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ABSTRACT In nonmodel systems, genetic research is often limited by the lack of techniques for the
generation and identification of gene mutations. One approach to overcome this bottleneck is the
application of transposons for gene tagging. We have established a two-element transposon tagging
system, based on the transposable elements Activator (Ac)/Dissociation (Ds) from maize, for in vivo insertion
mutagenesis in the fungal human pathogen Candida albicans. A nonautonomous Ds transposon carrying a
selectable marker was constructed into the ADE2 promoter on chromosome 3 and a codon usage-adapted
Ac transposase gene was inserted into the neutral NEUT5L locus on chromosome 5. In C. albicans cells
expressing the transposase, the Ds element efficiently excised and reintegrated elsewhere in the genome,
which makes the Ac/Ds transposons promising tools for saturating insertion mutagenesis in clinical strains of
C. albicans.
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The autonomous transposable element Activator (Ac) from Zea mays,
originally discovered as the first transposon by McClintock (1951), is
one of three prototypic elements of the hAT superfamily of “cut-and-
paste” transposons. Soon after its discovery, the potential of Ac and its
nonautonomous derivatives, termedDissociation (Ds), for gene tagging
and insertion mutagenesis in maize and heterologous plants was rec-
ognized (Walbot 1992). Ac/Ds elements are convenient to use in het-
erologous plants because the single Ac-encoded transposase protein
(TPase) is sufficient for transposition, the transposon ends with the
essential TPase-binding sites are only �240 bp in length, and the non-
autonomous Ds elements can carry. 15 kb of cargo DNA. Ac/Ds has
been used in. 20 higher plants, among them model plants and agro-

nomically important species [reviewed in Kunze andWeil (2002)]. Ac/
Ds elements tend to transpose into genetically linked sites [Dooner and
Belachew 1989; Vollbrecht et al. 2010; reviewed in Lazarow et al.
(2013)], but they do not have the target sequence preference exhibited
by other transposons (Spradling et al. 2011). More recently, the focus of
insertion mutagenesis approaches has shifted from single-gene tagging
toward the generation of large insertionmutant populations. The use of
transposons for this purpose is highly attractive for the study of plants
because transposons enable the formation of a large number of inser-
tion mutations in plant species where ballistic or Agrobacterium tume-
faciens-based Transfer DNA (T-DNA) transformation is inefficient
[reviewed in Lazarow et al. (2013)]. Ac/Ds transposons also function
in vertebrate animals (Emelyanov et al. 2006; Quach et al. 2015;
Vrljicak et al. 2016) as well as in the budding yeast Saccharomyces
cerevisiae (Weil and Kunze 2000). Recently, Ac/Ds was employed for
saturated transposon mutagenesis in S. cerevisiae, facilitating the iden-
tification of conditionally essential genes and identifying important
functional protein domains (Michel et al. 2017). An important advan-
tage is the facility of generating libraries of insertion mutations in
mutant strain backgrounds. A similar approach, using the hAT element
Hermes from the house fly (Musca domestica), achieved saturated
transposon insertion mutagenesis in the fission yeast Schizosaccharo-
myces pombe (Guo et al. 2013).

Transposable elements in eukaryotic genomes are mostly inactive
and transpose only rarely. This relative stability of transposon insertions
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isdue toepigenetic silencing, the lowactivityof theTPase, aswell aspost-
translational negative autoregulation, such that increased TPase levels
result in reduced transposition frequency [reviewed by Bire et al.
(2013)]. This phenomenon, termed TPase “overexpression inhibition,”
presumably underlies the “inverse dose effect” of Ac/Ds first discovered
by McClintock (1951) and later also reported in heterologous plants
(Scofield et al. 1993, Heinlein et al. 1994). The naturally low activity
of transposons limits the efficiency of transposon mutagenesis ex-
periments; hyperactive TPase variants that catalyze more frequent
transposition reactions have increased the efficiency of transposon
mutagenesis with several prokaryotic and eukaryotic transposons
(Goryshin and Reznikoff 1998; Lampe et al. 1999; Beall et al. 2002;
Zayed et al. 2004; Mátés et al. 2009; Yusa et al. 2011; Lazarow et al.
2012). For example, AcTPase4x, a hyperactive Ac TPase, catalyzes a
higher Ds excision frequency compared to the wild-type AcTPase
[100-fold higher in budding yeast and sixfold higher in Arabidopsis
thaliana (Lazarow et al. 2012)].

