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Abstract

We study the finite-energy density phase diagram of spinless fermions with attractive in-
teractions in one dimension in the presence of uncorrelated diagonal disorder. Unlike the
case of repulsive interactions, a delocalized Luttinger-liquid phase persists at weak disor-
der in the ground state, which is a well-known result. We revisit the ground-state phase
diagram and show that the recently introduced occupation-spectrum discontinuity com-
puted from the eigenspectrum of the one-particle density matrix is noticeably smaller in
the Luttinger liquid compared to the localized regions. Moreover, we use the functional
renormalization group scheme to study the finite-size dependence of the conductance,
which also resolves the existence of the Luttinger liquid and is computationally cheap.
Our main results concern the finite-energy density case. Using exact diagonalization and
by computing various established measures of the many-body localization-delocalization
transition, we argue that the zero-temperature Luttinger liquid smoothly evolves into a
finite-energy density ergodic phase without any intermediate phase transition.
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1 Introduction

A much studied model for the interplay between disorder and interactions at finite energy
densities are spinless fermions in a one-dimensional lattice with uncorrelated diagonal disorder
and nearest-neighbor repulsive interactions. The Hamiltonian, defined on a one-dimensional
(1D) lattice of L sites with open boundary conditions, reads

H =
L−1
∑

i=1

�

− t
�

c†
i ci+1 + c†

i+1ci

�

+ V nini+1

�

+
L
∑

i=1

εini . (1)

The hopping constant is set to unity, t = 1, throughout the paper. The onsite potentials are uni-
formly and randomly distributed over the interval, εi ∈ [−W/2, W/2]. The disorder strength
is denoted by W and the nearest-neighbor interaction strength by V . The emergent picture,
supported mostly by numerical studies [1–7], is that a many-body localized (MBL) phase is
stable at sufficiently strong disorder even in the middle of the many-body energy spectrum.
As disorder strength is lowered, an ergodic phase is entered. The ergodic and MBL phase
are distinct from each other in many ways: volume versus area-law scaling of the entangle-
ment entropy [8,9], thermalization versus failure of eigenstate thermalization hypothesis and
Wigner-Dyson versus Poisson statistics of the level spacing distribution (see [10, 11] for a re-
view). The reason for these behaviors is the existence of localized quasi-particles (often called
l-bits) in the many-body localized phase [12–17] that form an extensive set of conserved quan-
tities (see [10,18,19] for a review).

Curiously, the conductivity does not behave according to the naive expectation (i.e., van-
ishing conductivities in the MBL phase and finite ones in the ergodic phase): in the MBL phase,
numerical studies report vanishingly small dc conductivities, consistent with a perfect insula-
tor, while in the ergodic phase, some studies report finite dc-conductivities [20, 21], while
others provide evidence for subdiffusive dynamics [4, 22–25] (see also [26] for a critical dis-
cussion and [27] for a review).

Most of the literature has, with few exceptions (see, e.g., [6]), formally focussed on re-
pulsive interactions (see the discussion at the end of the introduction), while here we explore
the attractive regime. In our work, we emphasize an asymmetry in the phase diagram at
weak disorder under sign changes of the interaction. This asymmetry is traced back to the
zero-temperature properties. While local repulsive interactions cannot overcome disorder in
the ground state which is thus fully localized, the situation is markedly different for attrac-
tive interactions. Bosonization studies [28] and a subsequent density matrix renormalization
group analysis [29] demonstrated the survival of a Luttinger liquid in the attractive case at
half filling (see also [30–33]). This is not surprising since in general, disorder can even en-
large the region in parameter space for superfluid states at commensurate filling factors, as is
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Figure 1: Sketch of the energy density ε versus interaction strength V phase diagram at weak
disorder, with two different scenarios. (a) The Luttinger liquid is directly connected to an
ergodic and delocalized phase at finite energy densities. (b) The Luttinger liquid first transi-
tions into the localized phase (either at an arbitrarily small energy density or at a finite energy
density) via an inverted mobility edge, while ultimately entering into the high-energy density
delocalized phase.

particularly well known for the case of bosons with repulsive interactions in the Bose-Hubbard
model (see, e.g., [34–36]). The reason are the disorder-induced density deviations (or, in
other words, fluctuations in the local chemical potential) that drive density locally away from
commensurability.

It is therefore an interesting question to ask how that zero-temperature Luttinger liquid
connects to the finite-energy density phases [37,38]. Primarily, two scenarios are conceivable
(see the sketch shown in Fig. 1). At large energy densities, similar to the case of repulsive
interactions, we expect an ergodic phase at weak disorder. This high energy-density delo-
calized phase can either be directly connected to the zero-temperature Luttinger liquid (the
case shown in Fig. 1(a)) or it could be intervened by a localized region (the case shown in
Fig. 1(b)). The latter scenario would imply an inverted mobility edge.

