deacetylation of core
histones. Dosage of HDAC4 has been implicated in ASD,
with observed overexpression in the post-mortem brain

tissue of individuals with ASD [51]; conversely, deletions
of the HDAC4 loci have been reported in individuals
with syndromic autism [52]. Annotation of the associ-
ated region implicated in this study (chr2:240183467 to
240327863) does not reveal eQTLs that may support a
functional link (see Additional file 2).
The meta-analysis of the PGC–deCODE/SEED data

failed to identify GWS SNPs. However, the top-ranked
findings did identify genes previously implicated in ASD
such as EXOC4 [42], ANO4 [43], EXT1 [44, 53], and
ASTN2 [45]. ASTN2 was implicated because of associ-
ation with the marker rs7026354. Although relatively
modest in this meta-analysis, rs7026354 is reported as
the 10th ranked association in the PGC-deCODE/SEED
ASD analysis (OR = 1.10 (95% CI 1.06–1.14); P = 4.96 ×
10−6), this marker is noteworthy because it passes the
GWS threshold in the European ancestry only data
(rs7026354-A; OR = 1.15 (95% CI 1.09–1.20); P = 4.99 ×
10−8 (see Additional file 1: Figure S9 for corresponding
locus plot). ASTN2 encodes the protein, astrotactin 2
(ASTN2). Astrotactin 1 (ASTN1) is a membrane protein
which forms adhesions between neurons and astroglia
[54]. ASTN2 interacts with ASTN1, regulating its expres-
sion, thereby playing a role in neuronal-glial adhesion dur-
ing migration [55]. ASTN2 has previously gained
recognition due to the presence of rare CNV losses in
ASD [56, 57]. In a recent study of 89,985 individuals, ap-
proximately 71% of whom were reported to have a neuro-
developmental disorder (NDD), a total of 46 deletions and
12 duplication mutations were observed in the ASTN2
gene [58]. Exonic deletions were significantly enriched in
the NDD cohort (OR = 2.69 (95% CI 1.13–7.77); P = 0.01).

Table 3 Novel GWS loci from combined ASD-schizophrenia GWAS

SNP Locus range A1 Odds ratio (95% CI) P value Genes within locus

ASD SCZ Combined

rs57709857 chr8:38014429..38316849 A 0.92 (0.86–0.97) 0.93 (0.91–0.96) 0.93 (0.91–0.95) 4.2 × 10−9 BAG4 DDHD2 FGFR1 LETM2
LSM1 PLPP5 WHSC1L1

rs1353545 chr3:60276185..60305117 C 1.05 (1.00–1.10) 1.06 (1.04–1.09) 1.06 (1.04–1.08) 1.1 × 10−8 FHIT

rs6803008 chr3:71433554..71679148 T 0.94 (0.90–0.99) 0.95 (0.93–0.97) 0.94 (0.93–0.96) 1.3 × 10−8 FOXP1 MIR1284

rs2828478 chr21:25092482..25219939 A 1.07 (1.02–1.12) 1.06 (1.04–1.08) 1.06 (1.04–1.08) 1.6 × 10−8 None

rs9879311 chr3:10317432..10520739 T 1.08 (1.03–1.13) 1.05 (1.03–1.08) 1.06 (1.04–1.08) 1.9 × 10−8 ATP2B2 GHRL GHRLOS
LINC00852 MIR378B MIR885
SEC13 TATDN2

rs73416724 chr6:43234901..43411659 A 1.11 (1.03–1.20) 1.09 (1.05–1.13) 1.09 (1.06–1.13) 3.0 × 10−8 ABCC10 CRIP3 MIR6780B
SLC22A7 TTBK1 ZNF318

rs61847307 chr10:53935082..54035437 T 0.95 (0.90–1.00) 0.94 (0.92–0.96) 0.94 (0.92–0.96) 3.1 × 10−8 PRKG1

rs7122181 chr11:81178475..81209569 A 0.95 (0.91–1.00) 0.95 (0.93–0.97) 0.95 (0.93–0.97) 3.7 × 10−8 None

rs880446 chr20:62113220..62178105 A 1.07 (1.02–1.13) 1.06 (1.04–1.09) 1.06 (1.04–1.09) 4.4 × 10−8 EEF1A2 PPDPF PTK6 SRMS

rs7521492 chr1:163581663..163790947 A 1.05 (1.00–1.10) 1.06 (1.03–1.08) 1.06 (1.04–1.08) 4.7 × 10−8 None

rs72986630 chr19:11849736..11943697 T 1.07 (0.95–1.21) 1.16 (1.10–1.22) 1.14 (1.09–1.20) 4.7 × 10−8 ZNF440 ZNF441 ZNF491 ZNF823

rs4904167 chr14:84628384..84701798 T 1.08 (1.03–1.14) 1.05 (1.03–1.07) 1.06 (1.04–1.08) 4.9 × 10−8 None
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The peak of our association signal at 9q33.1 extends over
the 3’ end of ASTN2 corresponding to a region of the gene
that encodes the C terminus of the protein, a region with
cross-species sequence conservation and strong enrich-
ment of exonic deletions in male NDD cases [58].
To garner additional information regarding the biology

