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In a graphene pn junction at high magnetic field, unidirectional “snake states” are formed at the pn interface.
In a clean pn junction, each snake state exists in one of the valleys of the graphene band structure, and the
conductance of the junction as a whole is determined by microscopic details of the coupling between the snake
states at the pn interface and quantum Hall edge states at the sample boundaries [Tworzydło et al., Phys. Rev.
B 76, 035411 (2007)]. Disorder mixes and couples the snake states. We here report a calculation of the full
conductance distribution in the crossover between the clean limit and the strong-disorder limit, in which the
conductance distribution is given by random matrix theory [Abanin and Levitov, Science 317, 641 (2007)]. Our
calculation involves an exact solution of the relevant scaling equation for the scattering matrix, and the results
are formulated in terms of parameters describing the microscopic disorder potential in bulk graphene.
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I. INTRODUCTION

Many of the unique electronic properties of graphene, a
single layer of carbon atoms as they occur in graphite, can be
traced back to its pseudorelativistic band structure, in which
quasiparticles behave as massless relativistic Dirac particles,
be it with the Fermi velocity vF instead of the speed of light
c [1–3]. Examples of such “relativistic” effects in graphene
are Klein tunneling through potential barriers [4–7], the
Zitterbewegung in confining potentials [6,8], the anomalous
integer quantum Hall effect [9–15], or the breakdown of
Landau quantization in crossed electric and magnetic fields
[16,17].

The integer quantum Hall effect in graphene is called
“anomalous” because the number of chiral edge states at the
boundary of a graphene flake in a large perpendicular magnetic
field is a multiple of 4 plus 2, whereas the Dirac bands are
fourfold degenerate because of the combined spin and valley
degeneracies. The presence of a “half” edge mode per valley
degree of freedom has a direct explanation once it is taken
into account that the valley degeneracy is necessarily lifted at
a graphene flake’s outer boundaries [18]. Chiral states need
not only occur at a flake’s outer boundaries, but they may also
occur in the sample’s interior, separating regions with different
electron density. At such an interface valley degeneracy is
usually preserved, and the number of chiral interface states is
always a multiple of 4.

A particularly interesting realization of such an interface
occurs at a pn junction in a perpendicular magnetic field,
separating hole-doped (p-type) and electron-doped (n-type)
graphene regions [19–21]. The edge states at the pn interface
are referred to as “snake states” because, at least in a
semiclassical picture, such states propagate alternatingly at the
p and n sides of the junction [22–25], similar to the behavior
of the states that propagate along zero-field contours in the
quantum Hall insulators in an inhomogeneous magnetic field
[26–29]. A graphene pn junction also has edge states at the
sample boundaries, which move in opposite directions in the
p- and n-type regions (see Fig. 1), and feed into/flow out of
the snake states at the pn interface.

The minimal number of chiral edge and interface states is
realized for a pn junction with filling fractions 2 and −2. In this
case there are two edge modes, one for each spin direction and
four chiral interface modes. The two-terminal conductance G

of such a pn junction is determined by the probability T that
an electron that enters the common edge at the pn interface
from the source reservoir is transmitted to the drain reservoir:

G = 2e2

h
T . (1)

In the limit of a strongly disordered pn interface, Abanin
and Levitov predicted that the probability T itself is subject
to mesoscopic fluctuations [30], with average 〈T 〉 = 1/2 and
variance var T = 1/12.1 In the opposite limit of an ideal
graphene sheet, Tworzydlo et al. found [31]

T = 1
2 (1 − νT · νB) , (2)

where the “isospin” vectors νT and νB describe the precise
way in which the valley degeneracy is broken at the sample
boundaries (see Fig. 1). Subsequent theoretical work involved
a semiclassical analysis [32,33], numerical simulations of
the effect of disorder [34,35], and a phenomenological in-
clusion of dephasing [36]. Several experimental groups have
performed measurements of the two-terminal conductance of
graphene pn junctions in a large perpendicular magnetic field
[19–21,23,37–41]. The measured conductance follows the
ensemble average of the strongly disordered limit of Ref. [30],
although the experimentally observed mesoscopic fluctuations
remain significantly below the theoretical prediction. Measure-
ments of the shot noise power find a value that approaches the
theoretical prediction for the shortest interface lengths [42,43].

In this article we present a theory of the transmission
probability T for a graphene pn junction with generic disorder.

1Abanin and Levitov predict var T = 1/15 for (νn,νp) = (2,−2) if
spin-orbit coupling is strong enough that the spin degeneracy is lifted
[30]. The result quoted in the main text is valid in the presence of
spin degeneracy.
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FIG. 1. Schematic experimental setup of a graphene pn junction
in a quantizing magnetic field, such that the n region has filling
fraction 2 (left) and the p region has filling fraction −2 (right). At
the pn interface there is a fourfold degenerate chiral interface state;
there are twofold degenerate chiral edge states at the sample’s top
and bottom edge.