Such inverted mobility edges were suggested to exist in bosonic systems without disor-
der [39], and moreover, even a recent experiment with bosons in a two-dimensional lat-
tice [40] could indicate such a behavior, i.e., a delocalization-localization transition as energy
density increases. In that experiment, evidence for a many-body localized regime at high en-
ergy densities was found, while (minding details of the specific disorder distribution realized
in that experiment), theoretical studies predict a superfluid ground state [41], and thus an
extended state, for the values of interaction strength and disorder for which the experiment
reports localization. Theoretically, there is evidence for the existence of an inverted mobility
edge in the one-dimensional Bose-Hubbard model [42, 43]. Ref. [43] considered a two-site
model with uncorrelated diagonal disorder while Ref. [42] arrives at the same conclusion yet
there, the disorder is in the interactions. Clearly, additional studies are necessary to complete
this question for the one-dimensional Bose-Hubbard model with disorder as well.

For our model of spinless fermions, we report evidence that the first scenario is realized,
i.e., increasing energy density seems to immediately enlarge the delocalized region and there
is no phase transition as energy density increases above the Luttinger-liquid phase. Our results
are based on an analysis of the entanglement entropy [8, 9], the one-particle density matrix
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occupation spectrum [5,26], and the level-spacing distribution [1].
An asymmetry between repulsive and attractive interactions has also been found in [6],

where the limit of strong interactions in a system of spinless fermions with disorder was consid-
ered. In the equivalent language of spin-1/2 degrees of freedom, this corresponds to analyzing
the effect of disorder on states with ferromagnetic versus antiferromagnetic order at low en-
ergies. In the ground state, both phases become localized upon adding disorder. The strongly
attractive side was found to lead to a more stable many-body localized phase at finite energy
densities compared to the antiferromagnetic case, which shifts the mobility-edge to higher
temperatures.

We should stress that while formally, most studies focussed on repulsive interactions, one
can use particle-hole symmetry (which is violated in individual disorder realizations but is
restored after disorder averaging) to relate the negative V side to the positive V side (see
the discussion in [44]). As a consequence, the low-energy density region at V < 0 maps to
the high-energy density at the V > 0 side. Using this argument and by inspection of existing
studies of the energy-density versus disorder phase diagram (see, e.g., [3, 6, 26, 44, 45]), one
can already draw some conclusions on the structure of the phase diagram on the attractive
side. The special point of V = 2t is the most studied one, for which there are also full energy-
density versus disorder strength phase diagrams available (see, e.g., [26]). For the purpose of
clarifying the question of an inverted mobility edge on the attractive side, no conclusive picture
arises from the existing results for V = 2t: according to Refs. [29,46], V = −2t sits right at the
edge of the Luttinger-liquid phase and any finite disorder drives the system into the localized
regime in the ground state (see, e.g., the ground-state phase diagram presented in Figs. 3 and
4(a)). Therefore, in order to answer the question of an inverted mobility edge in this model
and to complete the analysis of its full interaction strength - disorder phase diagram, a study of
the behavior at weak interaction 0< V < −2t and disorder strengths 0<W < 2t is necessary.

This paper is organized as follows. In Sec. 2, we define the model and the quantities
computed in this work. In Sec. 3, we revisit the ground-state phase diagram and show that
the occupation-spectrum discontinuity is smaller in the Luttinger-liquid phase, while finite-
size dependencies prohibit an extraction of the phase boundaries from that quantity. We fur-
ther demonstrate that the zero-temperature disorder-interaction phase diagram can also be
obtained from a calculation of the conductance using the functional renormalization group
method, with qualitative agreement with other methods. Section 4 contains our main results
for the phase diagrams at finite energy density and attractive interactions, obtained from exact
diagonalization. We conclude with Sec. 5, where we also discuss open questions.

2 Model and observables, and numerical methods

We consider the spinless-fermion model defined in Eq. (1). Our choice of units is the one
employed in [29], while in most of the current MBL literature, the choice of units derives from
the equivalent formulation of Eq. (1) in the spin language [2, 3], where then ε ∈ [−W ′, W ′]
and t → t ′/2. Hence, in order to compare with the units used in that literature, our numbers
have to be divided by a factor of 4. For instance, the critical value for the delocalization-
localization transition for a Heisenberg chain (V = 2t in our units) is, at T =∞, given by
W ′ ≈ 3.5t ′ [3], hence in our units, at W ≈ 14t.

