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Abstract— Modern cars are equipped with a variety of
sensors, advanced driver assistance systems and user interfaces
nowadays. To benefit from these systems and to optimally
support the driver in his monitoring and decision making
process, efficient human-machine interfaces play an important
part. This paper describes the second release of iDriver, an
iPad software solution which was developed to navigate and
remote control autonomous cars, to give access to live sensor
data and useful data about the car state, as there are, e.g.,
current speed, engine and gear state. The software was used
and evaluated in our two fully autonomous research cars
“Spirit of Berlin” and “Made in Germany”.
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I. INTRODUCTION AND MOTIVATION

With modern technology evolving, cars are equipped with
a variety of new sensors and functions nowadays. These sys-
tems give the driver new possibilities to control or to interact
with the car and to assist the driver. As advanced driver
assistance systems (ADAS) become more sophisticated, the
vision of an autonomous car could become reality within the
near future.

A. Research in Autonomous Cars

Research in autonomous cars have received a broader
interest in recent years as they have unfolded many insights
for general robot systems in areas like safety, machine learn-
ing and environmental perception. The industry, especially
automobile manufacturers, are eager to improve advanced
driver assistance systems, such as lane departure warning
and intelligent speed adaptation systems while military is
strongly interested in unmanned vehicles for its use in
reconnaissance and combat operations. From a Computer
Science perspective unmanned vehicles serve as a research
platform for progress in a variety of fields as machine
learning, computer vision, fusion of sensor data, path plan-
ning, decision making, control architectures and intelligent
autonomous behavior.

While unmanned driving is the ultimate goal, in the
development process of autonomous vehicles human drivers
must be present in case of failures. A remote control as
human-machine-interface is a perfect instrument to send
commands to the vehicles as well as receiving status data
from without actually remaining in the car. We choose to
use an Apple iPad tablet PC as such a remote device.

B. iPad Human Machine Interface

With the idea of an Apple iPad human machine interface
we have the following key features in mind, the iPad should
supply:

• As a remote control it is a perfect instrument to send
commands to the vehicles as well as receiving status
data without actually remaining in the car.

• Within the development and testing process, visual de-
bugging tools are necessary. Thus, the iPad can display
real time raw sensor data as well as processed data,
e.g., recognized obstacles from laser scanners or image
processing results.

• As a human interface for the driver its touch display
can be used to input the wanted target position,
checkpoints that should be passed and other data that
is necessary to define the desired mission.

In this paper a software solution is presented which
enables us to use an Apple iPad as a remote control and
as a display for live sensor data. The mobile application
was named iDriver and is a further developed version
of the iPhone version [1]. Generally, tablet computers
provide the necessary computing capabilities and sensor
functionalities to act as a remote control. We chose the
Apple iPad over other tablet computers because of its
advanced multitouch recognition and its sensor capabilities.
The iPad, in comparasion with the iPhone used for the first
release, has a bigger display, longer battery life, and enough
power for wireless communication. iDriver has been tested
with two autonomous cars “Spirit of Berlin” and “Made in
Germany” from Freie Universität Berlin.

C. Motivation and Applications

The motivation for a remote control for an autonomous
car is twofold. First, we want to receive sensor data directly
from the car and use the iPad as a diagnostic frontend for on-
board data. This is beneficial in the development process for
autonomous systems without the need of a supervisior in the
car itself. Secondly, we want to send out data and commands
to the autonomous car. We do this on three different levels:
full control of gas/brake and steering wheel, input of mission
points for an autonomous route, and activating an emergency



brake. The latter is essential for autonmous testing where
safeguards (i.e. a driver) are required ready to initiate the
emergency brake in case something fails. These precautions
and other actions can be done remotely with a mobile device
as described later.

D. Paper structure

The paper is structured as follows: After giving a short
introduction to related work (Chapter II) within the field
of autonomous cars and to earlier work on human-machine
interfaces we will present key software features of the iDriver
software in Chapter III. In Chapter IV we will introduce
the testing ground and experiments we performed, a short
conclusion and future work are given in Chapter V.

II. RELATED WORK

There are various research teams working on autonomous
cars with the goal of unmanned driving in daily urban
scenarios. Although driving without an actual human pilot
is legally yet an open issue, the technology has reached a
level where it can be safely field tested in urban scenarios
alongside with regular human traffic participants.

Autonomous vehicles have received a huge research boost
by the US Defense Advanced Research Projects Agency
(DARPA) that has organized three challenges for unmanned
land vehicles in 2004, 2005 and 2007. Over 100 teams
participated in the first challenge, but none of them managed
to complete the whole distance to win the price money. The
best performance was accomplished by Carnegie Mellon Red
Team’s robot Sandstorm with 7.36 miles before crashing with
a road obstacle [2].