We focus on the case of filling fractions (νn,νp) = (2,−2), for
which we give an exact solution for the distribution of the
transmission probability T , thus bridging the gap between
the clean limit of Ref. [31] and the strong-disorder limit
of Ref. [30]. Knowledge of the distribution of T allows us
to calculate the average conductance G, its variance, and
the Fano factor F throughout the weak-to-strong-disorder
crossover. There are two reasons why we focus on the case
(νn,νp) = (2,−2) for our exact solution. First, as we show
below, two length scales suffice to describe the effect of
generic disorder on the edge states, which is an essential
simplification that makes our exact solution possible. Second,
quantum interference effects are strongest in this case, so that
the need for an exact treatment is maximal. Our results for the
case (νn,νp) = (2,−2) also apply to higher filling fractions if
the mixing of interface states occurs for the lowest Landau
level only [41].

The problem we consider here is related to two different
problems that have been studied in the literature, and we wish
to comment on both. First, the study is reminiscent of that of
transport in coupled one-dimensional channels with disorder,
a problem that was solved exactly already in the 1950s, in the
context of wave propagation through random media [44,45].
A crucial difference between the two problems is, however,
that all one-dimensional modes at the pn interface propagate
in the same direction, whereas a normal metal wire has
equal numbers of modes propagating in both directions. This
difference leads to a rather different phenomenology. Whereas
transmission is exponentially suppressed for sufficiently strong
disorder or long length in the standard case [46], for the chiral
interface states at a pn junction the probability that electrons
are transmitted along the interface is always 1. The question
is whether they are fed into an edge state that transfers them
back to the source reservoir, or into the edge that leads to the
drain.

The second related problem is that of the parametric
dependence of transport properties in mesoscopic samples.
Traditionally (and correctly), it is the Hamiltonian that is taken

to depend on an external parameter, such as the magnetic
field or a gate voltage, either by modeling the perturbation
directly or in a stochastic manner through a “Brownian motion”
process. In a second step the transport properties are then
calculated from the Hamiltonian. There have been theoretical
attempts to make a theory directly for the parameter depen-
dence of the scattering matrix, e.g., through a modification of
Dyson’s Brownian motion model, but such an approach could
not be made to agree with the Hamiltonian-based approach
if the dimension of the scattering matrix is small [47–50].
Interestingly, we find that the dependence of the scattering
matrix of the interface states on the interface length is precisely
described by the Dyson Brownian motion model. To our
knowledge, this constitutes the first application of this model
to a quantum transport problem.

The article is organized as follows. In Sec. II we outline
the microscopic model of a disordered graphene pn junction
and derive an effective one-dimensional Hamiltonian for the
chiral interface states in the presence of generic disorder. In
Sec. III, we then derive and solve the Fokker-Planck equation
describing the diffusive transport through the pn junction.
Using the probability distribution of the scattering matrix, we
obtain an expression for the conductance and its variance,
being valid for an arbitrary disorder strengths as long as the
mean-free path is much larger compared to the lattice constant
and the magnetic length. We conclude in Sec. IV.

II. MICROSCOPIC MODEL

We choose coordinates such that the pn interface is along
the x direction (see Fig. 1). At low energies conduction
electrons in the graphene pn junction are described by a 4 × 4
matrix Hamiltonian,

Ĥ = Ĥ0 + V̂ (r) , (3)

in which V̂ (r) in Eq. (3) is a matrix-valued potential represent-
ing the disorder and

Ĥ0 = τ0 ⊗ σ0U (y) + vFτ3 ⊗ [σ1π1(r) + σ2π2(r)] . (4)

Here the τμ and σμ are Pauli matrices acting in valley and
sublattice space, respectively, U (y) is a gate potential that
defines the p- and n-type regions, and π1(r) and π2(r) are the
in-plane components of the kinematic momentum,

π1(r) = −i�∂x − eAx(r),
(5)

π2(r) = −i�∂y − eAy(r).

Since spin-orbit coupling is weak in graphene, the spin degree
of freedom will be suppressed throughout.