We further consider the half-filling subspace N = L/2 and obtain results for
both attractive and repulsive interactions. The target energy density is defined as
ε= 2(E− Emin)/(Emax− Emin). Note that a different convention for ε is used in [3,6,44]. The
arithmetic average over disorder realizations is denoted as [ · ].

The observables calculated are the following ones. The one-particle density matrix
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(OPDM) is defined as
ρi j = 〈ψ|c

†
i c j|ψ〉 , (2)

where |ψ〉 is the given many-body wavefunction. We here compute the OPDM in many-body
eigenstates |ψ〉= |n〉 with H|n〉= En|n〉. By diagonalizing the OPDM,

ρ |φα〉= nα |φα〉 , (3)

one obtains the occupation spectrum nα and the natural orbitals |φα〉, which form a com-
plete basis set of single-particle states for each |n〉. After ordering the occupation spec-
trum, i.e., n1 ≥ n2 ≥ · · · ≥ nL , the discontinuity in the occupation spectrum is defined by
∆n= nL/2−1 − nL/2 since we have N = L/2 particles in the system with L even.

In a noninteracting fermionic system, any many-body eigenstate can be written as a Slater
determinant of single-particle states. In this case, there will be a set of the natural orbitals
with nα = 1, spanning the same vector space as the single-particle eigenstates and there-
fore, the occupation spectrum is a step function (after reordering the eigenvalues [26]). As
a result, a discontinuity ∆n = 1 in the occupation spectrum corresponds to product states
in Fock space. One refers to this also as localization in Fock space and a large discontinuity
with many eigenvalues being close to one or zero implies only a very weak Fock-space delocal-
ization, reminiscent of a zero-temperature Fermi-liquid [26]. The MBL phase has a nonzero
occupation-spectrum discontinuity in our model with repulsive interactions, as was shown
in [5, 26] and also in a system of hardcore bosons in two dimensions [47]. The properties
of OPDMs in systems of one-dimensional hardcore bosons on a lattice and in the presence of
disorder were studied in [48,49]. Note that the occupation-spectrum discontinuity is smeared
out in extensive superpositions of many-body eigenstates even in the MBL phase, while the dis-
tribution as such remains highly nonthermal (see the example of a quantum quench discussed
in [50]).

To determine whether particles in the MBL phase are truly localized in real space, we also
calculate the inverse participation ratio (IPR) of the natural orbitals, which we define as

IPR=
1
L

L
∑

α=1

L
∑

i=1

|φα(i)|4 . (4)

The inverse participation ratio unveils the localization in real space by taking into account the
spatial structure of the natural orbitals. We see that in the limiting cases, IPR = 1/L in the
ergodic phase and IPR= 1 in the localized phase. Note that unlike in [5], we do not weigh the
natural orbitals by their occupations. The analysis of the statistical properties of the natural
orbitals across the entire spectrum for a single disorder realization presented in [26] shows
that the natural orbitals are, in first approximation, very similar from many-body to many-body
eigenstate, implying that mostly just the occupations change.

The von-Neumann entropy is the bipartite entanglement entropy defined as
SvN = −Tr[ρA lnρA], where ρA is the reduced density matrix obtained by tracing out
half of the system. In the localized regime, the entanglement entropy obeys an area-law
scaling, while in the ergodic regime, a volume-law scaling is found [8]. The variance of the
entanglement entropy is expected to diverge at the transition [9].

The many-body eigenenergy spectra in the localized and ergodic regimes have different
distributions [1]. Therefore, a standard way to study many-body localization is to analyze the
different statistics of the adjacent level spacing [1,51]. The adjacent gap ratio is defined as

rgap =min(δ(n),δ(n+1))/max(δ(n),δ(n+1)) , (5)

where δ(n) = En−En−1 is the difference of adjacent many-body energy levels. Theoretical work
predicts that the distribution of level spacings themselves follows a Poisson distribution in the
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Figure 2: Schematic representation of the flow equations for the self-energy and the effective
two-particle scattering (an n-particle vertex has 2n external legs).

localized regime and a Gaussian orthogonal ensemble in the ergodic phase [1]. This implies
certain values for the average of the gap ratio in these two cases, namely [rgap]≈ 0.3863 and
[rgap]≈ 0.5307, respectively (see the discussion in [1]).

2.1 Density matrix renormalization group

In order to compute the occupation-spectrum discontinuity in the ground state, we use density
matrix renormalization group simulations [52, 53] in a matrix-product state representation
using a single-site algorithm with subspace expansion [54]. We use up to 400 states leading
to discarded weights of 10−14 and an average over 5000 disorder realizations.

