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Neutrophils are the most numerous immune cells. Their importance as the first line of 
defense against bacterial and fungal pathogens is well described. In contrast, the role of 
neutrophils in controlling viral infections is less clear. Bacterial and fungal pathogens can 
stimulate neutrophils extracellular traps (NETs) in a process called NETosis. Although 
NETosis has previously been described as a special form of programmed cell death, 
there are forms of NET production that do not end with the demise of neutrophils. 
As an end result of NETosis, genomic DNA complexed with microbicidal proteins is 
expelled from neutrophils. These structures can kill pathogens or at least prevent their 
local spread within host tissue. On the other hand, disproportionate NET formation 
can cause local or systemic damage. Only recently, it was recognized that viruses can 
also induce NETosis. In this review, we discuss the mechanisms by which NETs are 
produced in the context of viral infection and how this may contribute to both antiviral 
immunity and immunopathology. Finally, we shed light on viral immune evasion mech-
anisms targeting NETs.
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inTRODUCTiOn

As the first line of defense against invading pathogens, neutrophils have a broad arsenal of antimi-
crobial functions (1). For example, activated neutrophils release granules containing antimicrobial 
molecules and produce reactive oxygen species (ROS) by oxidative burst. An alternative antimicro-
bial function of neutrophils is based on a special type of programmed cell death called NETosis that 
is distinct from apoptosis and necrosis (2, 3). During NETosis, the nuclei of neutrophils lose their 
characteristic shape, and chromatin decondensation takes place (4). Subsequently, the membranes of 
the nucleus and the granules disintegrate, allowing the mixing of their content. Finally, neutrophils 
release neutrophil extracellular traps (NETs). NETs are net-like structures that are composed of 
chromatin and endowed with granule proteins. They bind to, entrap, and often kill certain pathogens. 
NETs are released particularly in response to large microbial structures that cannot be easily phago-
cytosed such as Candida albicans hyphae and Mycobacterium bovis aggregates (5).

Classical NETosis requires the generation of ROS by NADPH oxidase. However, mitochondrial 
ROS production in the absence of a functional NADPH oxidase is sufficient to trigger NETosis 
(6). Moreover, a very rapid and ROS-independent form of NETosis is triggered by Staphylococcus 
aureus (7). Thus, depending on the stimulus NADPH is not always required for NET formation (8). 
Similar to necrosis and apoptosis, there are different forms of NETosis (9, 10). For example, it has 
been observed that NET formation can occur without concomitant neutrophil death (7, 11–14). The 
physiological and pathological meanings of these different NETosis forms still have to be elucidated.
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FiGURe 1 | induction, antiviral effect, and viral evasion of neTs. (1) 
Formation of NETs is induced directly by virions (red) through PRRs (blue) 
expressed by neutrophils on the surface (TLR4, β2 integrins) or in endosomes 
(TLR7, 8) or indirectly by proinflammatory mediators (e.g., IL-8), which are 
released from virus-infected cells (orange). In addition, viral activation of the 
platelet/neutrophil axis can trigger NETosis (green). As a consequence, 
granules fuse with the nucleus, which subsequently loses its characteristic 
lobulated shape and ruptures. Finally, neutrophils rupture releasing sticky 
strings of NETs. (2) NETs have antiviral effects by immobilizing or inactivating 
free virions, thereby preventing viral spread. NETs also potentiate the release 
of type I interferon by pDC (not shown), thus increasing the resistance of local 
cells to further infection. (3) Digestion of the DNA backbone by DNases 
releases trapped virions. These virions, if not already inactivated, opsonized, 
or degraded, can attempt to infect further cells. Moreover, viruses can 
interfere with NETosis by inducing cellular IL-10 or by expressing viral IL-10 
homologs (not shown).