For the vector potential we take the asymmetric gauge

A1(r) = −By , A2(r) = 0 , (6)

with B > 0 the perpendicular magnetic field. The magnetic
field defines the length scale � = (eB)−1/2. The gate potential
U (y) is negative for y < 0, zero for y = 0, and positive for
y > 0, so that the pn interface is at y = 0 precisely (see Fig. 1).
In the limit of a large magnetic field, it is sufficient to expand
U (y) to linear order in y for |y| � �, and we set

U (y) = −eEy . (7)
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In order to describe graphene with generic disorder, we
expand the matrix-valued disorder potential V̂ (r) as [51–53]

V̂ (r) =
3∑

μ,ν=0

Vμν(r)τμ ⊗ σν , (8)

with real amplitudes Vμν(r). We assume these amplitudes to be
Gaussian correlated with vanishing mean and with correlation
function

〈Vμν(r)Vμ′ν ′(r ′)〉 = �μνδμμ′δνν ′δ(r − r ′) , (9)

where the absence of correlations between different amplitudes
is a consequence of translation and rotation symmetry on the
average [53]. The same symmetry considerations reduce the
number of independent correlators to nine,

�μν =

⎛
⎜⎝

α0 γ⊥ γ⊥ αz

βz β⊥ β⊥ β0

βz β⊥ β⊥ β0

γ0 α⊥ α⊥ γz

⎞
⎟⎠, (10)

such that the five parameters α0, β⊥, βz, γ⊥, and γz repre-
sent disorder contributions respecting time-reversal symmetry
[51,52], whereas the remaining four parameters α⊥, αz, β0,
and γ0 represent time-reversal symmetry-breaking disorder.
The coefficient α0 represents potential disorder that is smooth
on the scale of the lattice spacing; the coefficients β⊥ and γz

appear if the potential disorder is short range, so that it couples
to the valley and sublattice degrees of freedom. The other
coefficients are associated with a (random) magnetic field,
strain, or lattice defects (see Ref. [53]). Since time-reversal
symmetry is broken by the large magnetic field B, we will
consider all nine contributions.

With a large magnetic field B the low-energy degrees
of freedom of the Hamiltonian (3) are the two chiral one-
dimensional modes at the pn interface (per spin direction).
They are described by an effective Hamiltonian,

Hs = −i�vsτ0∂x +
3∑

μ=0

Vs,μ(x)τμ , (11)

where vs is the velocity of the interface modes and the Vs,μ(x)
are effective disorder potentials representing the effect of the
bulk disorder potential V̂ (r) on the interface states. In the limit
of a large magnetic field, we can find exact expressions for vs

and for the correlation functions of the disorder potential Vs in
terms of the parameters of the underlying a two-dimensional
Hamiltonian (3). The linear approximation (7) for the gate
potential U allows us to make use of an exact solution for
the eigenstates of the Hamiltonian H0 of Eq. (4) [16,17]. [See
Ref. [54] for an approximate solution that does not make use of
the linear approximation (7).] Furthermore, for large magnetic
fields the Landau-level separation is large enough that only
the zeroth Landau level needs to be considered. With the help
of the exact solution for the zeroth Landau level, we then find
that the velocity of the interface modes is

vs = E/B , (12)

whereas the disorder potentials Vs,μ(x) have zero mean and
correlation functions

〈Vs,μ(x)Vs,ν(x ′)〉 = Kμδμνδ(x − x ′) , (13)

with, to leading order in vs/vF � 1,

K0(α0,αz,α⊥) = 1√
2π�2

(α0 + αz) , (14a)

K1,2(β0,βz,β⊥) = 1√
2π�2

(β0 + βz) , (14b)

K3(γ0,γz,γ⊥) = 1√
2π�2

(γ0 + γz) . (14c)

The microscopic amplitudes α⊥,β⊥,γ⊥ contribute only at
higher orders in vs/vF. We refer to Appendix A for details of
the calculation.

III. SCALING APPROACH FOR THE
SCATTERING MATRIX

Disorder mixes the chiral interface modes. The effect of
this disorder-induced mode mixing is described by a 2 × 2
scattering matrix Ŝ. In the absence of disorder one has
Ŝ = eikL1. With disorder Ŝ acquires a nontrivial probability
distribution P (Ŝ), which we now calculate.

We parametrize the scattering matrix using four “angles,”

Ŝ = eiψτ0eiτ3ϕ/2eiτ2θ/2eiτ3ζ/2 , (15)

where θ ∈ [0,π ]. We will first derive a differential equa-
tion that describes the change of the joint distribution
P (ϕ,θ,ζ,ψ ; L) upon changing the length L of the interface
region (see Fig. 1). To this end, we consider the scattering
matrix ŜδL for an interface segment of length δL much smaller
than the mean-free path for disorder scattering. We parametrize
ŜδL as

ŜδL = eikδLeiÂ , Â =
3∑

μ=0

rμτμ . (16)