2.2 Exact diagonalization

In order to map out the phase diagram at finite energy densities, we study the model by exact
diagonalization for system sizes L = 12, 14,16, 18 with at least 3000 realizations for each
parameter chosen. The exact diagonalization study of many-body localization is limited by
both the large dimension of the subspace with N = L/2, e.g., dim(H18) = 48620 and the
requirement for a sufficient number of realizations. For all quantities calculated, except for
the adjacent gap ratio, we take only the closest eigenvector for the target energy density in
each realization. However, we find it necessary to take the 50 closest eigenvalues in one
realization to have acceptable statistics for the adjacent gap ratio. We study the model with
up to L = 18 sites at various energy densities ε = {0.025,0.05, . . . , 1} with the shift-invert
spectral transformation H → (H − λI)−1, where λ is the targeted eigenvalue. The libraries
PETSc and SLEPc [55] are used for the problem setup and building the solution. We use an
exact shift-and-invert solver. The inverse problem involved is solved by direct linear solver
with external package MUMPS [56,57] using parallel Cholesky factorization.

2.3 Functional renormalization group

The functional renormalization group (FRG) is one implementation of Wilson’s general RG
idea for interacting many-particle systems [58]. It can be set up either on the Keldysh contour
or the Matsubara axis; since we are interested in ground-state properties, the latter choice is
the more convenient one. The starting point of an FRG calculation is to take the noninteracting
Green’s function G0 of the system under consideration and to cut it off below an infrared energy
scale Λ. In particular, we introduce a multiplicative cutoff in Matsubara frequency space,

G0,Λ(iω) = Θ(|iω| −Λ)G0(iω) , (6)

and consider the flow of many-particle vertex functions (such as the self-energy or the effective
interaction) as a function of Λ. The resulting (infinite) set of coupled flow equations can be
represented elegantly using Feynman-like diagrams (see Fig. 2). Subsequent re-integration
from Λ=∞ down to the cutoff-free system Λ= 0 amounts to an exact solution of the many-
particle problem. In practice, the infinite hierarchy of flow equations needs to be truncated,
rendering the FRG an approximate method which treats interactions perturbatively.
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The simplest truncation scheme is to only consider the flow of the single-particle vertex
(the self-energy) and to neglect the flow of all higher-order vertex functions. If the two-particle
vertex is set to the bare interaction V , the flow of the self-energy associated with Eq. (1) can
be expressed simply in terms of effective hopping-matrix elements tΛl and on-site energies εΛl :

∂Λε
Λ
l = −

1
π

Re
�

Vl−1G̃Λl−1,l−1(iΛ) + Vl G̃
Λ
l+1,l+1(iΛ)

�

,

∂Λ tΛl = −
1
π

Re
�

Vl G̃
Λ
l,l+1(iΛ)

�

, (7)

where G̃Λ(iω) denotes the flowing single-particle Matsubara Green’s function (an explicit ex-
pression can be found in Eq. (8)). At half filling, the initial conditions are given by εΛ→∞l = εl
as well as tΛ→∞l = t. We explicitly allow for a spatial dependence of the two-particle inter-
action Vl in order to model a smooth coupling to free fermion source and drain leads (see
below). In the flow equations for εΛ1 and εΛL , terms that formally involve V0 and VL are set to
zero.

The approximation introduced above is strictly correct only to leading order in the inter-
action V but contains an infinite resummation of Feynman diagrams (since the self-energy
feeds back into its own flow). Similarly, one can obtain a second-order truncation scheme
by accounting for the flow of both the two-particle vertex and the self-energy while setting
all higher-order vertices to their initial value (zero). In this paper, we partially incorporate
second-order contributions by parameterizing the two-particle vertex in terms of flowing ef-
fective onsite interactions VΛl . This is a purely pragmatic approach – the resulting approxi-
mation is still strictly controlled only to first order – which improves our results quantitatively
but does not change them qualitatively. The corresponding set of flow equations is given by
Eq. (7) with Vl → VΛl and complemented by a flow equation for the effective interaction VΛl ,
which we do not write down explicitly; it can be found in Ref. [59].

In order to compute the conductance, we couple the system to left and right (source and
drain) leads, which, for reasons of simplicity, we model as structureless Fermi liquids (e.g.,
we take the wide-band limit). Such a free-fermion system can be ‘projected out’ analytically
via equation-of-motion techniques and the calculation of G̃Λ(iω) reduces to the inversion of a
L × L matrix defined by

�

G̃Λ(iω)−1
�

l,l = iω− εΛl + iΓ sgn(ω)(δl,1 +δl,L) ,
�

G̃Λ(iω)−1
�

l,l+1 =
�

G̃Λ(iω)−1
�

l+1,l = tΛl .
(8)

Due to the tridiagonal structure, this inversion can be carried out with a computational effort
scaling linearly with L. The flow equations (7) can be integrated using standard Runge-Kutta
routines. Finally, one obtains the conductance g (in units of e2/h= 1) from

g(L) = 4Γ 2
�

�G̃Λ=0
1,L (iω→ω+ i0)

�

�

2
. (9)

More details on the FRG can be found, e.g., in Refs. [58,59].