The same challenge was repeated in 2005, with 195 appli-
cants whereas 43 where chosen for a National Qualification
Event (NQE) and 23 teams made it to the finals. All but
one of the finalists surpassed the distance of Sandstorm in
the preceding year. Five vehicles successfully completed the
race with the winner robot Stanley from Stanford Racing
Team that finished the course in under 7 hours [3].

In 2007, DARPA moved to an urban scenario: a 60 mile
course in urban area in less than 6 hours including obeying all
traffic laws while negotiating with other traffic participants
and obstacles and merging into traffic. The winner was Tartan
Racing (Carnegie Mellon University and General Motors
Corporation) with their vehicle Boss and a finishing time
of 4 hours and 10 minutes [4].

While the 2004 and 2005 events were more physically
challenging for the vehicles, because the robots only needed
to operate in isolation with focus on structured situations
such as highway driving, the 2007 challenge required en-
gineers to build robots able obey all traffic regulations and
make intelligent decisions in real time based on the current
situation.

No urban challenge was organized after 2007, which
urged researchers to move to real traffic, testing autonomous
vehicles along side with human road users. Most recent
accomplishments include autonomous Toyoto Prius’ cars
from Google developed by a joined venture from researchers

of Carnegie Mellon and Stanford University [5] in 2010.
Seven test cars have driven 1,000 miles without human in-
tervention and more than 140,000 miles with only occasional
human control. Simultaenously, “Leonie”, a Volkswagen
Passat from Technische Universität Braunschweig, Germany,
finished a round course in Braunschweig autonomously.
Similary, “Made in Germany”of Freie Universität Berlin
demonstrated crossing behaviour, traffic light detection and
obstacle avoidance in urban situations.

A. Spirit of Berlin & Made in Germany

For tests we use two of our autonomous cars “Spirit of
Berlin” and “Made in Germany” of Freie Universität Berlin
(see Figure 1).

Fig. 1. The autonomous testing vehicles “Spirit of Berlin” (left) and “Made
in Germany” (right).

“Spirit of Berlin” was the participating robot of Team
Berlin in the 2007 DARPA Urban Challenge [6]. It finished
as one of the 35 semifinalists. The 2007 team was a joint
team of researchers and students from Freie Universität
Berlin, Rice University, and the Fraunhofer Society work-
ing together with American partners. The vehicle was a
retrofitted Dodge Caravan with drive-by-wire technology,
modified so that a handicapped person could drive using
a linear lever for brake and gas (the lever controls all in-
termediate steps between full braking and full acceleration),
and a small wheel for steering the front wheels. The rest
of the car’s components can be controlled through a small
contact sensitive panel or using a computer connected to A/D
converters. Several sensors are used and mounted on top
of the car: Two GPS antennas give information about the
position and direction of the car. An IMU and an odometer
provide temporal positioning information when GPS signal
is lost. Two video cameras are mounted in front of the car for
stereo-vision modules to detect lane markings and roadside.
One of the two cameras broadcasts its video stream to the
iPad to provide a view of where the car is heading. Three
laser scanners are used to sweep the surroundings for any
obstacles that need to be evaded. All sensor data are collected
and fusioned into one state model about the vehicle itself and
its surroundings that is representing the perception of the car.

A blade server from IBM provides the necessary com-
puting power for the running software modules, the actual
intelligence of the vehicle. Here, the fusioned sensor data are
used to make decisions on what action needs to be executed
next given the current situation. The necessary commands are
then transmitted to actuators in the steering wheel, gas and
brake pedals to execute the made decision. When the iPad



acts as a remote control in manual mode, the intelligence
in the car is turned off, and the commands given from the
phone are directly transmitted to the actuators.

“Made in Germany” is a successor to “Spirit of Berlin”,
a volkswagen Passat which drive-by-wire interface was
factory-opened for us to control the car. Therefore no A/D
converters were necessary to control the car, instead commu-
nication is established via ethernet directly to the Controller
area network (CAN). The Passat has six Ibeo Lux laser
scanners build in for a 360 degree view of its surroundings.
Moreover, a Velodyne laser scanner on the roof enhances its
perception by another 64 laser beams sweeping around the
car. In addition to “Spirit of Berlin” the car also includes
radar sensors from TRW and SMS that enables us to detect
obstacles in close proximity with even higher resolution. This
is indispensable for parking or shunting maneuvers.

B. Related Remote Control Systems

Related work on remote systems to control autonomous
cars is rare. We have shown two methods controlling an
autonomous car with a HED4 eyetracking system by SMI [7]
and with an Apple iPhone [1]. The latter has become our
ground work for this project.