From the effective Hamiltonian (11) we find that the coeffi-
cients rμ are statistically independent, with disorder averages
〈rμ〉 = 0, μ = 0,1,2,3, and with variances

〈
r2
μ

〉 = Kμ

�2v2
s

δL , (17)

with the coefficients Kμ given in Eq. (14). To simplify the
expressions in the remainder of this section, we replace the
notation with the coefficients Kμ in favor of the intervalley
scattering length

li = �
2v2

s

4K1
, (18)

the (antisymmetric) intravalley scattering length

la = �
2v2

s

4K3
, (19)

and the dimensionless coefficients

α = K0/4K1, γ = K3/K1 = li/la , (20)

which relate inter- and intravalley scattering rates. In the
case of pure potential disorder, only the disorder coefficients
α0, β⊥, and γz are nonzero, so that the constants α, γ ∼
(vF/vs)2 � 1. For generic disorder that scatters between the
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two sublattices of the hexagonal graphene lattice, one expects
that α, γ ∼ 1. The parameters α and γ determine symmetric
and antisymmetric intravalley scattering lengths, respectively.
Since intravalley scattering that is equal for the two valleys
corresponds to multiplication of Ŝ with an overall phase
factor, the coefficient α will not appear in the expressions for
the conductance distribution below. Antisymmetric intravalley
scattering, however, does affect the transmission probability T

of the pn junction.
Since the interface modes are unidirectional, the compo-

sition rule for scattering matrices is matrix multiplication. In
particular, we obtain the scattering matrix Ŝ(L + δL) of an
interface segment of length L + δL as

Ŝ(L + δL) = Ŝ(L)ŜδL . (21)

This composition rule and the known statistical distribution
of the scattering matrices ŜδL define a “Brownian motion”
problem for the scattering matrix Ŝ(L). An isotropic version
of the Brownian motion problem, with α = γ = 1, was
studied previously in the context of quantum transport through
chaotic quantum dots [47–50]. Using standard methods (see
Appendix B for details), we can derive a Fokker-Planck
equation for the joint probability distribution P (ϕ,θ,ζ,ψ ; L)
of the coefficients parametrizing the scattering matrix Ŝ,

li
∂P

∂L
= −kli

∂P

∂ψ
+ 1

2
α

∂2P

∂ψ2
+ 1

2
(γ + cot2 θ )

∂2P

∂ζ 2

+1

2

∂2P

∂θ2
− 1

2
cot θ

∂P

∂θ
+ 1

2
csc2 θ

∂2P

∂ϕ2

− cot θ csc θ
∂2P

∂ϕ∂ζ
+ 1

2
csc2 θP . (22)

The Fokker-Planck equation, Eq. (22), for the L dependence
of the scattering matrix of two copropagating modes can
be solved exactly by adapting Ancliff’s method to solve the
corresponding problem for a pair of counterpropagating modes
[55]. After separating variables

P (L,ϕ,θ,ζ,ψ) = e−λL/liP (ϕ,θ,ζ,ψ) , (23)

Eq. (22) can be cast in the form of an eigenvalue problem,
which, following Ref. [55], can be solved exactly by noticing
that its right-hand side can be expressed through the operator
Â defined in Eq. (16), seen as a differential operator acting in
the Hilbert space of functions f (Ŝ),

〈Â2〉 = −(
L̂2

x + L̂2
y + L̂2

z + (γ − 1)L̂2
z + αL̂2

0

)
, (24)

in which the operators L̂μ are the generators of the Lie algebra
u(2). The Lie algebra u(2) has two Casimir operators, L̂0 and

L̂
2 = L̂2

x + L̂2
y + L̂2

z , that act as scalars K and l(l + 1) (l being
integer or half-integer, K being a real number), respectively,
within each irreducible representation of U (2). Thus we can
conclude immediately that the eigenvalues associated to the
eigenvalue problem obtained from Eq. (22) are of the form

−λKlm = l(l + 1) + (γ − 1)m2 + αK2 + 2ikliK, (25)

where m = −l, − l + 1, . . . ,l and we included the drift term
for ψ being proportional to kli, which is not contained in
Eq. (24). The eigenfunctions can be expressed [56] in terms of

Jacobi polynomials P (a,b)
n (|m| � l)

PKlmn =
√

(l + m)!(l − m)!

(l + n)!(l − n)!
eiKψeimϕ+inζ sin θ

× sinm−n(θ/2) cosm+n(θ/2)P (m−n,m+n)
j−m (cos θ ).