Here, we asked if the maize Ac/Ds transposon system could be
applied to nonmodel micro-organisms more distantly related to the
model budding and fission yeasts. The commensal ascomycete Candida
albicans is the most common fungal pathogen of humans (Kim and
Sudbery 2011) and differs in several genetic and morphological features
from S. cerevisiae. In addition, C. albicans diverges from the universal
genetic code at one codon: CTG encodes serine instead of leucine, which
complicates the design of heterologous molecular genetic systems. Fur-
thermore,C. albicanswas long thought to be an obligate diploid with the
ability to undergo a “parasexual cycle” between generations without
conventional meiosis from diploid to tetraploid and back [reviewed
by Noble and Johnson (2007)]. However, mating-competent haploid
cells were discovered recently (Hickman et al. 2013). Haploids appear
to arise via a concerted chromosome loss mechanism rather than mei-
osis. The initial isolates grew slower than diploids and were relatively
unstable, reverting to “autodiploids” with high frequency (Hickman
et al. 2013). Here, we describe a haploid strain selected for its faster
growth rate and use it to test the design of an inducible two-component
Ac/Ds transposon system for C. albicans, consisting of a codon-adapted
hyperactive TPase gene and a nonautonomous Ds element carrying a
selection marker. We demonstrate that the TPase mobilizes the Ds
element and that the Ds excision footprint sequences exhibit subtle dif-
ferences compared to those seen in S. cerevisiae and plants.

MATERIALS AND METHODS

Construction of Ac/Ds components
The codon-adapted AcTPase4xCa open reading frame (Supplemental
Material, Figure S1 in File S1) was constructed by fusing three de
novo-synthesized DNA fragments (Thermo Fisher Scientific GENEART
GmbH, Regensburg, Germany) and cloned into pJET1.2 via the Clone-
JET kit (Thermo Fisher Scientific). TheCaMAL2 promoter (Backen et al.
2000), amplified from pKB2019 with primers oMAL2-F and oMAL2-R,
and the CaADH1 terminator, amplified from pMG2120 (Gerami-Nejad
et al. 2012)with primers oADHT-F and oADHT-R, were also ligated into
pJET1.2. The AcTPase4xCa expression cassette was assembled by fusing
the promoter, AcTPase4xCa-coding region, and terminator in pJET1.2.
From this plasmid, the AcTPase4xCa expression cassette was excised
with Eco91I and ligated into Eco91I-linearized pDUP5 (Gerami-Nejad
et al. 2013), yielding pKM300 (Figure 1A, top line).

To construct a nonautonomous miniDs element with a selectable
marker inserted into the 59-UTRof theC. albicans ADE2 gene, theminiDs
from pBBDsXho (Laufs et al. 1990) was excised with SalI and cloned into
pUC19. The resulting plasmid was pRK86. The nourseothricin acetyl

N-transferase gene NAT1, under the control of the TEF promoter, was
amplified from pDUP3 (Gerami-Nejad et al. 2013) with the primers
oTEFmut-F and oTEFmut-R, and the PCR product was digested with
SalI and ligated into XhoI-linearized, dephosphorylated pRK86 to form
pRK86-NAT1, carrying the transposable element Ds-NAT1. A 528-bp
segment of C. albicans chromosome 3, centered around an artificial SalI
site 24-bp upstream of the ADE2 start codon, was de novo synthesized
(Thermo Fisher Scientific) and ligated into pJET1.2. The resulting plas-
mid, pRK401, was linearizedwith SalI and dephosphorylated with FastAP
(Thermo Fisher Scientific). Ds-NAT1 was excised with SalI from pRK86-
NAT1 and ligated into SalI-linearized pRK401, followed by the exchange
of two nucleotides flanking the Ds-NAT1 59-end using primers oKM34
and oKM35, and the Q5 site-directed mutagenesis kit (New England
Biolabs, Beverly, MA). The resulting plasmid pRK403a was used for
chromosomal integration via homologous recombination of Ds-NAT1
into the 59-UTR of the C. albicans ADE2 gene (Figure 1B, top line).

