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Hubbard-to-Heisenberg crossover (and efficient computation) of
Drude weights at low temperatures

CKarrasch
DahlemCenter for ComplexQuantumSystems and Fachbereich Physik, FreieUniversität Berlin,D-14195 Berlin, Germany
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Abstract
We illustrate howfinite-temperature charge and thermalDrudeweights of one-dimensional systems
can be obtained from the relaxation of initial states featuring global (left–right) gradients in the
chemical potential or temperature. The approach is tested for spinless interacting fermions as well as
for the Fermi-Hubbardmodel, and the behavior in the vicinity of special points (such as halffilling or
isotropic chains) is discussed.We present technical details on how to implement the calculation in
practice using the densitymatrix renormalization group and show that the non-equilibriumdynamics
is often less demanding to simulate numerically and features simpler finite-time transients than the
corresponding linear response current correlators; thus, new parameter regimes can become
accessible. As an application, we determine the thermalDrudeweight of theHubbardmodel for
temperaturesTwhich are an order ofmagnitude smaller than those reached in the equilibrium
approach. This allows us to demonstrate that at lowT and halffilling, thermal transport is successively
governed by spin excitations and described quantitatively by the Bethe ansatz Drudeweight of the
Heisenberg chain.

1. Introduction

Computing correlation effects on static or dynamic transport properties at finite temperature such as charge or
thermal conductivities [1, 2]

s w p d w s w= +n n n( ) ( ) ( ) ( )D2 1reg

generally poses a daunting task for theorists. Even in linear response and at low energies (temperatures), theDC
conductivity of gapless systems is usually not governed by the Luttinger liquidfixed point alone but influenced
by the existence of conserved quantities [3]. In order to connect to actual experimental transportmeasurements
on (quasi) 1D systems such as carbon nanotubes or strongly anisotropic 3Dmaterials, it is thus essential to
directly studymicroscopicHamiltonians such asHeisenberg spin chains, spin ladders, orHubbardmodels. This
is a hard task even for seemingly ‘simple’, Bethe-ansatz solvable systems (such as theHeisenberg spin chain),
because—similarly to correlation functions—transport coefficients are determined by couplings between all
excitations.

Whether or not a physical system exhibits dissipationless transport is signaled by theDrudeweightDν in
equation (1). For ¹nD 0, an initially excited current does not fully decay butwill survive to infinite time. If for a
givenmodel the current operator I is conserved by theHamiltonian, =[ ]I H, 0, transport is dissipationless at
any temperatureT. If I does not commutewithH but has afinite overlapwith (quasi-) local conserved
quantities, dissipation processes are restricted and theDrudeweight is non-zero; this can be shown strictly using
theMazur inequality [4–6].While the question of dissipationless transport ismainly investigated for closed
systemswithin linear response, it can also be studied in non-equilibrium setups [7–10] or for open quantum
systems [11–14].

One prototypical low-dimensionalmodel is given by spinless, interacting fermions (equivalently, a
Heisenberg XXZ spin chain); it can be diagonalized exactly using the Bethe ansatz [15, 16] and possesses an
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infinite number of local conserved quantities. The energy current operator commutes with theHamiltonian,
and the correspondingDrudeweight Dthwas computed analytically [17, 18]. The chargeDrudeweight Dchas
attracted considerable attention [19–26], in particular at halffillingwhere the current operator has no overlap
with any of the standard local conserved quantities. Considerable progress has beenmadewithin the recent years
[3, 10, 27–35]. In particular, Prosen constructed quasi-local conserved quantities [27, 30, 36] to show analytically
that Dc isfinite throughout the gapless phase (excluding the isotropic point); quantitative numbers can be
obtained, e.g., using the real-time densitymatrix renormalization group (DMRG) [29, 37] or dynamical
typicality [31].Whether or not theDrudeweight isfinite for an isotropic chain is still debated [28, 29, 31, 38].