(26)

For m = n = 0 these eigenfunctions match the ones previously
obtained by Frahm and Pichard for the isotropic scattering
matrix Brownian motion problem [49]. It can be readily
checked that the above functions for arbitrary K , l, m, and

n are simultaneously eigenfunctions of L̂
2
, L̂z, and L̂0 and

that they satisfy the eigenvalue equation derived from Eq. (22)
with eigenvalues given by Eq. (25).

As the initial condition at L = 0 we take Ŝ(0) = 1, which
corresponds to

P (ϕ,θ,ζ,ψ ; 0) = δ(ϕ + ζ )δ(θ )δ(ψ) . (27)

With this initial condition the solution for the probability
distribution is

P (ϕ,θ,ζ,ψ ; L) =
√

li

2παL
e− li (ψ−kL)2

2αL

∑
l

2l + 1

8π2
sin θ

×
l∑

m=−l

e−[l(l+1)+(γ−1)m2]L/li+im(ϕ+ζ )

× cos2m(θ/2)P (0,2m)
l−m (cos θ ) . (28)

The scattering matrix Ŝ is related to the transmission prob-
ability T of a graphene pn junction through the relation [31]

T = |〈νT|t̂TŜt̂B|−νB〉|2 , (29)

in which t̂T (t̂B) is the scattering matrix describing how the
edge modes at the top (bottom) edges of the pn junction feed
into/originate from the interface modes and |±νT 〉 (|±νB〉)
are valley isospin Bloch vectors for the top (bottom) edges of
the n (+) and p-doped (−) regions (see Fig. 1). The isospin
vectors |νX〉 are superpositions of the vectors |1〉 and |−1〉
representing the two valleys,

|νX〉 = cos
θX

2
|1〉 + eiφX sin

θX

2
|−1〉 ,

(30)

|−νX〉 = sin
θX

2
|1〉 − eiφX cos

θX

2
|−1〉,

with polar angles θX and φX, X = T , B. The scattering
matrices t̂T and t̂B, in the absence of intervalley scattering,2

express isospin conservation at the point where the valley-
nondegenerate edge states merge into/evolve out of the valley-
degenerate interface state [31],

t̂X = eiϕ̃X |νX〉〈νX| + eiϕ̃′
X |−νX〉〈−νX| , (31)

with ϕ̃X and ϕ̃′
X arbitrary phases that do not need to be

specified. Combination of Eqs. (29) and (31) gives [31]

T = |〈νT|Ŝ| − νB〉|2 . (32)

2For a zigzag edge the intravalley scattering is always present.

195439-4



GRAPHENE pn JUNCTION IN A QUANTIZING . . . PHYSICAL REVIEW B 94, 195439 (2016)

Using Eq. (15) as well as the fact that the phase difference ϕ −
ζ is uniformly distributed for all L, we find that the disorder
average 〈T 〉 is given by

〈T 〉 = 1
2 [1 − cos θT cos θB〈cos θ〉
− sin θT sin θB〈cos θ cos(ϕ + φT) cos(ζ − φB)〉
+ sin θT sin θB〈sin(ϕ + φT) sin(ζ − φB)〉] . (33)

Using the probability distribution (28) one then finds the
remarkably simple result

〈T 〉 = 1
2 [1 − e−2L/li cos θT cos θB

−e−L/li−L/la sin θT sin θB cos(φT − φB)] . (34)

Similarly, we obtain the variance of the transmission
probability

var T = 1

12
− 1

4
e−4L/li cos2 θT cos2 θB

+ 1

24
e−6L/li (3 cos2 θT − 1)(3 cos2 θB − 1)

−1

4
e−2L/li−2L/la cos2(φT − φB) sin2 θT sin2 θB

+1

8
e−2L/li−4L/la cos 2(φT − φB) sin2 θT sin2 θB

+1

8
e−5L/li−L/la cos(φT − φB) sin(2θT) sin(2θB)

−1

8
e−3L/li−L/la cos(φT − φB) sin(2θT) sin(2θB) .

(35)

In the isotropic case, γ = li/la = 1, these expressions can be
further simplified such that 〈T 〉 and var T depend on the scalar
product νT · νB of the isospin vectors only:

〈T 〉 =1

2
(1 − e−2L/liνT · νB) , (36)

var T = 1

12
− 1

4
e−4L/li (νT · νB)2

+1

4
e−6L/li

(
(νT · νB)2 − 1

3

)
. (37)

In the limiting cases L � li, la and L � li, la,
Eqs. (34) and (35) [or (37)] agree with the known
results for the clean and dirty limits, respectively
(see Refs. [30] and [31]).

Figure 2 shows the ensemble average 〈T 〉 and the variance
var T for armchair lattice terminations at the top and bottom
edges of the pn junction. For armchair termination one has
νX · ez = 0, so that θT = θB = 0. The difference φT − φB

of the azimuthal angles can take the three values π and
±π/3, depending on the number of hexagons along the
interface length L modulo 3. We observe that the char-
acteristic length scale for armchair nanoribbon termination
is la.

