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Two TRPV1 receptor antagonists are effective
in two different experimental models of migraine
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Abstract

Background: The capsaicin and heat responsive ion channel TRPV1 is expressed on trigeminal nociceptive neurons
and has been implicated in the pathophysiology of migraine attacks. Here we investigate the efficacy of two TRPV1
channel antagonists in blocking trigeminal activation using two in vivo models of migraine.

Methods: Male Sprague–Dawley rats were used to study the effects of the TRPV1 antagonists JNJ-38893777 and
JNJ-17203212 on trigeminal activation. Expression of the immediate early gene c-fos was measured following
intracisternal application of inflammatory soup. In a second model, CGRP release into the external jugular vein was
determined following injection of capsaicin into the carotid artery.

Results: Inflammatory up-regulation of c-fos in the trigeminal brain stem complex was dose-dependently and
significantly reduced by both TRPV1 antagonists. Capsaicin-induced CGRP release was attenuated by JNJ-38893777
only in higher dosage. JNJ-17203212 was effective in all doses and fully abolished CGRP release in a time and
dose-dependent manner.

Conclusion: Our results describe two TRPV1 antagonists that are effective in two in vivo models of migraine. These
results suggest that TRPV1 may play a role in the pathophysiological mechanisms, which are relevant to migraine.

Keywords: Transient receptor potential vanilloid 1; Capsaicin; Calcitonin gene-related peptide; Inflammatory soup;
c-fos; Trigeminal activation
Background
Migraine is one of the most common debilitating disor-
ders, affecting 324 million people worldwide [1]. Even
though the acute treatment of migraine has greatly im-
proved with the development of 5-HT1B/1D receptor ago-
nists (triptans), a substantial percentage of patients do
not benefit from oral triptan formulations [2, 3]. Trip-
tans are contraindicated in patients with cerebrovascular
disease, cardiovascular disease, poorly controlled hyper-
tension, severe hepatic or renal impairment and certain
forms of migraine; triptans may also induce serotonin
syndrome when taken in combination with selective
serotonin-reuptake inhibitors [4]. In the majority of pa-
tients, the migraine attack is accompanied by cutaneous
allodynia [5] and this phenomenon has been reported to
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be associated with a lack of efficacy of triptans [6]. Even
though these findings were not supported by later stud-
ies [7–9], they emphasize the importance of developing
alternative treatment options for patients that do not
benefit from triptans.
The neurotransmitter calcitonin gene-related peptide

(CGRP) plays a crucial role in the pathophysiology of
migraine. Infusion of CGRP causes migraine-like disor-
ders or even migraine without aura [10], and several
CGRP receptor antagonists have been shown to be ef-
fective in the acute treatment of migraine [11–13]. It is
well known that activation of the trigeminal nerve sys-
tem induces a release of CGRP [14] and our group has
recently demonstrated that this release could be almost
completely abolished by destroying primary trigeminal
afferents with neonatal capsaicin treatment [15].
Capsaicin activates the heat and pH-sensitive ion chan-

nel Transient Receptor Potential Vanilloid 1 (TRPV1),
which seems to be involved in the pathophysiology of
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migraine [15–18]. TRPV1 is expressed on trigeminal noci-
ceptors [19, 20], which innervate the dura mater and the
meningeal vascular system [21]. Activation of TRPV1
causes release of CGRP from trigeminal nerve terminals
[22–24] and neurogenic inflammation within the menin-
ges [25], possibly initiating migraine attacks. Accordingly,
the anti-migraine drug sumatriptan was recently shown to
block trigeminal TRPV1 channels [26].
However, the effectiveness of specific antagonism of the

TRPV1 channel in the treatment of migraine remains un-
resolved. Even though one antagonist, SB-705498, was
shown to suppress and reverse sensitization upon dural in-
flammation [27], a clinical trial testing the compound in
migraine patients has been terminated early due to lack of
efficacy [28]. Another TRPV1 antagonist, A-993610, was
recently shown to be ineffective in different animal models
of migraine [29]. Here, we investigate the effectiveness of
two TRPV1 receptor antagonists in blocking trigeminal
activation, as measured by expression of the immediate
early gene c-fos [30] and in preventing CGRP release, both
common in vivo models of migraine.