Generation of the MTLa haploid Candida albicans
strain GZY896
To isolate aMTLa haploid strain fromYJB12881 (Hickman et al. 2013),
single colonies were subjected to repeated rounds of subcultivation in
glucose minimal medium supplemented with 40 mg ml21 histidine
(GMM + His) medium (Zeng et al. 2014). Haploid colonies were
identified by flow cytometry analysis and then stored at 280�. Strains
were revived on GMM + His plates and several more subcultivation
cycles were performed, yielding a haploid strain, GZY892, that
appeared stable by flow cytometry. A ura3Δ derivative of the strain
was constructed by excising the ura3D::HIS4 cassette from plasmid
pYGS1023 (Hickman et al. 2013) and transforming it into GZY892,
according to the method of Zeng et al. (2014), where it inserted by
homologous recombination at theURA3 locus. The resulting strain was
termed GZY896 (MTLa ura3Δ::imm434 his4 gal1Δ:: ura3Δ::HIS4).

Generation of Ac/Ds transposable element-carrying
Candida albicans strains KMY100 and KMY103G1
GZY896 transformation was performed according to the method of Zeng
et al. (2014). First, linearized pKM300 was used to integrate the AcTPa-
se4xCa expression cassette via homologous recombination into the
NEUT5L locus (Gerami-Nejad et al. 2013) (Figure 1A). Transgenic cells
were selected on complete synthetic definedminimal (SDC) plates lacking
uridine. In a second step, these transformants and, in parallel, GZY896
cells were transformed with linearized pRK403a to integrate theDs-NAT1
into the 59-UTR of ADE2 on chromosome 3 (Figure 1B). Transformants
were selected by plating the cells on yeast extract peptone (YP) medium +
adenine + glucose with 0.4 mg/ml nourseothricin. The resulting strains
carrying the ade2::Ds-NAT1 construct alone, or in combination with
the AcTPase4xCa expression construct, were termed KMY100 and
KMY103G1, respectively.

Isolation of Ds transposants
KMY103G1cellswere grown inSDC+3%maltose liquidmediumat30�
for 24 hr, and then plated on SDC2 adenine + glucose plates to select
for ADE2 revertants. To select for reintegration of Ds-NAT1 elements,
ADE2 revertant colonies were replica-plated on YP + adenine + glucose
plates with 0.4 mg/ml nourseothricin and grown for 2 days at 30�.

Flow cytometry
Flow cytometry was performed as described previously (Hickman et al.
2013) using a MACSQuant FLOW cytometer (Miltenyi Biotec GmbH,
Bergisch Gladbach, Germany).
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Ds excision and reintegration site analysis
ADE2 revertant colonies were picked, resuspended in 10 ml H2O con-
taining 2.5 U Zymolyase (Zymo Research, Irvine, CA) and incubated
for 15 min at 30�. Next, 2 ml of a 1:10 dilution of these suspensions
was used as template for PCR amplification of Ds excision sites
with CaADE2 primers F2 and R2 (Table S1 in File S1) and Q5 DNA

Polymerase (New England Biolabs). PCR products were purified on
NucleoSpin Gel and PCR Clean-up columns (MACHEREY-NAGEL
GmbH, Düren, Germany) and sequenced.

Reintegration sites ofDs-NAT1 elements were mapped by modified
FPNI-PCR (Fusion Primer and Nested Integrated PCR; Wang et al.
2011) on ADE2+-NatR cells to amplify genomic DNA flanking the Ds