Amore complex (andmore experimentally relevant) system is the 1d Fermi-Hubbardmodel, which is again
integrable via the Bethe ansatz and can thus in principle support dissipationless transport atfinite temperature;
however, neither the charge nor the energy current are fully conserved, ¹[ ]I H, 0c,th .Most prior studies
concentrated on the chargeDrudeweight Dc [39–46], which isfinite away fromhalf filling by virtue of theMazur
inequality [6]. Directly at halffilling,most works point towards =( )D T 0c [42, 43, 45, 46], but this issue is not
fully resolved yet. The thermal Drudeweight of theHubbardmodel has attracted far less attention: while the
Mazur inequality [6] can again be used to show that >( )D T 0th for arbitrary fillings, quantitative numbers for
Dthwere only computed recently for large-to-intermediate temperatures [47]. It is one goal of this work to obtain
the thermalDrudeweight via theDMRG for temperatures which are an order ofmagnitude smaller and to
demonstrate that one successively recovers the exact formof theHeisenberg chain’s thermal Drudeweight at
lowT and half filling.We can reach such small temperatures by extracting Dthusing a novel numerical protocol
(see the next paragraph)which differs from the standard one employed in [47].

The ‘standard route’ to compute theDrudeweight n ( )D T numerically is provided by the linear response
expression

=
á ñ

¥ ¥
( )

( )
( )D T

I t I

LT
lim lim

2
, 2

t L
c,th

c,th c,th eq

1 ,2

where the real-time current correlation function á ñn n( )I t I eq can be obtained directly using theDMRG. It was
recently demonstrated [48] that n ( )D T can alternatively be calculated from the non-equilibrium current
á ñn m( )I t T, flowing in the presence of a small chemical potential or temperature gradient via [49]

= ¶
á ñ

m
m

¥ ¥
( )

( )
( )D T

I t

t
lim lim

2
. 3

t L
T

T
c,th ,

c,th ,

Equation (3)was discussed briefly in [48], and its validity was tested explicitly for the XXZ spin chain. The aimof
the present paper is to expand on the ideas of [48], to study the practical relevance of equation (3) inmore detail,
and, as an application, to extract Dthof the Fermi-Hubbardmodel at lowT.

After briefly introducing ourmethodology in sections 2 and 3, we extensively compare the real-time
dynamics of equations (2) and (3) in section 4.One particular focus is on charge and thermal transport in the
Hubbardmodel (whichwas not considered in [48]).We discuss the behavior in the vicinity of special points such
as half filling or ‘isotropic chains’. In section 5, practical aspects are presented on how to implement the
calculation of equation (3)numerically. In particular, we document that equation (3) is often less demanding to
simulate and features less complex finite-time transients than equation (2). As an application, we exploit this
simplicity to determine the thermal Drudeweight of theHubbardmodel for temperatures which are an order of
magnitude lower than those reached in the linear response calculation of [47], allowing us to access the regime
where thermal transport is successively governed by spin excitations and described quantitatively by the exact

( )D Tth of theHeisenberg chain (section 6).

2.Model andmethod

2.1.Model
Thefirstmodel we consider describes spinless, interacting lattice fermions, whoseHamiltonian is given by

å å= = + + D+ +
⎡
⎣⎢

⎤
⎦⎥( ) ˜ ˜ ( )†H h J c c n n

1

2
h.c. , 4

l
l

l
l l l l1 1

with cl being a fermionic annihilation operator acting on site l, = -˜ †n c c 1 2l l l , and DJ , denoting the hopping
amplitude and nearest-neighbor interaction strength, respectively. Equation (4) can bemapped to anXXZ spin
chainwith an exchange coupling J and anisotropyΔ via a Jordan-Wigner transformation. The charge and energy
current of thismodel take the standard form

2
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å å= - =+ +( ) [ ] ( )†I
J

c c I h h
i

2
h.c. , i , . 5

l
l l

l
l lc 1 th 1

The one-dimensional Fermi-Hubbardmodel is governed by

å å å= = - + + +
s

s s+   +  + 

⎡
⎣⎢

⎤
⎦⎥( ) ( ˜ ˜ ˜ ˜ ) ( )†H h t c c

U
n n n nh.c.