Methods
All experiments were approved by the local authorities,
the Landesamt für Gesundheit und Soziales Berlin (Reg.
265/05). Animal procedures were conducted as previously
described [15, 31, 32]. In short, male Sprague–Dawley rats
(260–300 g, Charles-River, Sulzfeld, Germany) were anaes-
thetized with intraperitoneal (i.p.) thiopental-sodium
(60 mg/kg body weight). Supplemental doses were admin-
istered during the experiments when necessary. Body
temperature of the rats was maintained at 37 ± 0.5 °C
using a heating blanket and a rectal probe. Rats were
tracheotomized and mechanically ventilated with sup-
plemental oxygen. Endexpiratory CO2 was continuously
monitored (EGM 1, Heyer, Bad Ems, Germany). The fem-
oral artery and vein were cannulated (Portex Polythene
Tubing PE 50, neoLab GmbH, Heidelberg, Germany) for
blood pressure monitoring and intravenous (i.v.) adminis-
tration of compounds, respectively.

Physiological variables
Mean arterial blood pressure, body temperature and ar-
terial oxygen tension were measured continuously dur-
ing the experiments. We analyzed data for a period of
2 min before the start of the infusion of the compounds
and for 2 min at the end of the infusion. Sumatriptan
was administered subcutaneously (s.c.) and in this group
we measured physiological variables 20 min after the
administration.

c-fos study
A soft and flexible catheter (PE 0.28 mm i.d.) was intro-
duced into the cisterna magna for administration of
inflammatory soup (IS) as described elsewhere [15, 33].
Twenty minutes later, sumatriptan (s.c.; 300 μg/kg), JNJ
TRPV1 antagonists or JNJ-vehicle (both i.v.) were ad-
ministered over a period of 20 min. Immediately after-
wards, 70 μl IS or IS-vehicle (0.9 % NaCl) was applied
slowly over a period of 2 min using a 100 μl Hamilton
syringe. Two hours after IS application, animals were
given a sublethal dose of thiopental-sodium (100 mg/kg,
i.p.) and then transcardially perfused with 50 ml saline
and 330 ml of cold 4 % paraformaldehyde (PFA; in
0.1 M phosphate buffered saline (PBS); pH 7.4). The
brain and cervical spinal cord were removed and the
dura mater was assessed for damage or bleeding. If
blood was found on the dura covering the hemispheres
or the dura was destroyed, brains were not further proc-
essed. Brains were stored in fixative (4 % PFA in 0.1 M
PBS; pH 7.4) overnight, followed by a cryoprotective so-
lution (20 % sucrose + 0.5 % sodium azide) for another
24 h (both at 4 °C) and then further processed for c-fos
staining as previously described [31]. Five to seven ani-
mals were used in each group with the exception of the
groups that received the lowest doses of TRPV1 antag-
onist (0.03 mg/kg for JNJ-38893777 and 0.3 mg/kg for
JNJ-17203212), in which only 3 animals were used.
C-fos like immunoreactive (c-fos LI) nuclei in the tri-

geminal brain stem complex were identified under bright
field microscopy and counted by an observer naïve to
the treatment as previously described [31, 34]. Cell were
counted on both sides of the trigeminal brain stem com-
plex. In control groups, we used animals that were in-
strumented in an identical way but received vehicle
instead of inflammatory soup.

CGRP study
The external jugular vein and carotid artery were cannu-
lated (PE 0.86 mm i.d., PE 50, respectively). The catheter
in the jugular vein was flushed with a mixture of heparin
and NaCl to avoid clotting. After 30 min, a blood sample
(500 μl) was taken from the jugular vein to determine
the baseline CGRP concentration. Afterwards, sumatrip-
tan (300 μg/kg body weight), JNJ TRPV1 antagonists or
JNJ-vehicle were injected over a period of 20 min. At the
end of the infusion, capsaicin (4 μmol/kg) or capsaicin-
vehicle (saline : ethanol : Tween-80 in a ratio 8 : 1 : 1) was
injected slowly over a period of 2 min into the carotid ar-
tery. Blood samples for CGRP level determination were
taken after 5, 10, and 15 min as previously described [32].
Six to eight animals were used for each group.