2

Schönrich and Raftery Virus-Induced NETosis

Frontiers in Immunology | www.frontiersin.org September 2016 | Volume 7 | Article 366

Only recently, it was recognized that NETs are also generated 
during viral infection (15–17). Evidence is accumulating that 
neutrophils play a role in antiviral immune responses (18). These 
virus-induced NETs can both control the virus and damage the 
host (19). In this review, we focus our attention on the physiologi-
cal and pathological relevance of virus-induced NETosis.

viRAL neT inDUCTiOn

Many viruses stimulate neutrophils in vitro directly to produce 
NETs at low levels (20). Some of these viruses can be detected 
inside neutrophils, but there is no direct evidence that they 
establish productive infection in this cell type (20–23). This 
suggests that pattern recognition receptors (PRRs) expressed on 
the surface or in endosomes of neutrophils play an essential role 
in NETosis (Figure  1). For example, neutrophils sense HIV-1 
by endosomal PRRs that detect viral nucleic acids, i.e., toll-like 
receptor (TLR) 7 and TLR8, and subsequently undergo NETosis 
(17). The fusion protein of respiratory syncytial virus (RSV) 
induces NETosis through TLR4 (24). NET formation induced by 
hantaviruses is mediated by signaling through β2 integrins (20). 

Influenza virus A can also stimulate neutrophils directly to release 
NETs; however, the molecules involved have not been defined 
(25). Surprisingly, influenza A virus-induced NETs do not protect 
against secondary bacterial infection (26). Thus, virus-induced 
NETs differ structurally and functionally from those generated 
during bacterial infection. In line with this view, the protein con-
tent of NETs depends on the type of NET-inducing stimulus (27).

In the context of viral infection, neutrophils can switch on 
antiviral effector programs other than NETosis, such as release of 
antiviral agents or phagocytosis, and can even become apoptotic 
(18). At the moment, it is unclear how neutrophils decide between 
these different responses. Possibly, not a single PRR but rather as-
yet undefined combinations of neutrophilic PRRs determine the 
antiviral mode of action of neutrophils. Moreover, only a proportion 
of cells undergo NETosis, suggesting that only a special neutrophil 
subtype or maturation stage is susceptible to NETosis induction (4).

Viruses also induce NETosis indirectly without engaging 
PRRs expressed by neutrophils (Figure  1). The inflammatory 
milieu created by virus-infected endothelial and epithelial cells 
contains cytokines and chemokines such as interleukin-8 (IL-8) 
that trigger NETosis (3, 28, 29). In addition, type I interferon 
(IFN) is produced in large amounts during viral infections and 
primes neutrophils for NET formation (30). There is also evi-
dence that platelets play an important role in antiviral defense 
(31). Platelet activation is frequently observed during viral infec-
tions. For example, single-stranded RNA viruses from the family 
Picornaviridae activate platelets through TLR7. This is important 
for reducing viral titers and increasing the survival of the host (32, 
33). Activated platelets form aggregates with neutrophils and in 
this process stimulate NETosis (34) (Figure 1). On the molecular 
level, this NET-inducing aggregation has been attributed to sur-
face molecules: CD41 on activated platelets interacts with CD11b, 
a β2 integrin, on neutrophils. Other infection models have also 
shown that platelet–neutrophil interactions through β2 integrins 
induce NET formation (11, 35, 36). Massive activation of the 
platelet/neutrophil axis and subsequent NET-based clearance 
mechanisms may represent an emergency strategy of the host 
in the face of systemically multiplying viruses. This reaction is 
followed by a drop in platelet counts, which is observed in many 
viral infections, e.g., viral hemorrhagic fever (VHF) caused by 
hantaviruses (37, 38). In fact, the degree of platelet loss correlates 
with the severity of virus-induced disease and determines the 
clinical outcome (39–41).