2
, 6

l
l

l
l l l l l l0 1 1 1

where scl annihilates a fermionwith spinσ on site l, and = -s s s˜ †n c c 1 2l l l . The interaction strength and the
hoppingmatrix element are denoted byU and t0, respectively. The charge and energy current are given by

åå å= - =
s

s s+ +( ) [ ] ( )†I t c c I h hi h.c. , i , . 7
l

l l
l

l lc 0 1 th 1

2.2.Densitymatrix renormalization group
In order to calculate the real time evolution of the one-dimensional quantum-mechanical systems introduced in
equations (4) and (6), we employ the time-dependent [50–54]DMRGmethod [55–57] implemented using
matrix product states [58–61]. Finite temperatures [62–67] are incorporated via a purification Yñ∣ T of the
thermal densitymatrix r ~ -e H T . The state Yñ∣ T can be obtained from the (known) Yñ¥∣ via an evolution
-e H T2 in the inverse temperature [57]. Both -e H T2 aswell as the real time evolution operator -e Hti are factorized
by a fourth order Trotter-Suzuki decomposition.We keep the discardedweight during each individual ‘bond
update’ below a threshold value  . This leads to an exponential increase of the bond dimensionχ during the real
time evolution. In order to access time scales as large as possible, we employ thefinite-temperature disentangler
introduced in [68], which exploits the fact that purification is not unique to slow down the growth ofχ. Our
calculations are performed using a system size of the order of ~ ( )L O 100 sites. By comparing to other values of
L, we have ensured that L is large enough for the results to be effectively in the thermodynamic limit [69].

3. Computation of theDrudeweight

3.1.Motivation of the non-equilibrium expression for the linearDrudeweight
For reasons of completeness, we brieflymotivate the origin of equation (3) for the charge case—more details can
be found in [48]. Linear response theory predicts that local currents ( )i xc are related to gradients of an applied
potential m ( )x via s m= - ¶( ) ( )i x xxc c . The spatially integrated current flowing in a large butfinite system (see
below for comments on this issue) is then given by

ò p d w dm dmá ñ = = = + ¼ = + ¼m( ) ( ) ( ) ( )I t i x x D D td 2 0 2 , 8c c c c

where dm is the total potential difference, andwe have exploited thatfinite times serve as an infrared cutoff and
regularize the δ-function via

òd w
p p

= » =
-

( ) ( )t t
0

d

2
. 9

t

t

The ellipsis in equation (8)denotes a contribution from the regular part of the conductivity which can be
neglected in the asymptotic limit of large times.

Hence, equation (8) suggests that the total non-equilibrium currentflowing in the presence of an initial
potential gradient should increase linearly for large times and that the prefactor is determined by theDrude
weight. If the regular contribution to the conductivity vanishes and transport is purely ballistic, thefinite-time
transients should vanish and linear behavior shouldmanifest even for small t.Wewill explicitly verify this
picture for the XXZ chain as well as for theHubbardmodel.

Onemightwonder why for a fully ballistic systemwhose total current I commutes with theHamiltonian, á ñI
is not constant but increases linearly with time. This confusion can be resolved by recapitulating themeaning of
boundary conditions. In equation (8), we have implicitly assumed that our systemhas open boundaries, that the
potential gradients occur in its center, and that the system size L is large enough so that at a time t the
perturbations spreading out from the center have not yet reached the boundaries (so that the system is practically
in the thermodynamic limit). Put differently, the global current I is effectively determined by the integral over a
finite region, òá ñ =

-
( )I x xi d

a

a
, whose size a fulfills  vt a L, with v being the Lieb-Robinson velocity.

Importantly, =[ ]I H, 0generally holds only for systemswith periodic (not open) boundary conditions; the
standard example is the energy current in the XXZ chain. If in our setup the left and right ends of the open system
are connected, this creates a second, identical potential gradient, and the total currentflowing in its vicinity is up
to aminus sign identical to the oneflowing in the center. Hence, the total current for a systemwith periodic

3
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boundary conditions is indeed constant. Note that this intuitive argument can be confirmed explicitly using
theDMRG.

As a side remark, we note that if that Drudeweight vanishes and transport is purely diffusive, the present
setup contains information about the diffusion constant [10] via the secondmoment of the spatial profile of the
local currents in equation (7).We leave amore thorough study for future work.

3.2. Numerical details
The linear response expression for theDrudeweight, which is given by equation (2), can be simulated directly
using theDMRG. It is advantageous to ‘exploit time translation invariance’ [67],

=
á - ñ

¥ ¥
( )

( ) ( )
( )D T

I t I t

LT
lim lim

2 2

2
, 10

t L
c,th

c,th c,th eq

1 ,2

and to carry out two independent calculations for n ( )I t 2 aswell as -n ( )I t 2 . Combinedwith the finite-
temperature disentangler [68], this allows one to reach time scales which are roughly four times as large as the
ones accessible by a ‘standard’DMRGapproach [64]. In principle, a similar ‘trick’ can be implemented when
calculating the out-of-equilibrium expression in equation (3) [70]; however, this is not necessary for our
purposes.