Figure 1 Ac/Ds (Activator/Dissociation) transpo-
sition in C. albicans. (A) The transposase expres-
sion construct consists of the AcTPase4xCa ORF
(blue) inserted between the CaMAL2 promoter
and the CaADH1 terminator, flanked by the
CaURA3 gene (green), and inserted into the
NEUT5L locus for homologous recombination
into that locus on C. albicans chromosome 5.
(B) The ade2::Ds-NAT1 cassette consists of a
nonautonomous miniDs transposon (blue) that
carries a NAT1 selectable marker gene (yellow).
The transposon is inserted into the 59-UTR of the
CaADE2 gene (red). This cassette was inserted by
homologous recombination into the ADE2 gene
on chromosome 3. The blue bent arrow indicates
the transcriptional start site of the CaADE2 pro-
moter and the red cross symbolizes transcrip-
tional interruption by the Ds-NAT1 transposon.
TEF-Pr, TEF promoter; TEF-Tm, TEF terminator;
Black triangles, Ds terminal inverted repeats;
Probe, hybridization probe used for DNA gel blot
analysis shown in (F); F1/2 and R1/2, CaADE2
primers used for PCR analyses shown in (C–E).
(C) PCR products obtained with primers F1 and
R1 on genomic DNA from KMY100 colonies after
four successive cell passages (lane 1, passage 0;
lane 2, passage 1; lane 3 passage 2; lane 4, pas-
sage 3; and lanes 5–6, passage 4) and from the
progenitor GZY896 strain (lane 7). (D) PCR prod-
ucts obtained with primers F2 and R2 on genomic
DNA from white (lanes 8–9) and red (lanes 10–11)
KMY103G1 colonies grown on inducing SDC
(synthetic defined minimal) plates (+ adenine +
maltose). (E) PCR products obtained with primers
F2 and R2 on genomic DNA from white KMY103G1
colonies (lanes 12–15) grown on inducing SDC
plates (+ adenine and + maltose). These PCR prod-
ucts were cloned and sequenced for Ds excision
footprint analyses. M1, New England Biolabs
Quick-Load 2-Log DNA Ladder and M2, Thermo
Fisher Scientific GeneRuler 1 kb DNA Ladder. (F)
DNA gel blot analysis of Ds-NAT1 element distri-
bution in ADE2 revertant clones. Genomic DNA
from KMY103G1 ADE2 revertant colonies was
EcoRI-digested, size-fractionated, blotted, and
hybridized with a NAT1-probe. Samples in the in-
dicated lanes were evaluable. Lanes marked with
green asterisks: an additional band hybridized,
indicating Ds-NAT1 excision and reintegration.
Unmarked lanes: only the 2-kb fragment of the
ade2::Ds-NAT1 allele hybridized. Lane marked
with red asterisk: two novel bands indicate excision
and reintegration of both Ds-NAT1 elements. Lane
marked “2”: GZY896 DNA (negative control). Lane
marked “+”: KMY100 DNA (positive control).
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39-end. Target site duplications at three Ds reinsertion sites were iden-
tified by amplification of novel Ds-NAT1 insertion sites with pairs of
Ds-flanking primers (Table S1 in File S1) and sequencing of the PCR
products.

DNA gel blot analysis
Genomic DNAs were isolated from 2 ml cultures of ADE2 revertants
grown in SDC + 2% glucose liquid medium at 30� for 24 hr with the
Yeast DNA Preparation Kit (Jena Bioscience GmbH, Jena, Germany).
The quality of the isolated DNAs was analyzed on a 1% agarose gel.
Next, 200 ng DNA of each sample were digested with 10 U of EcoRI
(Thermo Fisher Scientific) for 4 hr at 37� and size fractionated on a
0.9% agarose gel overnight at 2 V/cm. The gel was successively soaked
for 20 min in 0.2 M HCl, 20 min in 0.5 M NaOH/1.5 M NaCl, and
30 min in 1 M Tris-Cl/1.5 M NaCl pH 7.4. Following overnight cap-
illary transfer of the DNA to a Hybond NXmembrane (GEHealthcare,
Little Chalfont, UK) the DNA was UV cross-linked (120 J at 254 nm).
The membrane was successively prehybridized, hybridized with a
Digoxigenin (DIG)-labeled NAT1 probe, washed, and detected with
anti-DIG-AP, Fab fragments, and CDP-Star (Roche Applied Science,
Penzberg, Germany) following the manufacturer’s protocols. The DIG-
labeledNAT1-probe was amplifiedwith primers oKM222 and oKM223
using pRK403a as template.

Data availability
Plasmids and strains are available upon request.