Drugs
Thiopental-sodium (Trapanal®) was purchased from
Altana, Wesel, Germany. Capsaicin, EDTA disodium salt
solution and Aprotinin (Aprotinin from bovine lung,
0.55 trypsin inhibitor units/ml blood) were purchased
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from Sigma, Steinheim, Germany. Sumatriptan (Imigran®)
was purchased from GlaxoSmithKline, Uxbridge, UK.
Ten-fold concentrated IS (histamine, serotonin, both
10 mM; bradykinin, prostaglandin E2, both 1 mM; pH 5.5;
adapted from [35]) was formulated in PBS. JNJ-17203212
(4-(3-trifluoromethyl-pyridin-2-yl)-piperazine-1-carboxylic
acid (5-trifluoromethyl-pyridin-2-yl)-amide) and JNJ-
38893777 (2 (1 piperidinyl) N [4 (trifluoromethyl)phenyl]
7 [3 (trifluoromethyl) 2 pyridinyl] 6,7,8,9 tetrahydro 5H
pyrimido[4,5 d]azepin 4 amine) were provided by Janssen
Research & Development, L.L.C., and formulated in 5 %
Pharmasolve, 20 % Cremophor, 75 % dextrose solution
(5 % dextrose in water). The vehicle for the JNJ TRPV1
antagonists (“JNJ-vehicle”) consisted of the latter three
substances in the same concentrations.

Statistical analysis
Data were tested for normality using the Kolmogorov-
Smirnov test, followed by one-way ANOVA and either
Bonferroni correction (for CGRP study) or Dunnett’s test
(for c-fos study) as post-hoc analysis for multiple compari-
sons. All values were normally distributed. Statistical sig-
nificance was assumed when p < 0.05. All data are shown
as mean ± SEM. Statistical analysis was performed using
STATISTICA, version 8.0 (StatSoft, Inc. 2008).

Results
Physiological variables
Although there was a trend toward reduced mean arter-
ial blood pressure in all but the vehicle groups, we did
not see any significant changes in physiological variables.
Temperature was slightly elevated during and shortly
after JNJ TRPV1 antagonist infusion but changed back
to baseline after a little more than 60 min. However,
none of these effects were statistically significant.

C-fos LI within TNC
IS induces an increase in c-fos LI within the trigeminal brain
stem complex
C-fos LI was mainly found in laminae 1 and 2 of the tri-
geminal nucleus caudalis (TNC) and was most pro-
nounced in the lower levels, corresponding to C1. Only
a few cells were seen in all other laminae, in accordance
with previously published data [31, 33]. Intracisternal in-
jection of 10-fold concentrated IS (10 mM histamine,
serotonin; 1 mM bradykinin, prostaglandin E2; pH 5.5;
adapted from [35]) resulted in an increased expression
of c-fos within the TNC as compared to controls, which
were exposed to an identical volume of vehicle for the
same duration (Fig. 1a). After IS stimulation, we counted
9.1 ± 1.5 cells per section at the rostral level of the TNC
(p = 0.002), 25.4 ± 3.3 cells in the caudal TNC (p < 0.001),
29 ± 4.8 cells at the C1 level (p = 0.002), and 27.8 ± 2.5 cells
at the C2 level (p < 0.001, n = 7). For comparison, in
animals treated with vehicle, we only counted 1.7 ± 0.3 in
the rostral and 4.7 ± 1.1 in the caudal TNC, 8.7 ± 2.8 and
8.3 ± 3.6 at C1 and C2, respectively (n = 6).
Subcutaneous injection of sumatriptan had no significant

effect on the IS-induced c-fos up-regulation (Fig. 1a; 6.5 ±
1.8 in the rostral TNC, 28.2 ± 5.3 in the caudal TNC, 25 ±
1.3 at C1, 18.8 ± 2.7 at C2; p ≥ 0.18 compared to IS + vehicle
at all levels, ANOVA with Bonferroni correction; n = 5).