AnTiviRAL ACTiviTY OF neTs

Although virus induction of NET formation is now well estab-
lished, it is less clear how NETs contribute to antiviral immunity. 
In a mouse model of poxvirus infection, induction of NETs 
with LPS prior to infection strongly reduced the number of 
virus-infected liver cells and this protective effect was reversed 
by DNase treatment (34). There are direct mechanisms by which 
NETs develop antiviral activity (Figure 1). First of all, the web-like 
chromatin backbone of NETs can bind to and immobilize viral 
particles, in part by electrostatic attraction, thereby mechani-
cally preventing virus spreading (17). Histones are enriched 
in positively charged amino acids and can attach to negatively 
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charged viral envelope. For example, the core histones H3 and 
H4 induce aggregation of seasonal influenza A particles and may 
inactivate HIV-1 (17, 42). Intriguingly, extracellular histones also 
reduce HIV-1 transcription (43). Finally, histone H1 binds to 
noroviruses, the most common cause of viral gastroenteritis and 
prevents their attachment to intestinal cells (44). Second, attached 
to the chromatin backbone of NETs are antimicrobial molecules 
such as myeloperoxidase (MPO), cathelicidins, and α-defensin. 
They have a proven antiviral activity against both enveloped and 
non-enveloped viruses and can inactivate viral particles (45).

NETs components also indirectly contribute to antiviral 
immunity by stimulating antiviral effector mechanisms executed 
by other immune cells. For example, histones and high mobility 
group box-1 (HMGB1) proteins act as danger-associated molecu-
lar patterns (DAMPs) that trigger release of proinflammatory 
cytokines and chemokines by other immune cells (46). This 
process is self-limiting as under high neutrophil densities NETs 
build aggregates that in turn degrade cytokines and chemokines 
(47). NETs also activate plasmacytoid dendritic cells (pDCs) 
through TLRs (48–50). pDCs have a key function in antiviral 
immunity by releasing high amounts of type I IFN (51). In fact, 
NETs can be enriched in oxidized mitochondrial DNA which 
is very efficient in inducing a type I IFN response (52). Finally, 
NETs could increase antiviral adaptive immunity by reducing the 
activation threshold of T lymphocytes (53).

viRAL neT evASiOn

Viruses are known for their extraordinary capacity to evade 
immune control mechanisms. There are also viral mechanisms 
that counteract NET formation (Figure 1). For example, HIV-1 
envelope glycoprotein stimulates DCs to produce cellular IL-10 
through DC-SIGN (17). IL-10 is an immunosuppressive cytokine 
that also inhibits TLR-induced ROS production (54). It is quite 
often produced in the context of viral infections suggesting that 
more viruses exploit IL-10 as a means of NET evasion (55, 56). 
In the genome of several large DNA viruses IL-10, homologs 
have been found including ubiquitous human pathogens such 
as human cytomegalovirus (HCMV) and Epstein–Barr virus 
(EBV) (57, 58). As these virus-encoded IL-10 molecules shape 
the function and cell death of immune cells, they may also 
modulate NETosis similar to cellular IL-10 (59, 60). Dengue 
virus (DENV) serotype-2 can arrest NET formation at a ROS-
independent late stage by interfering with glucose uptake (61, 62). 
Finally, latency-associated nuclear antigen 1 encoded by Kaposi’s 
sarcoma-associated herpesvirus (KSHV) impairs expression of 
NET-stimulating cellular IL-8 (63).

Some bacteria, such as streptococci, express DNase to degrade 
NETs (64–66). Herpesviruses also encode proteins that have 
DNAse activity. These viral molecules process and package the 
replicated viral genome into the capsid (67). If released from 
virus-infected cells, they could degrade NETs, thereby remobiliz-
ing NET-entrapped virions.

Taken together, virus-induced NETs help to control viral dis-
semination by several direct and indirect mechanisms, whereas at 
the same time viral evasion mechanisms target NET formation to 
minimize the antiviral NET effect and immunopathology.

ROLe OF neTs in viRAL PATHOGeneSiS

As for all effective immune responses against pathogens, NETosis 
may also result in immunopathology. Unbalanced NET forma-
tion is associated with pathological conditions such as respiratory 
distress, autoimmune disease, and thrombosis (68). NETs are 
directly cytotoxic to epithelial and endothelial cells (69, 70) as 
well as hepatocytes (71). They contain several components such 
as histones that are antimicrobial but at the same time can cause 
tissue damage and other pathological abnormalities including 
thrombosis (72). Moreover, NETs can occlude secretory ducts 
or small airways, thereby driving inflammation (73, 74). Other 
components of NETs such as HMGB1 may also play a detrimental 
role in virus-associated disease (75).