RESULTS

An Ac/Ds two-component transposon system in
C. albicans

C. albicans belongs to the CUG clade of pathogenic yeasts, in which the
trinucleotide CTG specifies serine instead of the commonly encoded
leucine (Santos and Tuite 1995). Furthermore, C. albicans does not
have naturally occurring or engineered plasmids that are maintained
autonomously. Therefore, the Ac/Ds transposon components previ-
ously constructed for S. cerevisiae (Lazarow et al. 2012) were not suit-
able for application in C. albicans and a new Ac/Ds two-component
system for C. albicans was required. The system includes a nonauton-
omous Ds element carrying the nourseothricin N-acetyl transferase
(NAT1) gene as a selectable marker gene, Ds-NAT1, and a codon-
adapted (“candidized”) hyperactive TPase-coding sequence (AcTPa-
se4xCa) under control of the inducible CaMAL2 promoter. The
original AcTPase4x-coding region with an N-terminally-fused SV40
nuclear localization sequence (NLS) was candidized by replacing two
CTG codons with TTG to ensure translation into leucine and by
exchanging all codons that are rarely (# 11%) used in C. albicans
with more frequently used codons to ensure efficient translation (Fig-
ure S1 in File S1). The AcTPase4xCa expression cassette was inserted
into an intergenic region on chromosome 5 (NEUT5L; Gerami-Nejad
et al. 2013) of the haploid C. albicans strain GZY896 (Figure 1A). The
Ds-NAT1 element was cloned into the 59-UTR of ADE2, 26-bp up-
stream of the ADE2 start codon on chromosome 3 (Figure 1B), and
recombined into GZY896 with or without the AcTPase4xCa gene,
respectively. The resulting strains KMY100 (ade2::Ds-NAT1) and
KMY103G1 (AcTPase4xCa::NEUT5L ade2::Ds-NAT1) grow a little
slower than ADE2 cells and form red colonies on SDC medium.

AcTPase4xCa expression induces Ds-NAT1 excision
The stability of theDs-NAT1 insertion in theADE2 59-UTR was examined
by propagating KMY100 cells for four passages on YP + adenine + glucose

medium. After each passage, we plated three colonies and observed only
red colonies, suggesting that the ade2::Ds-NAT1 locus is stable. Accord-
ingly, amplification of the Ds-NAT1 from cells of each passage with
flanking ADE2-primers yielded a single 2.6-kb band that was indistin-
guishable from that obtained from cells after the first passage (Figure
1C), indicating that the Ds-NAT1 insertion remained stably inserted in
the ADE2 promoter.

Similarly, KMY103G1 cells grew as red colonies on SDC plates after
propagation for 24 hr in noninducing SDC + adenine + glucose liquid
medium. In contrast, when cells were precultured in glucose-free SDC+
adenine + maltose medium to induce AcTPase4xCa expression, white
ADE2 revertant colonies appeared with a frequency ranging from
0.0001 to 0.001%.

From 128 independent ADE2 revertant KMY103G1 colonies, the
Ds-NAT1 excision sites were amplified. The PCR bands from all rever-
tants were indistinguishable in size from the 510-bp band in the pro-
genitor strain GZY896, suggesting that the Ds-NAT1 had been excised
from the ADE2 promoter locus (Figure 1, D and E). Sequencing of the
PCR bands revealed 28 different Ds excision footprints (Figure 2A).
Two predominant footprints, which differed in a single nucleotide at
the fusion site, were recovered in 35 and 18 clones, respectively. In
addition to these two major footprints, 26 other, different footprints
were observed less frequently, with half of them appearing only once.
Despite the limited number of footprints analyzed, the bias in excision
site repair products was obvious. All footprints exhibited short dele-
tions or palindromic insertions (also termed P-nucleotide insertions;
Huefner et al. 2011) at either side of the breakpoint, which closely
resembled the Ac/Ds excision footprints in plants and in budding yeast.

Ds-NAT1 efficiently reinserts into the genome
Reintegration of the Ds-NAT1 transposon was investigated by cultivat-
ing 10 individual red KMY103G1 colonies in SDC + adenine + maltose
liquid medium and spreading aliquots on SDC 2 adenine + glucose
plates, yielding 1722 ADE2 revertant colonies. The white ADE2 colo-
nies were replica-plated onto nourseothricin-containing SDC 2 ade-
nine + glucose plates and grown for 2 days at 30�. In total, 1528 colonies
(�90%) grew on nourseothricin. This unexpectedly high frequency (in
plants and S. cerevisiae reinsertion frequencies of�60%were observed)
prompted us to scrutinize the ploidy of the cells. All five KM103G1
colonies that we tested by flow cytometry were diploid. A DNA gel blot
analysis of genomic DNA fromwhiteADE2 revertant colonies revealed
that, with only one exception, all clones still contained the ade2::Ds-
NAT1 allele (Figure 1F). Fourteen clones exhibit an additional, differ-
ently sized band, indicating reinsertion of the Ds-NAT1 transposon
elsewhere in the genome. One exceptional clone showed no ade2::
Ds-NAT1 band, with one smaller and one larger band. These data
demonstrate that: (i) the KMY103G1 progenitor cells had undergone
autodiploidization prior to transposon mobilization, (ii) the Ds-NAT1
transposon had excised from only one of the two alleles with the ex-
ception of one clone, and (iii) in 15 of the 28ADE2 revertant clones, the
transposon reintegrated in different positions in the Candida genome.
In the one exceptional clone (marked with a red asterisk), theDs-NAT1
transposons apparently transposed from both alleles and reintegrated
in two novel chromosomal sites.