JNJ-38893777 attenuates IS-induced c-fos LI
Treatment with the TRPV1 antagonist JNJ-38893777 led
to a dose dependent reduction of IS-induced c-fos up-
regulation in the rostral part as well as within levels C1
and C2 of the TNC (Fig. 1b). The lowest dose of
0.03 mg/kg did not show a significant effect at any level
when compared to injection of IS plus vehicle (p ≥ 0.15).
In contrast, at a 10-fold higher concentration, JNJ-
38893777 significantly reduced the IS-induced up-
regulation of c-fos LI in the rostral TNC (4.1 ± 0.8, p =
0.023) and at the level of the C2 (16 ± 2.6, p = 0.021). In
the caudal TNC and the C1, a strong decrease in c-fos LI
that was short of significance could be observed (11.9 ±
3.1, p = 0.072 and 20.05 ± 4.5, p = 0.433; n = 6). The highest
dose of 3 mg/kg induced a significant reduction in c-fos LI
in the rostral part of the TNC (3.8 ± 1.2, p = 0.011) and at
the C1 level (11.5 ± 2.8, p = 0.036) and fully abolished the
IS-induced increase of c-fos LI at the C2 level (8.7 ± 2.7,
p < 0.001; n = 7). In the caudal part of the TNC we counted
14.9 ± 2.9 cells per section, which failed to reach signifi-
cance when compared to IS plus vehicle (p = 0.17; n = 7).

JNJ-17203212 dose-dependently reduces IS-induced
c-fos expression
The TRPV1 antagonist JNJ-17203212 also had a dose-
dependent effect on the elevated c-fos expression that
occurred after intracisternal injection of IS (Fig. 1c).
While the lowest dose failed to reduce the effect of IS
(p ≥ 0.46), JNJ-17203212 at a concentration of 3 mg/kg
significantly attenuated the IS-induced c-fos expression
at the levels C1 and C2 of the TNC (14.8 ± 2.9, p = 0.038
at C1 and 11.2 ± 2, p < 0.001 at C2). A minimal reduc-
tion of c-fos LI in comparison to the control group could
be observed in the caudal TNC for this dose (19.3 ± 2,
p = 0.24), whereas no effect could be observed in more
rostral parts of the TNC (8.9 ± 3.6, p = 0.99; n = 7). JNJ-
17203212 at the highest concentration of 30 mg/kg com-
pletely abolished c-fos up-regulation in the caudal TNC
(8.1 ± 1.4, p < 0.001) as well as at levels C1 (8.3 ± 1.7, p =
0.005) and C2 of the TNC (9.6 ± 2.3, p < 0.001; n = 5).

CGRP study
Next, we measured the effect of both TRPV1 antagonists
on the release of CGRP into jugular vein blood induced
by the common TRPV1 agonist capsaicin. While this is



Fig. 1 IS-induced up-regulation of c-fos can be abolished through block of TRPV1. a Intracisternal administration of inflammatory soup (IS; black
bars) induces an increase in the amount of cells showing c-fos like immunoreactivity (c-fos LI) in the trigeminal brain stem complex. This increase
was significant at all levels of the TNC when compared to control animals (white bars), injected with an identical volume of vehicle. These two
groups also received an injection of sumatriptan vehicle. Administration of sumatriptan (300 μg/kg; grey bars) before injection of IS did not affect
the IS-induced up-regulation of c-fos. b The TRPV1 antagonist JNJ-38893777 reduced the elevated c-fos expression, seen after injection of IS, in a
dose-dependent fashion. The antagonist was injected intravenously in 0.03 mg/kg (black bars), 0.3 mg/kg (light grey bars) and 3 mg/kg (dark grey
bars) over a period of 20 min before application of IS. c The TRPV1 antagonist JNJ-17203212 was injected in 0.3 mg/kg (black bars), 3 mg/kg (light
grey bars) and 30 mg/kg (dark grey bars) previous to IS administration. A dose-dependent reduction in IS-induced c-fos expression could be
observed. The highest dose completely abolished c-fos up-regulation in most parts of the TNC. # compares to vehicle + vehicle treated group
(no IS administration) at the same level of TNC. * compares to IS + vehicle treated group at the same level of TNC. n.s. not significant (compared
to IS + vehicle). *p < 0.05; **p < 0.01; ***p < 0.001
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itself a common in vivo model of migraine, it would also
provide proof for target engagement by the two antago-
nists and could thus confirm that the above results in
IS-induced c-fos expression are most likely due to block
of TRPV1.