There is evidence supporting the concept that local NET 
deposits contribute to viral immunopathology. NETs have been 
detected in bronchoalveolar lavage fluid from children with severe 
RSV infection of the lower respiratory tract (76). Dense plugs 
occluding the small airways in RSV-infected calves contain NETs 
(76). Moreover, in a mouse model of influenza pneumonia, NET 
formation was observed in areas of alveolar-capillary damage in 
the lung (16). On the other hand, mice deficient in peptidylargi-
nine deiminase 4 (PAD4) were as efficient in controlling influenza 
virus and showed similar survival as wild-type mice (77). This 
result suggests that NETs do not play an important role in indi-
vidual antiviral immunity and virus-induced pathology because 
PAD4 deiminates histone H3 and H4 and is required for NET 
formation. The different outcomes of these studies may be due 
to different virus and mouse strains used. In line with this view, 
neutrophils from different mouse strains undergo NETosis with 
different efficiency (78). Furthermore, the influence of NETs on 
viral dissemination was not addressed in these studies. If virus-
induced NET deposits represent an important pathogenic factor 
treatments that alleviate NET-induced pathological manifesta-
tions such as DNase should ease symptoms of virus-associated 
disease (79). Clinical or radiological improvement after DNase 
treatment of infants with virus-associated bronchiolitis was 
observed in some clinical trials (80, 81) but not in others (82). 
Thus, further studies have to elucidate the precise pathogenic 
role of virus-induced NET deposits in the lung and explore the 
efficiency of anti-NET treatment.

NETs start to circulate in detectable amounts in the serum 
if the NET degradation and clearance machinery of the host is 
overwhelmed. This systemic NET overflow has severe direct and 
indirect adverse effects. First, NETs can damage directly endothe-
lial cells lining the interior face of the blood vessels cells (69, 70). 
Second, NET overflow drives autodestructive processes as com-
ponents of NETs act as neo self-antigens and induce autoantibod-
ies. In fact, a number of molecules that have been identified as 
important targets in autoimmune diseases (e.g., dsDNA, histones, 
MPO, vimentin, and enolase) are actually NET components. 
Accordingly, NETs have been connected to systemic pathology 
associated with disease entities such as small vessel-vasculitis, 
systemic lupus erythematosus (SLE), disseminated intravascular 
coagulation, rheumatoid arthritis, and preeclampsia (83, 84).

Systemic NET overflow may result from clearance defi-
ciency or increased NET production. For example, sera from a 
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FiGURe 2 | Systemic pathology driven by virus-induced neT 
formation. Virus-induced NETs may start to circulate and become systemic 
under certain circumstances. First, systemic infection with viruses that have a 
strong NET-stimulatory capacity, such as hantaviruses, may overwhelm intact 
NET-degrading function of DNAses (20). Second, persistent viruses with low 
NET-inducing capacity, such as herpesviruses, may produce systemic NET 
excess if DNAse activity is compromised. As a result of NET overflow, 
self-reactive memory B cells are stimulated to release autoantibodies after 
binding and internalizing NET components through their B cell receptor (91). 
NETs are enriched in oxidized mitochondrial DNA inducing a strong 
inflammatory response (52). NETs stimulate pDCs to release type I IFN that 
adds momentum to the vicious cycle by further activating and expanding 
autoreactive B cells (48–50). Immune complexes are formed which not only 
cause systemic pathology as observed in several disease entities such as 
SLE but also promote the autoimmune process by driving a positive 
feedback loop.

4

Schönrich and Raftery Virus-Induced NETosis

Frontiers in Immunology | www.frontiersin.org September 2016 | Volume 7 | Article 366

subpopulation of SLE patients show decreased DNase I activity 
and NET degradation (85, 86). Another enzyme that could 
prevent systemic NET overflow is DNASE1L3. It is released by 
DCs and macrophages and digests microparticle-associated 
chromatin, thereby preventing SLE (87). In those individuals 
who are deficient in NET-degrading enzymes even viruses with 
a relatively weak NETs-stimulatory capacity could drive NET-
associated systemic pathology (Figure 2). NET formation repre-
sents a plausible link between viruses and systemic autoimmune 
disease. Supporting this idea, viral infections are associated with 
transient autoantibody production and are known to mimic SLE, 
induce SLE onset, or trigger lupus flares (88–90).