Another approach has been done by Institute of Trans-
portation Systems of German Aerospace Center DLR, where
they ported their autonomous development and testing frame-
work DOMINION directly onto the Apple iOS platform [8].
They were thus able to control autonomous cars, but limited
it to gas/brake and steering only.

Other projects involving autonomous cars make do with
an E-Stop system as a wireless link to initiate an emercency
stop in case the car fails or goes critical [3].

III. IDRIVER SOFTWARE

The iDriver software (Second Release) was developed for
the Apple iPad and tested under iPad software version 3.2.2.
Our approach involves a software solution to remote control
an autonomous car and to display raw sensor and navigation
data as well as recognized and tracked objects transmitted
from the car.

The iPad tablet platform comprises all technologies for the
development process of an autonomous car remote control.
The big multitouch display, accelerometer and the powerful
wifi processor allow a fluent transmission and easy control
of the autonomous car. Nowadays, there are also tablet
computers based on other operating systems like Windows
Mobile or Linux. But because of the iPad’s high market dis-
tribution there are more developement resources, guidelines
and support than on others platforms. The iOS programming
language (Objective-C) is based on C which enables us to use
core system calls for TCP/IP communication. Other frame-
works included in iOS simplify development in OpenGL, 2D
or 3D animation and graphics.

A. Architecture

iDriver is developed for a client-server architecture where
the client software resides in the remote sending out control

signals to the server system to be controlled. The server is
responsible to accept or reject these commands and execute
them accordingly. As of a feedback service the server may
return an answer back to the client.

The main data flow between iPad and car is outlined
in Figure 2. The server is directly connected to the car
via ethernet and is thus able to retrieve can messages, and
laser sensor data (in our case: six Ibeo Lux sensors and
one Velodyne scanner). Camera data are read via Firewire
400. Another micro controller acts as an emergency backup
system that is also directly connected to CAN. The controller
is needed to initiate an emergency stop in case the server
fails.

The iPad receives its data over Wi-Fi using UDP packets
for real-time data (e.g. camera data, sensor data and gps
locations). Emergency stop signals, status data and com-
mands to the server are transmitted over TCP for more
reliability. For testing purposes the Wi-Fi network was left
unsecure, however for general purposes a security policy and
encryption is desirable.

Fig. 2. Data flow chart: communication between iPad and main computer
in the car

The multi-touch screen of the iPad can be used to
capture multiple commands with more than one finger
simultaneously, e.g. giving gas and steering to the left. As a
safety measurement at least one touch needs to remain on the
iPad to transmit data. The built-in accelerometer allows us
to read out the current pose of the iPad, so that tilting to the
left and right can be mapped to left and right steering actions.

B. Features

The application start view is divided into three areas.
At the top status information is displayed such as Wi-Fi



connection with the server and the reception level with the
round trip delay in seconds. In the middle of the screen there
is a 3D Model of the autonomous car with a short description
of all the sensors when touched. At the bottom, a scroll view
with various icons gives access to all the features that are
implemented. The main implemented features are emergency
stop, dashboard, sensors, obstacles, track, mission, pick me
up and drive.

Fig. 3. iDriver layout interface

1) Emergency stop: The Emergency stop feature provides
the same function as an emergency stop switch that users
activate to initiate the complete shutdown of a machine. In
our case when the user pushes the emergency stop button
the autonomous car will stop immediately and wait for new
commands. We use this function to prevent malfunctions
during the tests or to abort if anything goes wrong. When
the user pushes the button, it generates a message with an
special ID and it sends over a secure connection to the micro
controller installed in the autonomous car. Afterwards, the
micro controller can directly communicate with the CAN
bus to initiate a emergency brake. Thus, the stop process is
separated from the server and remains functional even if the
server malfunctions.

2) Dashboard: The Dashboard feature is a digital
instrument to wirelessly show various information of the
autonomous car which would be available on the real
dashboard. This enables the user to check on speed,
revolutions per minute, heading and turn signals when
the car is in autonomous mode. When the user starts
this function the car encapsulates the local dashboard
information in a message and sends it to the iPad in
periodically short time intervals.

3) Sensors: In the Sensors view, raw data from every
sensor is visualized for the user. Using a segmented
control the user can switch between data from the cameras,
Velodyne laser scaner, Lux (TM) laser scaner, TRW (TM)
radar and SMS (TM) radar sensors. The raw data is
processed by the server and projected in a 3D simulator
around the car. A image capture of this simulator is then

transmitted to the iPad using a Bayer filter.