Additional information on the mixing of interface states
can be obtained from a measurement of the Fano factor
F = P/2eI , the ratio of the shot noise power P , and the

FIG. 2. Mean 〈T 〉 and variance var T of the transmission T , as
a function of the interface length L, for γ = li/la = 1 (panel a) and
γ = 10 (panel b); the armchair termination is assumed. The top curve
for var T is for |φT − φB| = π/3; the bottom variance curve is for
|φT − φB| = π .

current I . For the case we consider here, one has (at zero
temperature) [57]

F = 1 − T , (38)

so that the ensemble average of the Fano factor F directly
follows from our expression Eq. (34) for the disorder-averaged
transmission probability T . In particular, in the limit of a clean
junction (L � li, la), one finds F = (1 + νT · νB)/2, whereas
in the limit of a dirty junction one has

〈F 〉 = 1/2 . (39)

A finite temperature leads, first and foremost, to a smearing
of the electron energy. Since thermal smearing effectively
amounts to taking an ensemble average, thermal smearing
has no effect on the ensemble average 〈T 〉 but it strongly
suppresses the transmission fluctuations. In the limit of large
temperatures (kBT much larger than the Thouless energy of the
interface) the Fano factor becomes [57] F = 〈T (1 − T )〉/〈T 〉,
which may be easily evaluated by combining Eqs. (34) and
(35). In the limit of a clean junction one then finds the same
Fano factor as in the zero temperature limit, whereas in the
strong-disorder limit L � li, la the high-temperature limit is

〈F 〉 = 1/3 . (40)

Note that this value for 〈F 〉, as well as the zero-temperature
limit Eq. (39) mentioned above, differs from the Fano
factor reported in Ref. [30]. The difference arises because
Ref. [30] takes the semiclassical expression for the shot noise
power, whereas quantum effects are strong in the limit of
low filling fractions we consider here and the semiclassical
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FIG. 3. The Fano factor F versus interface length L in the high-
temperature limit for γ = li/la = 1 (panel a) and γ = 10 (panel b)
and armchair termination of the top and bottom edges.

approximation is no longer quantitatively correct.
Figure 3 shows the high-temperature limit of the Fano factor

F for the armchair edge terminations. For armchair termination
we find that the Fano factor dependence can be nonmonotonic
(for γ � 1), and the characteristic length scale is la. In the
isotropic limit γ = li/la = 1 there is a monotonic dependence
on L [Fig. 3(a)].

IV. CONCLUSION

We calculated the conductance distribution of a graphene
pn junction in a quantizing magnetic field. Our theory captures
the entire crossover between the limit of a clean pn junction
and that of a strongly disordered junction. In the former case,
the conductance is a known function of the isospin vectors |νT 〉
and |νB〉 for the chiral states at the edges of the pn junction
[31]. In the latter case the conductance has a probability
distribution that is universal and independent of the details
of the edges [30]. Our solution for the intermediate regime
combines features of both extremes. On the one hand, the
conductance has finite sample-to-sample fluctuations, on the
other hand, mean and variance of the conductance depend on
the isospin vectors |νT 〉 and |νB〉.

A special feature of our solution is that we are able to relate
the mean free paths for transport along the one-dimensional
interface to the coefficients describing the random potential in
the two-dimensional graphene sheet. Even after translation and
rotation invariance are taken into account, generic disorder in
graphene is still characterized by five independent constants.
Some information on these constants can be obtained from
measurements of a two-dimensional graphene sheet. For exam-
ple, pure potential disorder gives rise to weak antilocalization,
whereas disorder terms that couple the valleys cause weak

localization [58–60]. Complementary information can be ob-
tained from the carrier-density dependence of the conductivity
[61]. Our theory links the conductance distribution of a pn

junction in a large magnetic field to the same set of coefficients
and, thus, provides an additional and independent method to
determine these.