In order to compute theDrudeweight via equation (3), we initialize the system in a state

rá¼ñ = á ¼ ñm m m ( )Tr 11T T T, , ,

featuring a gradient in the temperature or chemical potential. The latter case is straightforward: we simply
prepare the systemusing a thermal densitymatrix

r ~m
- ( )˜e , 12H T

where H̃ is theHamiltonian of equation (4) or equation (6) complemented by a term dm ˜J nl2
for the XXZ chain

(and similarly +dm
 ( ˜ ˜ )t n nl l0 2

for theHubbardmodel) on sites l L 2 and >l L 2, respectively.
Furthermore, one can distinguish the cases inwhich the central bond connecting sites L 2 and +L 2 1 is cut
(hL 2 set to zero) or not cut in H̃ . The time evolution is then calculated using the original Hamiltonian (the
potential is switched off).

The simplest way to compute the thermal Drudeweight via equation (3) is to prepare the system in a state

r r r~ Ä ( ), 1 3T L R

where rL R, are thermal densitymatrices of separated left and right systems (sites £ /l L 2 and > /l L 2),
respectively. Their temperatures are chosen as

db= = -( ) ( )T T T T, 1 . 14R L R

In this setup, the bond between the sites L 2 and +L 2 1 is naturally cut. This can be circumvented (whichwill
turn out to be advantageous numerically; see below) by preparing the systemusing a densitymatrix

r ~ - ( )˜e , 15T
H T

where H̃ is the originalHamiltonian for sites >l L 2 and the originalHamiltonianmultiplied by db-1 for
sites l L 2, respectively. The real time evolution is again governed by the originalH given in equation (4) or
equation (6).

4. Comparisonwith linear response

In this section, we explicitly verify the validity of equation (3) for spinless fermions as well as for theHubbard
model and show that linear responseDrudeweights can indeed be obtained from the evolution of an out-of-
equilibrium initial state featuring global gradients dm or db in the chemical potential or temperature,
respectively.We discuss the finite-time dynamics of equations (2) and (3) and demonstrate that they exhibit
different decay rates as one approaches special points of vanishingDrudeweights.

Infigure 1, we show the time evolution of the total charge and energy currents á ñm( )I tc and á ñ( )I t Tth for
spinless interacting fermions.While =[ ]I H, 0th at anyΔ, Ic is not fully conserved, but the chargeDrudeweight
isfinite for D <∣ ∣ 1 at any >T 0 [27] and zero if D >∣ ∣ 1. Hence, one expects that the non-equilibrium charge
current grows linearly only for large times (since there is a non-vanishing regular contribution to the
conductivity in equation (1)) but that á ñ ~I tth for all t (see the discussion at the end of section 3 to resolve a
potential confusion related to the choice of boundary conditions). This is indeed the case for all parameters that
we studied (and illustrated explicitly infigure 1; thisfigurewill be discussed inmore detail in section 5).

4
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4.1. Charge case
Wenow explicitly compare the finite-time behavior of the linear response charge current correlation function
á ñ( )I t Ic c eq and the non-equilibrium current á ñm( )I t tc induced by an initial gradient dm in the chemical potential.
The large-t asymptote of both quantities determines theDrudeweight via equations (2) and (3), respectively.

Figure 2 shows data for spinless fermions at half filling and (a) =T J 1 atD = 0.5, (b) =T J 1 3 at
D = 0.5, and (c)D Î { }0.5, 0.707, 0.901 , 2.0 at = ¥T . In all cases, the long-time asymptotes of the linear
response correlator and the out-of-equilibrium current agree. This confirms the validity of equation (3). At
infinite temperature, an exact analytic solution for the chargeDrudeweight was constructed by Prosen [27, 30]
and is shown as a reference infigure 2(c); see also [19, 20].While the linear response correlators converge to the
exact asymptote on a time scale which seems to be roughly independent ofΔ, the currents á ñmI tc decaymore
slowly (towards zero forD > 1 or towards the Prosen bounds forD < 1) as one approaches the isotropic point
D = 1 from either side. This is interesting since it is still debatedwhether or not ( )D Tc isfinite atD = 1
[28, 29, 31, 38], and the out-of-equilibrium setup discussed in this papermight provide a new route to
investigate this issue. If one fits the data at large times to an exponential function, one observes that the
corresponding decay rate increases as one approachesD = 1. However, at the same time the quality of thefit