4) Obstacles: The Obstacles feature displays objects that
have been recognized and tracked by the sensors from their
raw data. With the camera raw data we can recognize static
objects like traffic lights or traffic signs and moving objects
like vehicles or pedestrians that are in front of the car and
in the field of view of the camera. With the Velodyne and
Lux sensors we can scan 360 degrees around the car and
recognize and track objects like vehicles, pedestrians, trees,
walls, etc. In contrast to camera data, the laser scan data
incorporates position estimation and therefore a distance
measurement to the car’s chassis. With the radar sensors
we can also scan for incoming obstacles but with higher
precision and independent of weather conditions. All this
objects are also projected in a 3D simulator and thereafter
broadcasted as a 2D texture that is send line by line to the
client using a Bayer filter.

5) Track: The track feature displays a map of the actual
positon and trajectory of the autonomous car since the
user activated the function. The GPS position of the car is
periodically sent to the client and visualized as a path on
the map. It is useful to know the car’s position at any time
when in autonomous mode.

6) Mission: The mission feature allows the user to send
a sequence of checkpoints to the server that the autonomous
car has to process. When the user starts the function the
server sends all the available checkpoints for the given
region to the client. The user can then start a mission in
a 2-step workflow: First, the user selects a sequence of
checkpoints for the car to process. The checkpoints are
visualized on a map along side the cars chosen trajectory.
Secondly, once the mission is confirmed by the user it is
transmitted to the car. When the server confirms the new
sequence the user can start the mission pushing a button
and the autonomous car has to drive to all checkpoints in
the same sequence as the user has put in.

7) Pick me up: The pick me up feature allows the user
to call the autonomous car and get picked up. The client
sends its GPS positon to the server where the server projects
this position to the closest street reachable from the car’s
current position. A mission is generated for the car to drive
from its current to the user’s location. Thus, when the user
starts this function you can initially see where the car is
located, after that the user needs only to touch the pick me
up button to iniate the mission.

8) Drive: In drive mode the car hands over control to the
iPad allowing the remote user to steer, brake and accelerate
the car with touches and tilt movements. All necessary
control information (desired gas or brake position, steering
wheel position, desired gear and turn signal) is packed into
one single UDP packet and then send out to the server. The
gas or brake position consists of a float value between -



1.0 (maximum brake) and 1.0 (maximum gas), the default
value for brake is set to -0.11 allowing a smooth deceleration
until a full stop is reached. Similarly, the gas value is set
to 0.3 by default to limit the maximum speed in a test
scenario to about 15 km/h. Another float value holds the
steering wheel position with -1.0 for maximum left and 1.0
for maximum right. As a safety precaution to prevent rapid
turns the steering wheel position is limited to -0.7 till 0.7.
The desired gear is saved as an integer value with 1 = park,
2 = reverse, 4 = neutral and 8 = drive. The turn signals are
also stored in an integer with 0 = both signals off, 1 = left
signal on, 2 = right signal on, 3 = both signals on. Both float
values for gas/brake and steering and both integer values for
gear and turn signal are packed into one 16-byte UDP packet
shown in Table I.

TABLE I
STRUCTURE OF OUTGOING UDP CONTROL PACKETS

gas/brake steering wheel gear turn signal horn
4 bytes 4 bytes 4 bytes 4 bytes 4 bytes

When in driving mode, UDP packets are only sent out
when at least one finger is touching the screen. If no fingers
are touching the screen no UDP packets are sent out, causing
the car to perform an emergency stop after a short time
interval. This is a safety measure to ensure that the car comes
to a full stop when the connection between remote and car
is lost or if the car is out of Wi-Fi range.

The car is functioning as a server for the remote and is
sending back two kinds of packets: feedback and camera
packets. Feedback packets are sent for every incoming con-
trol packet described above, containing 16-byte information
for packet version, current speed, set gear and set turn signal
mode. Table II shows the structure of feedback packets. The
speed value is displayed on screen whereas gear and turn
signal information are used by the client to verify the last
sent desired gear and turn signal commands.

TABLE II
STRUCTURE OF INCOMING UDP FEEDBACK PACKETS

version number current speed gear turn signal
4 bytes 4 bytes 4 bytes 4 bytes

Camera packets are constantly sent from the car to the
iPad so the remote user has a visual feedback of where the
car is heading. Each packet contains data for several rows of
the camera image encoded with a Bayer filter and additional
meta information. The meta information consists of three
short values for which row is sent, the maximum number
of rows and how many rows are sent. The raw image data
follows the meta information as the payload of the packet.
Table III shows the structure of camera packets.