A central observation of the many conductance experiments
[19–21,23,37–41] is that the measured conductance in the
case (νn,νp) = (2,−2) consistently agrees with the ensemble
average 〈T 〉 = 1/2 of the strong-disorder limit [30], but
the experiments do not show any signatures of the large
mesoscopic fluctuations that are expected in the limit of zero
temperature. These experiments are not consistent with the
clean-limit predictions, since none of the standard nanoribbon
terminations (armchair or zigzag) give a conductance G

consistent with T = 1/2 [31]. The Fano factors observed
in Refs. [43] and [42] are slightly below the theoretical
predictions of Eqs. (39) and (40) for the strong-disorder
limit (assuming spin degeneracy), but they are not far from
it when extrapolating the observation of Ref. [43] to zero
interface length. Our theory for the crossover between the
clean and strong-disorder limits shows that the approach to
the average value T = 1/2 and the development of large
mesoscopic fluctuations occur at the same length scale la
for armchair nanoribbon termination, irrespective of the form
of the microscopic disorder (see Fig. 2). We note that for
nonstandard nanoribbon termination with |φT − φB | = π/2 it
is possible to approach the mean value T = 1/2 on length
scale li while the mesoscopic fluctuations are developed on
the length scale la. The opposite scenario, which would
offer an explanation for the experimental observations, is not
possible within our theory. Thus the experimentally observed
absence of mesoscopic fluctuations cannot be explained by
an incomplete transition to the strong-disorder limit. Other
causes of suppressed mesoscopic fluctuations that have been
mentioned in the literature are thermal smearing, slow time-
dependent fluctuations of system parameters, or inelastic
processes contributing to the mixing between the interface
states [30]. The observed suppression of shot noise for long
interface lengths in Ref. [43] clearly hints at a role of
inelastic processes for large interface lengths L, whereas the
observation of a finite shot noise power at shot junction lengths
is consistent with the first two explanations. A quantitative
theory of thermal smearing effects requires the extension of
the present theory to the energy dependence of the scattering
matrix, a considerable theoretical challenge that is left to future
work.
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APPENDIX A: EFFECTIVE HAMILTONIAN FOR CHIRAL
INTERFACE STATES

In this Appendix we derive the effective one-dimensional
Hamiltonian Hs for the chiral states at the pn interface
[see Eq. (11)]. Hereto we need the explicit form of the
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eigenfunctions of the Hamiltonian H0 for the clean system.
These eigenfunctions are known from the exact solution of
Refs. [16] and [17]. They have a linear energy-momentum
dispersion εk = vsk with vs given by Eq. (12), and the
δ-function normalized spinor-valued wave functions for the
zeroth Landau level read [16,17]∣∣�0

kκ (r)
〉 = eikxφ0(y − k�2)|κ〉 ⊗ |ξκ〉 , (A1)

where κ = ±1 is the valley index, |κ〉 are the basis spinors with
respect to the valley degree of freedom, and |ξκ〉 represents a
two-component spinor with respect to the sublattice degree of
freedom. Further,

φ0(y) =
(

β

π�2

)1/4

e−βy2/2�2
, (A2)

where we abbreviated

β =
√

1 −
( E

vFB

)2

. (A3)

(Note that the validity of this exact solution requires |E | <

vFB.) The spinor |ξκ〉 reads

ξ κ ≡
√

|E |
2vFB

(
sgn(E)κC1/2

C−1/2

)
, (A4)

with

C = vFB
|Ē | (1 − β) . (A5)

One verifies that in the limit of a vanishing electric field
the solutions Eq. (A1) reduce to the well-known results for
graphene in a homogeneous external magnetic field.

As explained in the main text, for large magnetic fields
it is sufficient to restrict to the zeroth Landau level. We
may obtain an effective Hamiltonian for the interface states
by projecting the Hamiltonian H0 to the states spanned by
the wave functions (A1). Using the Fourier representation of
Eq. (A1), this projection takes the simple diagonal form

Hs,0 = vskτ0 . (A6)

Fourier transformation with respect to k gives the first term of
the Hamiltonian Hs of Eq. (11).

To incorporate the disorder potential we need to evaluate
the matrix elements

Vs,κκ ′ (k,k′) =
∫

d r
〈
�0

kκ (r)
∣∣V̂ (r)

∣∣�0
k′κ ′(r)

〉
=

∫
d re−i(k−k′)xφ0(y − k�2)φ0(y − k′�2)

×(〈κ| ⊗ 〈ξκ |)V̂ (r)(|κ ′〉 ⊗ |ξκ ′ 〉) . (A7)

In the limit of a large magnetic field and for small momenta k,
k′, we may neglect the shifts k�2 and k′�2 in the arguments
of the functions φ0. With this approximation, Vs,κκ ′ (k,k′)
becomes a function of the difference k − k′ only, so that it
represents an effective disorder potential that is local in space,

Vs,κκ ′ (x) =
∫

dyφ0(y)2(〈κ| ⊗ 〈ξκ |)V̂ (x,y)(|κ ′〉 ⊗ |ξκ ′ 〉).
(A8)

Since the disorder potential V̂ (x,y) has a Gaussian
distribution with zero mean and with δ-function correla-
tions, the same applies to the effective disorder poten-
tial V̂s(x) for the interface states. The two-point correla-
tion function can be calculated with the help of Eq. (9),
and one finds