Capsaicin leads to elevated CGRP levels in jugular vein
blood
Baseline plasma CGRP levels in jugular vein blood were
not different between any of the groups. In the control
group treated intravenously with vehicle, we measured a
baseline CGRP concentration of 65.7 ± 15.7 pg/ml. Injec-
tion of capsaicin (4 μmol/kg) into the carotid artery
caused a significant increase in CGRP blood levels that
was sustained for 15 min (Fig. 2a). We measured a
CGRP concentration of 998.9 ± 69.9 pg/ml 5 min after
capsaicin administration, 916.5 ± 70.5 pg/ml after 10 min
and 738.8 ± 52.4 pg/ml after 15 min (n = 9, p < 0.001 at
all time points). To demonstrate that the capsaicin-
induced increase in CGRP blood levels was mediated via
the trigeminal nerve system, we administered the com-
mon migraine drug sumatriptan (300 μg/kg) subcutane-
ously, prior to capsaicin treatment. Sumatriptan
significantly reduced the increase in jugular CGRP levels
(Fig. 2a). In this group, we measured only 589.5 ±
30.1 pg/ml 5 min after capsaicin administration, 570.2 ±
28 pg/ml after 10 min (both p < 0.001) and 450.1 ±
39 pg/ml (p = 0.002; n = 8) after 15 min.

JNJ-38893777 reduces capsaicin-induced CGRP release
The TRPV1 antagonist JNJ-38893777 significantly re-
duced the increase in jugular CGRP levels that could be
measured 5 min after capsaicin injection and completely
abolished the increase measured after 10 and 15 min
when administered at 3 mg/kg (Fig. 2b; 483.4 ± 48.5 pg/ml,
213.7 ± 64.7 pg/ml, and 135.7 ± 59.3 pg/ml after 5, 10, and
15 min, respectively, p < 0.001 at all time points). At a
10-fold lower dose, the antagonist was only effective at
the 15 min time point (465.1 ± 84.3 pg/ml, p = 0.013)
but showed no effect earlier than that. At the lowest
dose of 0.03 mg/kg, JNJ-38893777 had no effect (n = 7
for all groups).

JNJ-17203212 completely blocks capsaicin-induced CGRP
release in a dose-dependent manner
Treatment with the TRPV1 antagonist JNJ-17203212
had a dose dependent effect on capsaicin-induced CGRP
release (Fig. 2c). Five minutes after capsaicin application,
the groups treated with the two higher doses of 3 mg/kg
(525 pg/ml ± 47.4 pg/ml, p < 0.001, n = 7) and 30 mg/kg
(433.9 pg/ml ± 42.9 pg/ml, p < 0.001, n = 7) showed sig-
nificantly different CGRP levels compared to the capsa-
icin plus vehicle treated group. At the 10 min time
point, the lowest dose of 0.3 mg/kg (664.4 ± 105.8 pg/ml,
p = 0.13, n = 8) showed a strong tendency towards de-
creased jugular CGRP levels but this effect did not reach
significance. At 3 mg/kg, CGRP release was significantly
reduced (386.2 ± 70.3 pg/ml, p < 0.001) and at 30 mg/kg,
it was completely abolished (220.7 ± 28.7 pg/ml; p <
0.001, but p = 0.72 compared to baseline from the same
group). After 15 min, all three doses of JNJ-17203212 in-
duced significant effects when compared to the capsaicin
plus vehicle treated group (391.4 ± 45.4 pg/ml, 190 ±
48.3 pg/ml, 140.4 ± 21 pg/ml for 5, 10, and 15 min, resp.,
p < 0.001 for all doses). At this time point, the two higher
doses fully abolished the capsaicin-induced CGRP release.
None of the antagonists when used in their highest

dose had any effect on jugular CGRP levels in animals
that were treated with capsaicin-vehicle (Fig. 2d; n = 7).

Discussion
In this study we applied two in vivo models of migraine
to test the efficacy of two TRPV1 antagonists. It is com-
monly believed that activation of the trigeminal nerve
system and subsequent release of CGRP from trigeminal
fibres, which leads to vasodilation within the meninges,
plays a crucial role in the development of migraine at-
tacks. This is supported by the fact that several CGRP
receptor antagonists are effective in the acute treatment
of migraine [11–13]. We have shown here that antago-
nists of the TRPV1 ion channel could be effective in
blocking this trigeminal activation that leads to the re-
lease of CGRP.
First, we tested the effect of two TRPV1 antagonists on