For three ADE2 revertant clones, the genomic reinsertion sites were
identified by FPNI-PCR of the 39-end of Ds-NAT1 (Figure 2B and
Table S2 in File S1). Two of the Ds-NAT1 elements reintegrated in
chromosome 3, 174- and 266-kb distal and proximal to theADE2 locus,
respectively. The third element transposed to chromosome 5. Ampli-
fication and sequencing of both Ds-NAT1 flanking sequences revealed
the canonical 8-bp target site duplications generated upon integration
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of theDs-NAT1 transposable elements (Figure 2B). Thus, transposition
occurred, both close to the original insertion site as well as on a different
chromosome.

DISCUSSION
Approaches for genome-wide, untargeted insertion mutagenesis of
eukaryotic genomes are frequently based on chemical or ballistic trans-
formation with selectable DNAmarker molecules [in fungi, sometimes
boosted by restriction enzyme-mediated integration (REMI) reviewed
in Jiang et al. (2013)], onA. tumefaciens infection andT-DNA insertion
in plants, or by transposon tagging. In micro-organisms that can be
efficiently transformed, large mutant collections can be generated
by transformation with plasmid-based mutant libraries produced by

in vitro transposition of bacterial transposons (see for example Kumar et al.
2004). However, transformation is inefficient in themajority of eukaryotes.
This limitation can be avoided by using in vivo transposon tagging that
exploits endogenous or heterologous transposons. The advantage of using
a heterologous transposon is that it will be unique in the genome and is
easily detected. The diploidC. albicansWO-1 genome is composed of 2.1%
retroelements and contains only two copies each of a Tc1/mariner-like
DNA transposon and a (defective) Mutator-like element (Butler et al.
2009). However, endogenous transposition activity has not been reported
for any of these elements, despite a report that C. albicans transposons are
not modified by DNA methylation (Mishra et al. 2011). In this study, we
explored the suitability of the maize Ac/Ds transposons for in vivo trans-
poson insertion mutagenesis in C. albicans.

Figure 2 DNA sequences at the Dissociation
(Ds)-NAT1 excision and reinsertion sites. (A)
Ds excision footprints of 128 independent
KMY103G1 ADE2 revertant colonies. The top
row shows the ade2::Ds-NAT1 sequence on
chromosome 3. Rows 1–28 show the recovered
Ds excision footprints and their incidence (F)
in independent ADE2 revertants from AcTPa-
se4xCa-expressing KMY103G1 cells grown in
maltose-containing medium. Arrows above the
sequences indicate inverted repeats centered
around the complementary bases C and A
(boldface red letters) of the nucleotides border-
ing the Ds-NAT1 transposon that result from
the resolution of intermediate hairpin structures.
Lower case letters indicate nucleotides that are
not explained with the hairpin model. (B) Target
site duplications at Ds-NAT1 reinsertion sites in
transposants “1,” “2,” and “3”; see Table S2 in
File S1.
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Like in all heterologous host organisms tested, the nonautonomous
Ds element in C. albicans is genetically stable and its mobilization
strictly depends on expression of the Ac TPase. The Ds excision
footprints display sequence features similar to those that have been
reported for Ac/Ds in other plants and in S. cerevisiae (Lazarow et al.
2012): deletions and palindromic P-nucleotide insertions at the
repaired DNA joint are centered around the complement of the base
adjacent to the transposon ends. This indicates that in haploid
C. albicans, the DNA double-strand break (DSB) repair pathway forms
aDNAhairpin followed by hairpin resolution and nonhomologous end
joining repair of the empty donor sites, essentially as has been suggested
for plants and S. cerevisiae (Coen et al. 1986; Lazarow et al. 2012).
However, an interesting distinction is that the structural heterogeneity
of the footprints inC. albicans is lower than inArabidopsis and budding
yeast. For example, the longest P-nucleotide insertions were three nu-
cleotides and occurred only in a single footprint type three times among
the 128 footprints (2.3%) (Figure 2A, line 11), whereas in S. cerevisiae,
the maximal palindrome arm length was 20 nucleotides and 66 of
140 footprints (47%) contained palindromes with $3 nucleotide-long
arms (Lazarow et al. 2012). Also in Arabidopsis, the frequency of pal-
indromes at least three nucleotides in length was much higher than in
C. albicans (20–30%) (Huefner et al. 2011; Lazarow et al. 2012). The
shorter palindrome lengths in C. albicans indicate that the (unknown)
hairpin-opening enzymes introduce nicks closer to the apex of the
hairpin than in S. cerevisiae and plants. In S. cerevisiae, mutations in
the Artemis-related Pso2 protein, which cleaves DNA hairpins
(Tiefenbach and Junop 2012), reduced Ds excisions 10-fold and
increased atypical Ds excision site repair products (Yu et al. 2004).
It will be interesting to determine if the C. albicans and S. cerevisiae
PSO2 orthologs have different activities, or if other enzymes are re-
sponsible for the distinct footprints and excision frequencies.