3 Ground-state properties

The existence of a Luttinger-liquid phase in the presence of disorder in the spin-1/2 XXZ chain
is a much studied problem (which is equivalent to one of spinless fermions or hardcore bosons).
While early work established the existence of such a phase [29–33,60–62], there is an ongoing
discussion on the nature of the transition between the delocalized superfluid and the localized
phase (which, in the language of bosons, is a Bose-glass phase [63]). This question is not at
the focus of our work and we refer the reader to the pertinent literature for details [46,64–72].
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Figure 3: Occupation-spectrum discontinuity [∆n] (grey-shaded) in the ground state com-
pared to results from [29] (+ signs) as a function of the interaction strength V and disorder W
for L = 32 (DMRG data). A clear feature emerges in this quantity in the vicinity of the region
where the system is in a delocalized phase. The crosses are the results from [29]; circles are
the more recent phase boundaries from [46].

3.1 Occupation-spectrum discontinuity

An early DMRG study used the sensitivity to twisted boundary conditions to locate the transi-
tion between localized and extended phase. [29]. Entanglement measures were used to locate
this transition in [73,74] and it was pointed out [74] that large system sizes are needed to be
in the correct scaling regime, due to the large localization length.

Here, we show the phase diagram from Ref. [29] in the disorder-interaction strength plane
in Fig. 3. The figure shows the value of the occupation-spectrum discontinuity [∆n] computed
for L = 32 sites using DMRG simulations. Remarkably, the region where [∆n] is small (com-
pared to large W or small |V |/t) coincides with the Luttinger liquid (indicated by the symbols).
We attempted an extrapolation of [∆n] in the system size to locate the transition yet obtained
no conclusive results, which we attribute to the small system sizes L ≤ 128 considered.

3.2 Conductance from FRG

It is known [28] that for weak disorder the localization length diverges as ξ ∼W−2/(3−2K) as
one approaches V = −t from above (where the Luttinger-liquid parameters takes the value
K = 3/2). This motivates us to study the problem using a different method – the FRG – whose
strengths and shortcomings are orthogonal to those of an exact-diagonalization approach.

The key disadvantage of the FRG is that it is approximate w.r.t. the two-particle interaction
V . Within our truncation scheme, all results are strictly correct only to leading order in V ;
higher-order contributions are uncontrolled. Thus, the FRG is not a suitable tool to determine
the precise position of a phase boundary which is situated away from |V |/t � 1. The advan-
tage of the FRG is that one can easily treat large systems of L = 106 sites and that leads as
well as single-particle disorder can be incorporated exactly. Hence, the FRG can overcome the
obstacle of a potentially large localization length [74] and provide further evidence for the
existence of the delocalized phase in certain parameter regimes.

We use the FRG to compute the disorder-averaged conductance g in the ground state. To
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Figure 4: (a) Conductance g(L = 106) as a function of the interaction strength V and dis-
order W at zero temperature as computed from the functional renormalization group. For
comparison, the phase boundary from Ref. [46] is shown via the filled circles. The FRG data
represents a disorder average over 30 samples per data point. (b) Cut through the phase
diagram at W/t = 0.5 for various system sizes L.

this end, one couples the system to left and right Fermi-liquid leads; in order to avoid backscat-
tering at the interface between the noninteracting leads and the interacting region, we employ
a spatially smoothened transition region of about 20 sites. The metallic and localized phases
are then characterized by g ∼ const. and g ∼ e−L at large L, respectively. In Fig. 4(a), we
show g in the V −W parameter plane for a fixed large system size L = 106, which qualita-
tively reproduces Fig. 3. The interaction-dependence of the conductance for a fixed disorder
strength of W/t = 0.5 is displayed in Fig. 4(b) for three different system sizes ranging from
L = 104 to L = 106. This illustrates that g becomes independent of L for −2t ® V ® −t and
thus provides further evidence for the existence of the metallic phase in this regime. Note that
our FRG scheme apparently misses the localization at large attractive V ∼ −2t (see below).

It is surprising that our simple-minded ‘Hartree-Fock-like’ FRG approach captures the tran-
sition between the delocalized and the metallic phase despite the fact that this transition does
not occur for |V |/t � 1 where the approximation is controlled. This observation motivates
an extension of the FRG to a second-order scheme, which would allow one to access finite-
energy properties for systems of up to L = 102 sites. Such an investigation is currently under
way; preliminary results show that one can capture the phase-separation transition for large
negative V that is missed by the leading-order scheme.