the stimulus-induced up-regulation of the immediate early
gene c-fos in the trigeminal brain stem complex. We se-
lected the so-called inflammatory soup (IS) as activating
stimulus, which is a well-established model to study the
mechanisms underlying the sensitization of trigeminal pri-
mary afferent neurons. This central sensitization has been
considered to be the cause of certain headaches and is al-
most certainly the underlying mechanism for allodynia,
which often accompanies migraine attacks [36, 37]. Our
group has shown that IS activates the trigeminal nerve
system when administered intracisternally as demon-
strated by CGRP release [32]. Here, we confirm these find-
ings by showing that intracisternal administration of IS
leads to a pronounced up-regulation of c-fos LI within the
TNC. The amount of c-fos expression in response to IS
was found to be considerably less than what has previously
been reported as the response to capsaicin [31]. As IS pre-
dominantly acts through the sensitization rather than dir-
ect activation of nociceptive ion channels, this result was
not unexpected. Elevated c-fos in the TNC after stimula-
tion of the dura with IS has been reported previously and
the results correspond well with the findings of this study
[38, 39]. However, Edelmayer et al. [39] have shown suma-
triptan to be effective in blocking c-fos up-regulation,



Fig. 2 TRPV1 antagonists are effective in blocking capsaicin-induced CGRP release. a Injection of capsaicin (4 μmol/kg) into the carotid artery caused
an increase in CGRP concentration in jugular vein blood. The increase was substantial within 5 min and still significant albeit slightly decreasing after
15 min. Administration of sumatriptan (300 μg/kg; black bars) prior to capsaicin treatment reduced the elevated CGRP levels significantly, although
they were still considerably higher than baseline values. b The TRPV1 antagonist JNJ-38893777 in the highest dose of 3 mg/kg (dark grey bars)
reduced jugular CGRP levels after capsaicin significantly, returning them to near baseline levels within 10 min. Lower doses of 0.3 mg/kg (light grey
bars) and 0.03 mg/kg (black bars) were less effective. c JNJ-17203212 had a dose-dependent effect on the capsaicin-induced increase in jugular CGRP
concentration. CGRP release was completely abolished within 10 min when the antagonist was administered at 30 mg/kg (dark grey bars) and within
15 min when administered at 3 mg/kg (light grey bars). The lowest dose of 0.3 mg/kg (black bars) reduced the CGRP levels significantly but not to
the level of the pre-capsaicin baseline after 15 min. d Neither JNJ-38893777 (black bars) nor JNJ-17203212 (grey bars) when used in their highest
doses had any effect on jugular CGRP levels in animals that did not receive an injection of capsaicin. Values were not significantly different compared
to the respective baseline. # compares to baseline values of the same group. * compares to capsaicin + vehicle at the same time point. n.s. not
significant (compared to baseline values of the same group). *p < 0.05; **p < 0.01; ***p < 0.001
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which does not correspond to our results. This discrep-
ancy is likely due to lower concentration of inflammatory
mediators and higher concentration of sumatriptan used
by Edelmayer et al. We have shown in this and earlier re-
ports that the lower sumatriptan dose administered here is
already effective as it blocks both capsaicin and IS-
induced CGRP release [32]. We do not propose a direct
effect of sumatriptan on TRPV1 channels but rather an in-
hibition of CGRP release by the drug. However, sumatrip-
tan does not reverse sensitization of already sensitized
central trigeminal neurons [40], thus explaining the ab-
sence of an effect on the IS-induced c-fos up-regulation in
this study. The TRPV1 antagonist JNJ-38893777 in its
highest dose (3 mg/kg) decreased the IS-induced c-fos LI
significantly, in some areas even to the level of control ani-
mals not treated with IS. The second antagonist JNJ-
17203212 showed remarkable efficacy in all levels of
the TNC at 30 mg/kg, completely abolishing c-fos up-
regulation. To corroborate the above results, we tested
the two TRPV1 antagonists for their ability to block
stimulus-induced CGRP release into jugular vein blood.
Capsaicin was used as the stimulus as this substance
has been used in many preclinical migraine drug studies
previously [41, 42]. In addition, the use of capsaicin
allowed us to demonstrate the efficacy of the two antago-
nists in blocking the TRPV1 channel. Injection of capsa-
icin into the carotid artery caused a significant increase in
jugular CGRP levels that was sustained for 15 min. The
TRPV1 antagonist JNJ-38893777 at 3 mg/kg was more ef-
fective than sumatriptan and returned CGRP levels close
to baseline. The TRPV1 antagonist JNJ-17203212 was ef-
fective in reducing capsaicin-induced CGRP release at all
three concentrations. These results demonstrate the speci-
ficity of the two compounds against the TRPV1 channel
and suggest that the IS-induced up-regulation of c-fos was
also due to a block of TRPV1.
The specificity of the two antagonists used in this