Transient systemic NET overflow due to increased NET for-
mation without noticeable deficiency in DNase activity can occur 
during infection with hantaviruses (20) (Figure 2). Neutrophils 
play an antiviral role during VHF caused by hantaviruses (92–94). 
These zoonotic pathogens belong to the family Bunyaviridae and 
infect humans after transmission via inhalation of aerosolized 
urine, saliva, and feces from chronically infected rodents, their 
natural hosts. In humans, they can induce severe pulmonary and 
renal dysfunction as well as intravascular coagulation and hemor-
rhagic shock (95). Hantaviruses replicate in endothelial cells, their 
main target cells, without causing programed cell death in vitro. 
This suggests that immunopathological mechanisms such as those 
driven by NETs contribute to Hantavirus-associated pathogenesis 

(94, 96). In hantavirus-infected patients, high levels of circulat-
ing NETs are detected (20). In accordance, increased amounts of 
cell-free DNA (97) and histones (98) are found in the circulation 
of hantavirus-infected individuals. The cytotoxic effects of NETs 
may significantly contribute to hantavirus-associated pathology. 
In line with this view, histones have been shown to increase 
thrombin generation and intravascular coagulation (99, 100). 
They also upregulate the permeability of the endothelial barrier 
(101). Finally, NETs can induce the formation of autoantibodies 
that may contribute to the systemic pathology observed during 
hantavirus-associated disease (20).

Another form of VHF is caused by DENV. DENV is transmit-
ted between humans by Aedes mosquitoes and poses a threat to 
roughly two billion people (102). There is no evidence as yet for 
a strong direct NET-stimulatory effect of DENV particles in vitro 
(61). Nevertheless, in vivo DENV-infected cells could stimulate 
NETosis indirectly by secreting the viral non-structural protein 1 
(NS1). NS1 activates uninfected cells including endothelial cells 
via TLR4 (103, 104). Subsequently, activated endothelial cells 
could drive neutrophils into NETosis (69, 79). Moreover, NS1 
could activate platelets via TLR4 which in turn stimulate neu-
trophils to undergo NETosis (105). Finally, IL-8 is produced by 
human endothelial cells in response to DENV (29) and is known 
to drive NETosis (3). In accordance, high levels of IL-8 and 
elastase, a key component of NETs, are found in DENV patients 
and correlate with disease severity (106).

These pathological effects explain why NET formation as part 
of an antiviral defense strategy is a double-edged sword. The host 
may benefit from NETs deposited precisely in the area of infec-
tion, thereby immobilizing or even neutralizing virus and killing 
virus-infected cells. This benefit may turn into disaster if NET 
formation is too widespread creating NET deposits in healthy 
tissue. As a consequence, too many uninfected host cells in the 
neighborhood of the infected areal may come under “friendly 
fire” resulting in considerable collateral tissue damage. Local 
NET-associated pathology may become systemic, if the NET 
degradation machinery (DNase activity) is impaired, or if the 
viral NET-stimulatory capacity is too strong. Such an unbalanced 
NET formation results in NET overflow. Under this condition, 
autoimmune phenomena are triggered that could result in sys-
temic pathology (Figure 2).

COnCLUDinG ReMARKS

It is now evident that most pathogens, including viruses, can 
stimulate neutrophils to undergo NETosis. Although much 
smaller than bacteria, fungi, or parasites, viral particles do not 
seem to slip through NETs but rather become immobilized. 
Whether these viral particles are inactivated as well is a moot 
point, as long as they are ensnared by NETs, they represent no 
threat. However, an increasing number of studies indicate that 
a disproportionate virus-induced NET release can contribute 
to damage, locally as well as systemically. It will be important 
to explore the mechanisms that control NET formation in the 
context of viral infections. On the basis of this knowledge, it could 
be possible to prevent NET-assisted control of viruses becoming 
a Pyrrhic victory.
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