4 Finite energy densities

We now turn to our main case of interest, finite energy densities ε > 0. Our analysis of the
energy-density versus interaction-strength phase diagram is based on calculating the impurity
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Figure 5: OPDM occupation discontinuity in the W versus V plane for (a) ε = 0, (b) ε = 0.2,
(c) ε= 0.4, (d) ε= 1 for L = 18. Note the different scale for the color coding used in (a).

averaged one-particle density matrix occupation-spectrum discontinuity [∆n] [5], the (half-
cut) von-Neumann entropy [SvN] [8], its variance var SvN [9] and the level-spacing distribu-
tion [1,2]. Our main goal is to illustrate the quantitative and qualitative differences between
attractive and repulsive interactions at weak disorder and low energy densities.

4.1 Occupation-spectrum discontinuity

The occupation-spectrum discontinuity [∆n] is plotted in Figs. 5(a)-(d) in the disorder-versus-
interaction strength plane for different values of the energy density ε= 0,0.2, 0.4,1. Note that
the occupation-spectrum discontinuity at V = 2t was already computed for all energy densities
in [26].

Figure 5(a) qualitatively reproduces, albeit for much smaller systems, the behavior
in the ground state discussed in Sec. 3: in the vicinity of the Luttinger-liquid phase at
−2 ® V/t ® −1.5, the occupation-spectrum discontinuity is markedly smaller than anywhere
else in the phase diagram and the V →−V asymmetry is apparent.

Upon increasing energy density, at both V > 0 and V < 0, a region with small [∆n] emerges
at small values of the disorder strength and quickly grows in size. For negative V < 0, this
presumably ergodic region appears to be adiabatically connected to the zero energy-density
Luttinger liquid, as suggested by the sequence of results for increasing ε presented in Figs. 5(a)-
(d). There is also a regime with a reduced occupation-spectrum discontinuity at V ∼ 3t on the
repulsive side and weak disorder. This one, however, does not become smaller as system size
increases, contrary to the behavior in the Luttinger-liquid regime at negative values of V (data
not shown here). We speculate that this reduction in [∆n] for large V and small disorder is
inherited from the ground-state degeneracy at W = 0 and V � t in the density-wave phase.

It is instructive to consider cuts through the ε versus V phase diagrams at constant W .
Examples are shown in Figs. 6(a) and (b) for W = 1.2t and W = 10.2t, respectively, for several
values of the energy density ε. Obviously, [∆n] = 1 at V = 0, independently of the value of
disorder. For ε= 0, the discontinuity is large throughout for all values of V . Increasing ε leads
to a quick decay of [∆n] away from V = 0, which is more significant for weak disorder, where
we expect an ergodic phase everywhere except for the Anderson insulator at V = 0 and its
immediate vicinity. Note the asymmetry with respect to V →−V : at small W/t, the many-body
states have a smaller discontinuity for V < 0 compared to V > 0 while the trend is opposite for
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Figure 6: Cuts through the phase diagrams of Fig. 5 at (a) W/t = 1.2 and (b) W/t = 10.2
for different energy densities ε= 0,0.2, 0.4,0.6, 0.8,1 and L = 18.

strong disorder (this applies to small energy densities). While the asymmetry at small W/t is
a consequence of the ground-state phase diagram, the (inverted) asymmetry between V and
−V at large W/t can be understood based on the arguments given in [6]. Their result is that
ferromagnetic states should be more susceptible to localization than antiferromagnetic ones,
which is reflected in the dependence of [∆n] on V/t at small energy densities but large W/t
(compare Fig. 5(b)).

Clearly, due to the small system sizes accessible to exact diagonalization, there is need to
check for the robustness of the qualitative trends as L is varied. We present such an analy-
sis in Fig. 7 for parameters in the middle of the Luttinger-liquid phase (V = −1.4t) but for
an elevated energy density ε = 0.4 and 2 ≤ W/t ≤ 20. At least for the smallest values of
W/t = 2, 4, the data clearly suggest that [∆n] → 0, indicative of a phase with Fock-space
delocalization and a continuous occupation spectrum as expected for the ergodic phase. For
W/t ¦ 10, the data seem to extrapolate to a finite value, as expected for the MBL phase [5].
These finite-size trends clearly establish that there are two different phases separated by a
Fock-space delocalization transition.

4.2 Natural orbitals and inverse participation ratio

The observation of a large occupation-spectrum discontinuity implies Fock-space localization
[5] but not necessarily localization in real space. To demonstrate that in the MBL case, both
features come about simultaneously, we can analyze the eigenstates of the OPDM as well, the
natural orbitals [5].