Figure 1.Total charge and energy currents á ñI Jc and á ñI Jth
2 flowing in a half-filled chain of spinless lattice fermions exhibiting a

nearest-neighbor interaction D = 0.5 and a temperature =T J 0.5 (see equation (4)). At time t=0, the chain is prepared in a state
featuring a small, sharp gradient dm or db in the chemical potential or temperature between the left and right halves; we explicitly
compare the cases inwhich the bond connecting the two halves is cut (or not cut) in the preparation of this state (see section 3 for
details). Inset: evolution of the bond dimension during the different simulations.

Figure 2.Real time evolution of the linear response charge current correlation function á ñ( )I t Ic c eq as well as of the non-equilibrium
current á ñm( )I tc induced by an initial gradient dm in the chemical potential for a half-filledmodel of spinless fermionswith a nearest-
neighbor interactionΔ. The long-time asymptote of both quantities yields the chargeDrudeweight by virtue of equations (2) and (3),
respectively. At infinite temperature, the exact solution constructed by Prosen forD < 1 [27, 30] is shown as a reference; forfiniteT,
we include Zotos’Bethe ansatz result from [19]. The behavior in the vicinity of the isotropic pointD = 1 is discussed in themain text.
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worsens since the time scale accessible by theDMRGdecreases (compare the curves atD = 0.707 and
D = 0.901 infigure 2(c)). Analyzing thismore quantitatively is not straightforward and left for futurework.

Next, we study charge transport in the Fermi-Hubbardmodel.While theDrudeweight isfinite away from
halffilling by virtue of theMazur inequality [6], most works point towards =( )D T 0c directly at halffilling
[42, 43, 45, 46], but this issue is notfinally resolved. Figure 3 shows the linear response correlators aswell as the
non-equilibrium currents for an on-site interaction of strength =U t 80 at a temperature of =T t 200 for three
values of thefilling. Both quantities converge to the same asymptotic value, which again validates equation (3).
Moreover, we observe that the currents á ñmI tc follow a simple exponential decay at large times, and sufficiently
away fromhalffilling one canmore reliably determine Dcby fitting to this form (see the dotted lines in figure 3).
Interestingly, it seems thatwhile the non-equilibrium currents decaymore slowly as one approaches halffilling,
the linear response correlators do not exhibit a similar qualitative change but level off on comparable time scales.
This scenario is analogous towhat happens in the vicinity ofD = 1 for spinless fermions andmight again be
used to gain further insights about the—still not fully resolved—issue of the chargeDrudeweight at half filling
(future work).

4.2. Thermal case
Next, we turn to the thermal Drudeweight. For spinless fermions, the energy current operator commutes with
theHamiltonian—transport is always purely ballistic. This is no longer the case in theHubbardmodel, but the
Mazur inequality can be used to prove that >( )D T 0th for arbitrary fillings [6]. Hence, no subtleties occur at
special points (in contrast to the charge case), and the asymptotic behavior of á ñ( )I t Ith th eq and á ñ( )I t tTth can be
determined straightforwardly. This is illustrated for two sets of parameters infigures 4(a), (b).We therefore do
not present real-time data inmore detail but directly discuss results for theDrudeweight obtained via
equations (2) and (3), respectively.

Figure 5 shows linear response and out-of-equilibriumdata for Dthas a function of the temperature for (a)
spinless fermionswithD Î { }0.5, 1 , and (b) theHubbardmodel with Î { }U t 0, 4, 80 , both at half filling. In
(a), we plot the exact Bethe ansatz solution [17] for comparison; note that in (b), the point =U t 00 can be
solved analytically, andwe show the exact linear response result instead of theDMRGdata. The high-T
asymptote (dashed lines) displays á ñ =¥( )I t I LT2Tth th eq,

2. In bothmodels and for all temperatures and
interactions, theDrudeweight extracted using equation (3) agrees with the linear response prediction. This
again confirms the validity of the non-equilibrium approach.