of ASD, we explored enrichment of association signals
across a range of gene-sets and genomic annotations. Of
the top canonical results, we observed enrichment in
gene-sets related to synaptic structure and function.
PDZ domain-binding, beta-catenin nuclear pathways,
glutamate receptor activity, and adherens junctions all fit
this categorization. PDZ domains (PSD95-disc large-
zonula occludens-1) are found in scaffolding proteins,
and those at neuronal excitatory synapses are thought to
play a key role in synapse organisation and structure.
These proteins organise glutamate receptors and associ-
ated protein composition at the synapse, subsequently
determining the size and strength of the synapse
(reviewed in [59]). Moreover, the beta-catenin and adhe-
rens gene-sets describe proteins that are involved in es-
tablishing synaptic contacts. Genetic insult which
disrupts the synapse as a model of ASD is not novel
[60], with genes encoding members of the SHANK,
neurexin and neuroligin families, all well established as
risk factors for ASD. Our data implicating gene-sets that
interact with these genes confer additional support for
the synaptic hypothesis of ASD.
The candidate gene-set analysis demonstrates a con-

sistent relationship between schizophrenia and ASD. We
observed strong genetic correlation between ASD and
schizophrenia and a striking concordance in terms of
direction of effect (binomial sign test of effect). More-
over, when examining only those genes within the
schizophrenia GWS loci, we observed enrichment
through gene-based and partitioned heritability analyses.
We have excluded confounding due to known sample
overlap.

Cross-disorder genome-wide association study of ASD
and schizophrenia
We extended our analyses to perform a cross-disorder
ASD and schizophrenia meta-analyses to identify puta-
tive neurodevelopmental loci; again, we utilised the ASD
GWAS excluding known shared controls. We identified
12 GWS loci not previously identified as GWS in the
PGC schizophrenia GWAS.
The strongest independent locus, rs57709857-A (OR

0.93, 95% CI 0.91–0.95; P = 4.15 × 10−9) identifies a re-
gion previously branded as a neurodevelopmental hub
on chromosome 8p (8p11.23). Other GWS associations
include the marker rs9879311-T, indexing an association
signal within the ATP2B2 gene located at 3p25.3 (OR
1.06, 95% CI 1.04–1.08; P = 6.04 × 10−9) and rs6803008-

T, indexing the FOXP1 locus at 3p13 (OR 0.94, 95% CI
0.93–0.96; P = 1.34 × 10−8) (see Additional file 1: Figure
S16 for corresponding locus plots). ATP2B2 (ATPase,
Ca(2+)-transporting, plasma membrane, 2) plays an im-
portant role in intracellular calcium homeostasis and has
previously been implicated in ASD through reported
genetic associations in North American, Italian, and
Chinese samples [61–63], as well as through differential
expression in ASD brain tissue [64]. FOXP1, a member
of the Forkhead Box P family of transcription factors has
been implicated in ASD aetiology based on observations
of multiple de novo SNVs [65–67]. FOXP1 has also been
implicated in several related cognitive phenotypes in-
cluding language impairment and intellectual disability
[68–70]. Moreover, in a murine Foxp1 KO mouse model,
in addition to observable neuronal phenotypes, mice ex-
hibit many behavioural phenotypes associated with ASD
[71]. The genetic relationship we observed for common
variation shared between schizophrenia and ASD is
striking; alongside shared rare structural variation, such
as that observed in the 22q11.2 deletion syndrome [72],
these data suggest a common risk and a shared biology
leading to related but distinct outcomes. We must also
consider potential confounding; there is some evidence
to support increased assortative mating within and
across psychiatric illnesses. Consequently, the evidence
from a cross-disorder meta-analysis may not be due to
pleiotropy (or not entirely) but may instead be an arte-
fact of a residual genetic background from assortative
mating between individuals with these diagnoses [73].
Whether the observed degree of such assortative unions
can explain the observed correlations will require further
investigation.
To make further progress with the investigation of com-

mon variation in ASD, several strategies are being imple-
mented. First, substantial increases in sample size are
necessary. This is on the near horizon, with the ongoing
activities from groups such as the iPSYCH collaborative
likely to bring data from thousands of additional ASD
cases to the GWAS effort. Secondly, genetic designs for
studies of complex developmental disorders, including
ASD and ADHD, have tended to favour a trio-based de-
sign and family-based association testing. Although this
has provided strength in reducing artefacts resulting from
population stratification, recent simulations advise against
their use in common and complex polygenic traits, espe-
cially where assortative mating may be involved and where
the family is known to be multiplex [74]. In such cases,
the trio design can underestimate the SNP heritability and
the power to observe association.

Conclusions
This study provides an additional step towards under-
standing the genetic architecture of ASD. We show a
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robust relationship with the genetic risk identified in
schizophrenia GWAS and have highlighted loci such as
10q24.32 and gene-sets that have been previously and
independently implicated in ASD and related disorders.
Shared heritability findings and our cross-disorder meta-
analysis reveals additional GWS loci that may be import-
ant in neurodevelopment including a region flagged as a
neurodevelopmental hub on chromosome 8p as well as
the ATP2B2 gene located at 3p25.3, a gene previously
implicated in ASD through both genetic association
[61–63] and differential expression in the post-mortem
brain tissues of individuals with ASD [64].
Like other GWAS of similar size, our ASD-only results

are not definitive with the observed associations falling
short of accepted statistical significance thresholds. How-
ever, we view these data as an important step in the on-
going endeavour to identify the loci which underpin the
common variant signal in ASD and we anticipate that some
of these loci of ‘borderline’ significance, especially those
with additional corroborating evidence such as EXT1,
ASTN2, MACROD2, and HDAC4, to eventually garner suf-
ficient evidence to become established robust ASD risk loci.
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