Figure 8 shows the full distribution of the inverse participation ratio defined in Eq. (4) in its
main panels for (a) the ergodic phase and (b) the MBL phase, both at attractive interactions.
Before discussing the IPR, it is illustrative to plot individual natural orbitals, which are shown
in the insets: the one in the ergodic phase appears to be extended, while the one for the MBL

11

https://scipost.org
https://scipost.org/SciPostPhys.4.1.002


SciPost Phys. 4, 002 (2018)

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
1/L

0.0

0.2

0.4

0.6

0.8

1.0

[∆
n
]

V/t= − 1.4, ǫ=0.4

W/t=2

W/t=4

W/t=6

W/t=8

W/t=10

W/t=16

W/t=20

Figure 7: Finite-size dependence of the occupation-spectrum discontinuity at V = −1.4t and
ε= 0.4 for several disorder strengths W/t = 2, 4,6, . . . , 16,20.
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Figure 8: Distributions of inverse participation ratio in (a) ergodic phase (W/t = 2) and (b)
localized phase (W/t = 20) for L = 18 and V = −1.4t. We show examples of natural orbitals
in both phases in the insets. The results provide evidence for real-space localization in the
MBL phase.

phase is obviously strongly localized in real space.
The full analysis of the distributions P(IPR) of the IPR supports this picture. In the ergodic

phase, the typical value of the IPR moves to zero with 1/L as L increases and the distributions
become narrower at the same time. Conversely, in the MBL case, the distributions are broad,
peaked around a large IPR value and practically L-independent. This is in agreement with the
results reported in [5,26] for repulsive interactions and immediately visualizes the localization
of the quasi-particles (or l-bits) in real space by approximating their single-particle content via
diagonalizing the OPDM [26].

4.3 Von-Neumann entropy

As an alternative measure of the transition, we analyze the von-Neumann entropy, which we
expect to exhibit a volume law in the ergodic phase but an area law in the MBL phase. We
verify this expectation by plotting the half-cut entanglement entropy versus system size in
Fig. 9 for two points deep in the ergodic and deep in the MBL region.

The location of the transition can be estimated from the position of the maximum of
sample-to-sample fluctuations of the von-Neumann entropy, var SvN [9]. We plot this quantity
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Figure 9: Half-cut von-Neumann entropy versus system size in the ergodic (W/t = 2,4) and
MBL (W/t = 16) phase at V/t = −1.4 and ε= 0.4.
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Figure 10: Variance of the von-Neumann entropy in the W versus V plane for (a) ε = 0, (b)
ε= 0.2, (c) ε= 0.4, (d) ε= 1, L = 18.

in Fig. 10 for the same parameters as in Figs. 5(a)-(d). The behavior of var SvN confirms the
picture obtained from the occupation-spectrum discontinuity, at least for ε > 0. As energy den-
sity increases, the transition between the weak-disorder delocalized and the strong-disorder
localized phase moves to larger values of W/t. In the ground state, i.e., at ε = 0, and for
small system sizes, only the phase boundary at large negative values of V is resolved by a
clear maximum in var SvN, while this is not the case for the transition at small negative values.
We believe this to be a consequence of (i) the large single-particle localization length on the
attractive side and (ii) the different nature of the Luttinger-liquid to localization transition at
ε= 0 (see the discussion in [46,67]).

By comparison of Fig. 10(d) and the corresponding data for the occupation-spectrum dis-
continuity [∆n] shown in Fig. 5(d), one realizes that at a fixed system size var SvN peaks at
significantly lower values than where [∆n] exhibits a drop to (approximately) zero. First, this
simply reflects that the actual transition point can only be estimated from a finite-size scal-
ing analysis (see the discussion in [75] though). Second, different quantities exhibit different
finite-size deviations from large-L behavior. The fact that var SvN has a stronger finite-size de-
pendence with the maximum sitting well below the actual transition point is consistent with
the observation of other studies (see, e.g., [76]).
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Figure 11: Adjacent gap ratio as a function of disorder strength at energy density ε= 0.4 and
interaction strength V = −1.4t. The result matches the theoretically predicted adjacent gap
ratio rGOE ≈ 0.5307 and rPoisson ≈ 0.3863. Error bars are smaller than the symbol size.

4.4 Level-spacing distribution

An example for the W -dependence of the adjacent-gap ratio rgap is presented in Fig. 11 for
V = −1.4t and ε= 0.4. As expected [1], [rgap] approaches the values expected for a Wigner-
Dyson distribution of the underlying level spacings (i.e., rGOE ≈ 0.5307) at small values of
W/t and goes to rPoisson ≈ 0.3863 as W increases, which takes the system into the MBL phase.
The data suggests that the transition is at 6®W/t ® 8 for the parameters of the figure.