study has been tested extensively in vitro and the results
are summarized in Table 1. Both compounds were tested
against a number of TRP channels as well as against a
broad panel of other non-related receptors and channels.
JNJ-17203212 displayed some weak inhibition of TRPM8
that remained far below the activity at the TRPV1 chan-
nel, but was not active at any of the other receptors and
channels [43]. JNJ-38893777 was not active at any of the
tested TRP channels but displayed some weak activity at
the human Cholecystokinin 1 receptor (pKi 6.1), the hu-
man Adenosine 3 receptor (pKi 6.2) and a rat cerebral
cortex sodium channel (pKi 6.1). However, these activ-
ities were far lower compared to the inhibition of
hTRPV1 (pKi 8.0). In conclusion, while we cannot ex-
clude the possibility that the effect of the two antago-
nists on c-fos expression could also be mediated by
additional targets, a significant effect seems unlikely
given the higher specificity of the compounds against
the TRPV1 channel and the TRPV1-specific block ob-
served in the CGRP experiments.
TRPV1 is well known for its role in nociception and

sensitization and has been widely studied in the peripheral
nociceptive system [44]. In the central nervous system,
TRPV1 expression has been shown in the TNC and in nu-
merous other areas [26, 45–47], many of which are in-
volved in the processing during headaches [48]. TRPV1 is
expressed by a majority of CGRP-releasing trigeminal fi-
bres that innervate the meningeal vascular system [15, 49].
Stimulation of these trigeminal afferents through activa-
tion of TRPV1 causes a CGRP-mediated increase in dural
blood flow [22, 24, 49] and activation of second order neu-
rons in the TNC [33], and these mechanisms could be in-
volved in the initiation of migraine attacks. Because
activation of the trigeminal nucleus is essential during the
pain phase of a migraine attack, we decided to study the
effect of TRPV1 antagonism in this anatomical region.
While we cannot exclude the possibility that the TRPV1
antagonists used in this study also acted on sites other
than the TNC, our c-fos data point to an efficacy of the
two compounds in that particular area. This is in good
agreement with previous data, showing that functional an-
tagonism at the TRPV1 receptor may modulate neuro-
transmission in the TNC [50].
Research on the importance of the TRPV1 channel in

the pathophysiology of migraine is, however, inconclu-
sive. A growing body of evidence seems to support a role
of TRP channels in general and TRPV1 in particular in
the pathomechanisms of headaches [16, 51]. A recent
study investigating single nucleotide polymorphisms
among the Spanish population identified the TRPV1 and
TRPV3 genes as likely candidates for contributing to an
increased genetic susceptibility to migraine [17]. The
well-known migraine trigger ethanol has been shown to
induce neurogenic vasodilation via a TRPV1-mediated
release of CGRP [24]. Furthermore, TRPV1 channels in
the TNC or in dissociated trigeminal neurons were
shown to be inhibited by the common migraine drug su-
matriptan [26]. This is in line with the findings in this
study that show reduced trigeminal activation upon
block of TRPV1 channels. Confirming these observa-
tions, electrophysiological in vivo studies have shown
that a direct inhibition of the TRPV1 channel using the
TRPV1 antagonist SB-705498, as well as the functional
antagonism using the TRPV1 agonist olvanil, which in-
duces a long-lasting neuronal desensitization, suppress
neuronal activity in the trigeminocervical complex fol-
lowing nociceptive dural stimulation [27, 50]. A recent
study showed that CGRP increases TRPV1 expression in
the trigeminal nociceptive system [18]. This is strength-
ened by the observation that CGRP levels in jugular vein
blood of human patients are elevated during migraine