4.3. Final thoughts
If the integrability of themodel at hand is broken, charge and thermalDrudeweights become zero, and the non-
equilibrium currents á ñm( )I t tTc,th , decay to zero.We have verified this explicitly for charge and thermal
transport in theHubbardmodel in presence of an additional nearest-neighbor interactionV; representative
results are presented infigure 4(c).

To summarize, we have shown that charge and thermal Drudeweights can be obtained either from the linear
response correlators using equation (2) or fromout-of-equilibrium currents via equation (3).While both
expressions yield the same asymptotic value, the finite-time transients do not necessarily agree. This becomes

Figure 3.The same as infigure 2, but for charge currents in the Fermi-Hubbardmodel (see equation (6))with an on-site interaction
=U t 80 , temperature =T t 200 , and threefilling factors. The large-time asymptote was determined by an exponential fit of the non-

equilibriumdata for tt 80 andfillings 0.56, 0.78.
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particularly obvious as one approaches special points of potentially vanishingDrudeweights. Pragmatically, the
non-equilibrium currents often exhibit a simpler (e.g., non-oscillatory) transient behavior (see, e.g., figure 4(a)),
which renders it simpler to extract theDrudeweight away from those special points.

5. Computational details

In this section, we present data for different initial states and illustrate how small the gradients in the chemical
potential or temperature need to be chosen in practice in order to recover the linear response prediction.
Moreover, we compare the numerical effort necessary to simulate equations (2) and (3), respectively.

Figure 1 shows the charge and energy currents á ñmIc and á ñI Tth for spinless fermions and two different initial
states. The bond connecting the left and right regions (betweenwhich the initial gradients dm and db occur) is cut
in one of themby setting =h 0L 2 but left unchanged in the other (see section 3 for details on how the state is
actually prepared). The currents feature the same asymptotic behavior in both cases, and even the finite-time
transients (which appear in the charge case) are small. However, the numerical effort is drastically reduced if the
bond is not cut in the preparation of the state (see the inset tofigure 1), which one can understand intuitively
from the fact that by setting =h 0L 2 , one chooses an initial state which is further away from the stationary one.
Hence, it is numerically advantageous to not ‘cut the bond’ in the preparation of the initial state, and all data in
this workwas obtained using this setup.

Figure 4. Linear response energy current correlation function as well as the non-equilibrium energy current induced by an initial
small temperature gradient for the half-filled Fermi-Hubbardmodel with =U t 80 and (a) =T t 2 30 , (b) =T t 200 . The long-time
asymptotes determine the thermalDrudeweights via equations (2) and (3), respectively. In (c), we showdata in the presence of an
additional integrability-breaking nearest-neighbor interactionV.

Figure 5.ThermalDrudeweight ( )D Tth for (a) spinless fermions and (b) the Fermi-Hubbardmodel at halffilling. The linear response
result calculated using equation (2) is compared to the one obtained via equation (3) from the non-equilibrium energy current
á ñ( )I t Tth induced by an initial temperature gradient db . In (a), we show the exact Bethe ansatz result [17] for T J 1 as a reference (the
Bethe ansatz and linear responseDMRG curves are indistinguishable). In (b), the linear responseDrudeweight was computed
analytically for =U t 00 .
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Infigures 2(a) and 5(a), we explicitly shownon-equilibriumdata for spinless fermions calculated for
different strength dm and db of the initial potential and temperature gradients. One can see that dm db ~, 0.01 is
small enough to reproduce the linear response result with an accuracy that is beyond the resolution of the figure;
deviations only occur for db = 0.1 infigure 5(a). All other data in this workwas obtained using
dm db ~ –, 0.01 0.1, andwe checked (in representative cases) that decreasing the gradients even further does not
influence the results.

It is instructive to recall that the order of limits dm 0and  ¥t in equation (3) is defined on an
operational level: one first prepares a gradient dm and then time-evolves until theDMRGbreaks down (at afinite
time scale). This procedure is repeatedwith successively decreasing dm (starting from fairly large dm) until the
results (on the accessible time scales)no longer change. This is illustrated infigure 2 for dm Î { }0.1 , 0.003, 0.001 .