〈Vs,κλ(x)Vs,κ ′λ′(x ′)〉 = Kκλκ ′λ′δ(x − x ′) , (A9)

with

K++++ = K−−−− ≡ K0 + K3 ,

K++−− = K−−++ ≡ K0 − K3 , (A10)

K+−−+ = K−++− ≡ 2K1 ,

where the coefficients Kμ are

K0 = 1

4

√
β

2π�2

( E
vFB

)2

[(C + 1/C)2α0

+ (C − 1/C)2αz + 4α⊥] , (A11a)

K1 = K2 = 1

4

√
β

2π�2

( E
vFB

)2

[(C + 1/C)2β0

+ (C − 1/C)2βz + 4β⊥] , (A11b)

K3 = 1

4

√
β

2π�2

( E
vFB

)2

[(C + 1/C)2γ0

+ (C − 1/C)2γz + 4γ⊥] . (A11c)

Notice that each of the three coefficients depends on a dif-
ferent set of the disorder coefficients for the two-dimensional
disorder potential V̂ (x,y). Upon writing

V̂s(x) =
3∑

μ=0

Vs,μ(x)τμ, (A12)

the correlation function of the form (A9) reproduces that
of Eq. (13) of the main text. The expressions for the
coefficients Kμ quoted in Eq. (14) of the main text follow
from Eq. (A11) upon keeping the leading contribution in
(E/vFB)2.

APPENDIX B: DERIVATION OF THE FOKKER-PLANCK
EQUATION FOR SCATTERING MATRIX

In this Appendix we give the details of the derivation of the
Fokker-Planck equation, Eq. (22). We use the parametrization
(15) of the scattering matrix in terms of Euler angles, which
we combine into a four-component vector p = (ϕ,θ,ζ,ψ)T .
The composition rule (21) leads to a Langevin process for
the Euler angles p. We can calculate the change δ p from
the change

δŜ = Ŝ(L + δL) − Ŝ(L) (B1)

of the scattering matrix. We keep contributions to δ p and δŜ

up to second order in rμ and write accordingly

δ p = δ p(1) + δ p(2),
(B2)

δŜ = δŜ(1) + δŜ(2) + O
(
r3
μ

)
.
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We can then obtain δ p from δŜ using the relations

δŜ(1) =
3∑

μ=0

∂Ŝ

∂pμ

δp(1)
μ , (B3)

δŜ(2) = 1

2

3∑
μ,ν=0

∂2Ŝ

∂pμ∂pν

δp(1)
μ δp(1)

ν +
3∑

μ=0

∂Ŝ

∂pμ

δp(2)
μ . (B4)

The solutions of the above equations read

δ p(1) =1

2

⎛
⎜⎜⎜⎝

csc θ (r2 sin γ + r1 cos γ )
r2 cos γ − r1 sin γ

r3 − cot x(r2 sin γ + r1 cos γ )
2r0

⎞
⎟⎟⎟⎠, (B5)

δ p(2) =1

8

⎛
⎜⎝

− csc θ (r2 cos γ − r1 sin γ )[2 cot θ (r2 sin γ + r1 cos γ ) − r3]
(r2 sin γ + r1 cos γ )(r1 cos γ cot θ + r2 sin γ cot θ − r3)

(r2 cos γ − r1 sin γ ){[cos(2θ ) + 3] csc2 θ (r2 sin γ + r1 cos γ )−2r3 cot θ}/2
8kδL

⎞
⎟⎠ . (B6)

These equations define the Langevin process for the parameters p. To obtain the corresponding Fokker-Planck equation, we need
to calculate the average of δ p(2) and the (co)variance of δ p(1). With the help of Eq. (17) we obtain

〈δ p(2)〉 =

⎛
⎜⎜⎝

0
1
2 cot θ

0
k

⎞
⎟⎟⎠δL , (B7)

〈δ p(1)δ p(1)T 〉 =

⎛
⎜⎜⎜⎝

csc2 θ 0 − cot θ csc θ 0
0 1 0 0
− cot θ csc θ 0 csc2 θ + γ − 1 0
0 0 0 α

⎞
⎟⎟⎟⎠δL . (B8)

Inserting these correlators into the general form of the Fokker-Planck equation [62],

∂P

∂L
= −

3∑
μ=0

∂pμ

(〈
δp(2)

μ

〉
δL

P

)
+ 1

2

3∑
μ,ν=0

∂2
pμpν

(〈
δp(1)

μ δp(1)
ν

〉
δL

P

)
, (B9)

we arrive at Eq. (22) of the main text.
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