The remote software receives these camera packets and
updates part of its OpenGL ES texture accordingly which
is displayed in the main screen. With the use of a Bayer

TABLE III
STRUCTURE OF INCOMING UDP CAMERA PACKETS

row maximum rows number of rows image data
2 bytes 2 bytes 2 bytes variable

filter the bandwidth of camera data is reduced to one third
compared to raw RGB data. iDriver then uses a pixel and
fragment shader as an efficient demosaic filter on the GPU
described by McGuire [9].

IV. TESTS

The iPad remote control has been extensively tested with
our autonomous vehicles “Spirit of Berlin” and “Made in
Germany”. When the iPad was connected to the car and
its CAN bus, the CAN messages were retrieved with a
frequency of 100 Hz and sent to the iPad via an ad-hoc
wireless network. Packet losses due to UDP were minimal
and noncritical for display purposes at 100 hertz. Sensor
data are retrieved and transmitted as UDP packets with
different frequencies: 12.5 Hz for Ibeo Lux sensors, 15 Hz
for Velodyne sensor and 25 Hz for camera data. This is
sufficient for visualisation and debugging tasks. GPS packets
for tracking the cars position are also broadcasted with 10
Hz.

Fig. 4. Testing ground on Central Airport Berlin-Tempelhof

Long-run driving tests have been performed on the
now defunct Central Airport Berlin-Tempelhof, Germany. A
round course was designed including various left and right
turns, 3-way and 4-way crossings and long straight high-
speed segments (see Figure 4). 11 mission points have been
incorporated into the course, from which different mission
scenarios were sent from the iPad to the car. Additional
challenges have been included: traffic lights, other traffic
participants at crossings, unexpected obstacles passing the
road like pedestrians and static obstacles forcing a overtaking
maneuver. The car executed all missions flawlessly and came
to a full stop once a mission has been completed.

We first measured the range of simple Wi-Fi connection
between iPad and car and then the delay and rate of packet
loss for different ranges. The iPad kept an stable connection
with the car up to 200 meters in open area and up to 150
meters in urban areas. For higher ranges a switch to other
wireless technology, such as WiMAX or UTMS is required.



The delay between iPad and the server was about 100-
150 ms. It took another 100 ms for the signals to reach
the gas/brake and steering engines from the computer. Thus,
we had a delay of 200-250 ms to control the car. This was
sufficient for all our main features.

Packet loss was a greater challenge as UDP does not
provide reliability or data integrity. However, as a real-time
system we are prefer dropping packets rather than waiting
for them. For control packets we had an average packet loss
of 9% which was negligible as control packets are sent with
a high frequency. It was more crucial for camera data and
sensor data packets as they have a much higher payload. We
had about 19% packet loss in close proximity and up to 41%
packet loss at maximal range. Packet loss was compensated
by compressing image data with a Bayer filter and avoiding
repeated transmission of unchanged sensor data.

V. CONCLUSION

This paper has described the architecture and mechanics
of the iDriver remote software on an Apple iPad. It is used
as a human-machine interface for autonomous vehicles to
display live sensor data and useful data about the car state.

We have described each of the main features of the soft-
ware in detail, especially features to observe sensor data or
the car’s state: dashboard, sensors, obstacles. Other features
allow the user to remote control the car by calling out to
be picked up or sending out distinct missions. Furthermore
it allows a mode where manual driving with the remote is
possible.

The software has been tested on the now defunct Berlin-
Tempelhof airport with two of our autonomous cars: “Spirit
of Berlin” and “Made in Germany”.

A. Future Work

Besides incorporating features of new sensors, in future
works it might be interesting to analyze, in how far location
based services are applicable with car autonomy. E.g., it is
imaginable that the driver uses the iPad to find the next gas
station or repair facility and the car will plan and find its way
to it. Other features, as a visual status watchdog showing if
something in the car went wrong, or, classically traffic jam
warnings could be feasible extensions.

As of future work we would also like to incorporate a
security protocol to our communication between car and iPad
and try to integrate more on-board diagnostic information.

Although it would be technically feasible as the DARPA
Urban Challenge or iDriver obviously demonstrated, there
are many legal issues to be worked out. For example, if two
robot cars crash into each other in traffic, it is not resolved
who will be responsible for the accident. Will it be one of
the owners of the car or will it be the manufacturer or will it
even be the company that built the failing module that was
responsible for the software error? It is obvious, that man-
ufacturers and legal institutions are not eager to discuss the
terms of completely autonomous or remote controlled driving
in the near future. However, we believe that autonomous
features, as some of them are described in this paper, will

eventually be brought into series-production readiness as part
of more sophisticated advanced driver assistance systems
because they may provide necessary information for drivers
or even prevent accidents.
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