Applying the real- and imaginary time evolution operators -e Hti and -e H T to amatrix product state involves
singular value decompositions which lead to an increase of the bond dimension. The key approximation of the
DMRG is to truncate this state by discarding the singular values belowof a given threshold. The allowed
discardedweight is the central parameter which controls the accuracy of themethod.

In practice, we choose some representative sets of physical parameters and carry out calculations using
different values of the discardedweight  ò during the real time evolution. An example is shown infigure 6(a),
which displays the data offigure 2(a) for three different, successively decreasing    Î { }, 10, 1001 1 1 : we start
from a large 1 and then lower this value succesively until the physical quantity at hand is computedwith the
desired accuracy. Note that (i) the bond dimension grows faster for smaller 1, and hence the accessible time
scales are reduced, and (ii) the linear response and non-equilibrium calculations are generally performed using a
different 1 chosen such that the corresponding curves á ñn n( )I t I eq and á ñn m( )I t T, eventually reach the desired
accuracy. In this work, the desired accuracy is set by the scale of each plot: in the case offigure 6(a), no deviation
between the data calculated for  = 101 and  = 1001 can be observed (on the scale offigure 6(a)); hence,
the former value is a reasonable choice.

Infigure 6(b), we illustrate how the bond dimensionχ grows if the smallest value  1001 is chosen as the
discardedweight.We comparec ( )t for the simulations of (i) the linear response expression á ñ( )I t Ic c eq calculated
in the standardway from a single time evolution, (ii) the same, but writing á ñ = á - ñ( ) ( ) ( )I t I I t I t2 2c c eq c c eq and
carrying out two individual time evolutions for ( )I t 2c , and (iii) the non-equilibrium approach á ñm( )I tc . The
fastest growth occurs in (i). Using (ii), one can access a time scale which is (roughly) twice as large at the same
computational cost.More precisely, translation invariance (in space) can only be exploited in one of the

( )I t 2 ;c their calculations thus exhibit differentc ( )t (and are also performed using different individual
discardedweights  > ;1 1 ,notrans. inv. see [70] for details). If translation invariance is exploited, the bond
dimensionχ at a time t is identical toc ( )t 2 of the standard, single-time approach (1-time and 2-time curves in
figure 6(b)); it still grows significantly faster than in the non-equilibrium approach. If translation invariance is
not exploited in the linear response simulation, the growth of the bond dimension is comparable to the one of
the non-equilibrium calculation.However, the former simulation ismuchmore demanding, especially at low
temperatures (we postpone arguments to the next paragraph). Hence, one can conclude that for this set of
parameters the non-equilibrium calculation is the least computationally challenging one and can therefore be
performed up to larger times. From a purely pragmatic standpoint, one should note that in order to obtain
á ñn m( )I t T, , one simply needs to time-evolve a state which is determined by the purification of the initial, non-
equilibriumdensitymatrix. In contrast, the linear response approach in its two-time version requires the
calculation of a correlation function á - ñn n( ) ( )I t I t2 2 eq, which ismore difficult to implement numerically.

Figure 6. (a)The same as in figure 2(a) but for three different values of the discardedweight ò, which in total varies over two orders of
magnitude (the non-equilibrium result is for dm = 0.001). (b)Evolution of the bond dimension during the calculation of the data for
the smallest ò. Themeaning of the different linear-response curves is explained in themain text.
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ExtractingDrudeweights via equation (3) thus seems to be a viable alternative to the standard linear response
route.

We conclude this sectionwith a fewmore technical remarks; additional details can again be found in [70]. If
one does or does not exploit translation invariance in the linear response approach, the calculation of n ( )I t 2
amounts to time-evolving locally or globally quenched states Yñn ∣I L T, 2 or Yñn ∣I T , respectively. The non-
equilibrium setup always corresponds to time-evolving a locally quenched state. In local quenches,
perturbations spreadwith afinite Lieb-Robinson velocity, and the bond dimension does not increase
significantly outside of this ‘light cone’. This is one reasonwhy the linear response calculation ismore
demanding if one cannot use translation invariance.Moreover, one needs to perform the time evolution of
Yñn ∣I T , which requires the application of a global operator Iν to the state Yñ∣ T . This increases the bond dimension

instantaneously by a factorwhich is determined by thematrix product operator representation of Iν; all
additional symmetries (such as spin-flip symmetry) should hence be exploited in this simulation and not in

Yñn ∣I L T, 2 . Since finite temperatures are reached via an evolution in T1 starting from = ¥T ,χ growswith
decreasingT. In practice, for theHubbardmodel atmoderately lowT,χ can reach values ofc ~ 1000, and
applying the global energy current operator Ith to Yñ∣ T and subsequently computing its time evolution becomes
no longer feasible.