Table 1 Pharmacological selectivity of JNJ compounds

JNJ-38893777 JNJ-17203212

pIC50 (capsaicin) 8.08 7.19

pIC50 (low pH) 8.13 7.8

pKi (hTRPV1) 8.0 7.3

Activity against related TRP channelsa no activity (pIC50 < 5) weak activity against cTRPM8 (pIC50 < 6)

Activity against non-related channels or receptors weak activity against: no activity

human Cholecystokinin 1 receptor (pKi 6.1)

human Adenosine 3 receptor (pKi 6.2)

rat cerebral cortex sodium channel (pKi 6.1)

pIC50 values were determined using the recombinant hTRPV1 in a Ca2+ influx in vitro assay (FLIPR) [58]. pKi values were determined by radioligand binding to a
broad panel of receptors, channels and transporters at CEREP (Paris, France) [43]
aActivity was tested against the following related TRP channels: rTRPV2, hTRPV4, hTRPA1, cTRPM8
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attacks [52]. Taken together, these findings emphasize
the importance of the interplay of TRPV1 and CGRP in
migraine-related processes. However, the interpretation
of these findings is still controversial as conflicting data
exists. In this context, electrophysiological studies using
another TRPV1 antagonist, A-993610, failed to show al-
leviating effects in different animal models of migraine
[29]. The authors measured trigeminal firing, induced by
electrical stimulation of the middle meningeal artery,
neurogenic dural vasodilation and mechanically induced
cortical spreading depression. The failure of A-993610
to be effective is in contrast to the results of this study.
We used two different models of trigeminal activation
and two completely different TRPV1 antagonists, both
of which showed significant effects. The published IC50

value for A-993610 [53] seems to lie in a similar range
compared to the two compounds used here. However,
no further information on pharmacokinetics or bioavail-
ability for this particular compound could be found. In
light of the promising data reported here, it seems that
it might be warranted to test the two compounds de-
scribed here in an experimental paradigm similar to that
described by Summ et al. [29] as well as in further clin-
ical studies.
A major problem with the clinical use of early devel-

oped TRPV1 antagonists was a significant hyperthermia,
which in several human patients lasted for several days
and could exceed 40 °C [54, 55]. However, more recently
developed antagonists have been shown to avoid this se-
vere side effect [56]. Nevertheless, the use of TRPV1 an-
tagonists for the treatment of acute headache or
migraine is controversial. The promising TRPV1 antag-
onist SB-705498 was shown to be effective in preventing
and reversing sensitization of responses to electrical
stimulation, induced by topical application of IS onto
the dura mater of cats [27]. Conflicting results were,
however, obtained in human patients. A clinical trial
using this compound to treat acute migraine has been
terminated early due to a lack of efficacy [28]. SB-
705498 had previously failed in reducing capsaicin-
evoked hyperalgesia and had only minimal effects on
capsaicin-induced flare [57], and it is not clear if the
properties of this compound are representative of all
TRPV1 antagonists. Direct comparison revealed an
overall higher TRPV1 affinity of the compounds used
in this study compared to SB-705498. Both JNJ com-
pounds have higher pKi and in some paradigms higher
pIC50 values [43]. JNJ-17203212 also displays a longer
half-life of 7.4 h [58] compared to 3.1 h for SB-705498
[59]. Furthermore, oral bioavailability exceeds that of
SB-705498 by 14 %. JNJ-38893777 was recently shown
in a human study to be well tolerated without causing
serious adverse events and to be suitable for further
clinical development [60]. Taken together, these find-
ings might suggest that the compound SB-705498 and
the dosage used in the previous clinical trial were not
optimal. Additional clinical studies with other TRPV1
antagonists should therefore be conducted before de-
finitive conclusions on the role of TRPV1 in migraine
can be drawn.

Conclusion
Our results describe two TRPV1 antagonists that are ef-
fective in two in vivo models of migraine. We have
shown that block of the TRPV1 receptor can be effective
in inhibiting trigeminal activation, as seen by the reduced
expression of c-fos in the TNC. While for JNJ-38893777
the effects were not as clear as for JNJ-17203212, both
antagonists still seem to be promising candidates for add-
itional studies to further characterize their efficacy using
different animal models of migraine pain. Based on our
findings, we conclude that TRPV1 may play a role in the
pathophysiological mechanisms, which are relevant to
migraine.
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