4.5 Energy-density versus interaction-strength phase diagram

The main result of our work is an energy-density versus interaction-strength phase diagram
at weak disorder. We present such diagrams for W = t in Figs. 12(a)-(c), derived from the
occupation-spectrum discontinuity, the half-cut von-Neumann entropy, and the adjacent-gap
ratio rgap, respectively. All three quantities give a qualitatively consistent picture: at nega-
tive V < 0, the ergodic phase extends down to ε = 0 and thus adiabatically connects to the
Luttinger-liquid phase, while for repulsive interactions, there is always a mobility edge as ε
increases. Moreover, we can thus rule out the presence of an inverted mobility edge from the
data for L ≤ 18 sites in our model. The phase diagram further illustrates the asymmetry under
changing the sign of V .

We here present results for a fixed system size L = 18, while in principle, one can carry
out a finite-size analysis and even attempt a finite-size scaling collapse of the data [3,9]. Such
analyses were carried out for V > 0 but the resulting exponents are inconsistent with rigorous
bounds [77–79]. Hence, we here do not pursue this strategy since our system sizes are not
larger than what was used in [3, 9]. Moreover, the question of what is the universality class
of the delocalization-localization transition in models such as ours is still a topic of ongoing
research [9,75,76,80–83]

By inspection of Figs. 12(a)-(c) one realizes that the occupation-spectrum discontinuity
and the adjacent-gap ratio provide the best resolution of the phase diagram as both quantities
have small finite-size effects deep in the respective phase. Note that we plot the adjacent-gap
ratio only down to ε ≥ 0.025t. The statistics of the adjacent gap ratio does not obey the
predictions [1,2] as ε→ 0, where finite-size effects are expected to be the largest.
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Figure 12: Energy-density versus interaction strength phase diagram at weak disorder: (a)
OPDM occupation discontinuity, (b) half-chain cut von Neumann entropy and (c) adjacent
gap ratio. The delocalized phase expands as the energy density increases. The predictions
from [∆n], [SV N ], and [rgap] are qualitatively consistent. The delocalized phase is not that
obvious in the ground-state region for this system size, due to the comparably much smaller
discontinuities at finite energy densities. Note that (c) does not include the ground-state region
and hence does not show the mobility edge on the V > 0 side.

5 Conclusion

In this work we studied the finite energy-density phase diagram of spinless fermions in a one-
dimensional lattice with attractive interactions and uncorrelated disorder. Our numerical re-
sults illustrate an asymmetry between the V < 0 and V > 0 phase diagrams, rooted in the
existence of a delocalized phase in the ground state of the system with attractive interactions
and weak disorder [28, 29]. This Luttinger-liquid phase connects to a finite-temperature er-
godic phase without any intermediate phase transition, as the analysis of the entanglement en-
tropy, the level-spacing distribution and the one-particle density matrix occupation spectrum
indicates. This conclusion rules out the existence of an inverted mobility edge in our model,
which may still exist in other disordered systems with superfluids present in the ground state,
such as the Bose-Hubbard model. In fact, a series of very recent studies [42,43,84] indicates
that there is an inverted mobility edge in the one-dimensional Bose-Hubbard model. This dif-
ferent behavior compared to our case of fermions with attractive interactions could be traced
back to two observations. First, in the case of bosons, disorder makes the stability region of the
superfluid (as a function of W and interaction strength) larger than in the clean case [70]. Sec-
ond, the Bose-Hubbard model is prone to a sort of dynamical localization even in the absence
of disorder: composite objects of multiple bosons themselves can get localized in individual
sites and may have very large decay times in the limit of strong interactions [85–87]. Increas-
ing energy density has been suggested as one mechanism to induce such heavy objects, which
in the presence of disorder would get localized.

We also revisited the ground-state case, with two main observations. First, the Luttinger-
liquid region features a significantly smaller OPDM occupation-spectrum discontinuity com-
pared to the localized ground-state phases on finite systems, as expected for a Luttinger liquid,
which has a vanishing discontinuity in the thermodynamic limit. The localized regions, on the
other hand, have a Fock-space localized ground-state wavefunction, just as in the finite-energy
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density case [5, 26]. Second, we used functional renormalization group simulations to com-
pute the conductance at zero temperature, which also resolves the delocalized ground-state
region. While the FRG simulations for the conductance are computationally cheap and can
be pushed to system sizes as large as L ∼ 106, the phase boundaries, in particular, at large
negative interaction strengths V ® −2t, are quantitatively different from the results of other
methods (see, e.g., [46]). Thus, improvements in the FRG scheme are necessary to render the
method accurate at larger interactions strengths as well, which poses an interesting direction
for further method development.
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