Ac/Ds excision footprints in both S. cerevisiae and A. thaliana are
accompanied by putative microhomologies (MHs) of the repair inter-
mediates after DNA hairpin opening (Yu et al. 2004; Huefner et al.
2011; Lazarow et al. 2012). The frequency of footprints with MHs
ranged from 85 to almost 100% in wild-type A. thaliana (Huefner
et al. 2011; Lazarow et al. 2012) and from 88 to 89% in S. cerevisiae
(Yu et al. 2004; Lazarow et al. 2012). In contrast, only 51% of the
footprints in C. albicans had putative MHs. This suggests that DNA
hairpin opening and DSB repair proceeds somewhat differently in
C. albicans than in the model yeast S. cerevisiae and plants. Shorter
P-nucleotide insertions in C. albicans may indicate that the nuclease
that binds to and opens DNA hairpins is more stringently locked to the
hairpin apex in C. albicans than the functional homologs in plants and
budding yeast. While MHs are not essential for the fusion of open ends,
terminal MH in double-stranded DNAwith short 39 overhanging single
strands stabilizes DSB repair intermediates and enhances the efficiency
of repair (Gu et al. 2007). Since DNA ligase IV (encoded by LIG4) is
critically involved in the repair of DSBs in all eukaryotes and also can
ligate DNA ends lacking MHs (Gu et al. 2007), the lower frequency of
MHs atDs excision footprints suggests that LIG4-dependent DSB repair
is likely to be more active in C. albicans than in the other organisms
tested.

The high efficiency of theAc/Ds transposon systemdemonstrated in
this study makes it a potentially superior molecular tool for genome-
wide in vivo insertion mutagenesis in C. albicans compared to alterna-
tive approaches. Several in vitro insertion mutant libraries were
constructed in diploidC. albicans using bacterialTn7 orTn5 derivatives
that were transposed into isolated genomic DNA fragments, cloned,
amplified in Escherichia coli, and then transformed into C. albicans,
where the transposon together with flanking genomic DNA integrated

by homologous recombination into the chromosomes (Uhl et al. 2003;
Oh et al. 2010; Bharucha et al. 2011).However, this approachwas labor-
intensive and yielded 18,000, 3633, and 6528 heterozygous transformants,
respectively, in the three studies. Thus, the in vitro approach is much less
practical for repeated application inmultiple different strains, for example
clinical isolates. Another advantage of the transposon system described
here is that, in addition to generating total loss-of-function alleles, it should
be useful to identify haploinsufficient genes in diploid cells and other
conditionally essential genes, as was recently demonstrated for Ac/Ds
insertions in S. cerevisiae (Michel et al. 2017). Furthermore, it can easily
bemodified for activation-tagging applications, as has been demonstrated
in plants [reviewed in Lazarow et al. (2013)], as well as for the generation
of overexpression and epitope tagging libraries. The beauty of the system is
the ease in generating new libraries with thousands, to hundreds of thou-
sands, of new mutants in a single strain background. When coupled with
deep sequencing technologies, this provides the potential for facile, rapid
generation of large libraries of random insertionmutants without the need
for efficient transformation frequencies.
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