6.Hubbardmodel: thermalDrudeweight at lowT

In this section, we revisit the realmof the thermalDrudeweight of the Fermi-Hubbardmodel. Asmentioned
above, theMazur inequality [6] stipulates that ( )D Tth isfinite at any filling, and quantitative valueswere recently
obtained [47] using the linear response expression of equation (2). Infigure 5(b), we explicitly demonstrated that
theDrudeweight extracted from the time evolution of an initial, small temperature gradient via equation (3)
coincides with the linear response prediction.

We can now exploit the computational simplicity of the non-equilibrium approach aswell as the fact its
finite-time transients have a simpler form (see figure 4) to determine the thermal Drudeweight for temperatures
which are an order ofmagnitude lower than those reached in [47]. The results are shown infigure 7 at halffilling
and for two values Î { }U t 8, 120 of the on-site interaction. At high temperatures, Dth increases quadratically,
becomesmaximal whenT reaches the charge gap, and subsequently decreases since charge excitations are frozen
out.One expects that at lowT, transport is governed by spin excitations whose dynamics are described by a
Heisenberg spin chain (or equivalently, equation (4))with an exchange coupling of strength =J t U4 0

2 . In other
words, one expects to recover a second peak in ( )D Tth at lowTwhose formquantitatively follows the exact
(Bethe ansatz orDMRG)Drudeweight of theHeisenberg chain (the curve atD = 1 infigure 5(a)with units
rescaled to =J t U4 0

2 ). This is indeed the case. To the best of our knowledge, this two-peak structure constitutes
thefirst quantitative observation of a full Hubbard-to-Heisenberg crossover for a transport quantity within the
one-dimensional Fermi-Hubbardmodel atfinite temperature.

Figure 7.ThermalDrudeweight ( )D Tth of the half-filled Fermi-Hubbardmodel for two different values of the on-site interactionU.
By extracting Dthusing the non-equilibrium expression of equation (3), one can access temperatures which are an order ofmagnitude
smaller than those reached in the linear response calculation [47]. The figure demonstrates that at lowT, thermal transport is governed
by spin excitations and described quantitatively by the Bethe ansatzDrudeweight of an isotropic XXZ spin chainwith an exchange
coupling =J t U4 0

2 .
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7. Summary

In this paper, we have investigated how the linear response charge and thermalDrudeweights of integrable one-
dimensional systems can be computed from the relaxation of initial states featuring small gradients in the
chemical potential or temperature. UsingDMRGnumerics for spinless fermions aswell as for theHubbard
model, we extensively compared the real-time dynamics of the currents á ñm( )I t tTc,th , flowing in this non-
equilibrium setupwith the linear response correlators á ñ( )I t Ic,th c,th eq.While both quantities determine ( )D Tc,th in
the limit  ¥t , thefinite-time behavior differs. Only á ñm( )I t tTc,th , seems to exhibit diverging decay rates in the
vicinity of points where it is still debatedwhether or not theDrudeweight vanishes; we explicitly demonstrated
this for charge transport in anXXZ spin chain nearD = 1 by comparingwith Prosen’s exact solution. Away
from such special points, the non-equilibrium currents often exhibit simpler (e.g., non-oscillatory) transients
and are less demanding to compute numerically.We exploited this to extract the thermalDrudeweight of the
Hubbardmodel for temperatures which are an order ofmagnitude lower than those reached in the linear
response approach. At half filling and sufficiently large on-site interactions, ( )D Tth features a two-peak structure
and at lowT is quantitatively described by the exact Bethe ansatzDrudeweight of theHeisenberg spin chain.

It would be interesting to generalize our approach in order to efficiently extract transport properties beyond
theDrudeweight (such as the low-frequency behavior of the regular part of the conductivity).Moreover, the
vicinity of special points (e.g., isotropic XXZ chains) certainly deserves further attention.
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