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Kernel Density Estimation for Heaped Data

Marcus Groß, Ulrich Rendtel ∗

Abstract

In self-reported data usually a phenomenon called ‘heaping’ occurs, i.e. survey partici-

pants round the values of their income, weight or height to some degree. Additionally,

respondents may be more prone to round off or up due to social desirability. By ig-

noring the heaping process a severe bias in terms of spikes and bumps is introduced

when applying kernel density methods naively to the rounded data. A generalized

Stochastic Expectation Maximization (SEM) approach accounting for heaping with

potentially asymmetric rounding behaviour in univariate kernel density estimation is

presented in this work. The introduced methods are applied to survey data of the

German Socio-Economic Panel and exhibit very good performance simulations.

Keywords: Heaping, Survey Data, Measurement error, Self-reported data, Kernel density

estimation, Rounded data

Word count: 5310

1. INTRODUCTION

In survey data the researcher often encounters rounded values when the participants are

asked to state metric variables such as income (Hanisch 2007; Czajka and Denmead 2008),

household expenditures (Pudney 2008), body weight and height (Taylor et al. 2006), blood

pressure (De Lusignan et al. 2004) or working hours (Otterbach and Sousa-Poza 2010). The

rounding behaviour of self reported data is usually mixed, i.e. participants may round to

multiples of 1, 2, 5, 10, 20, 50, 100.. or may report only two leading digits (Hanisch 2007) .

This type of measurement error –when data are collected with various degrees of courseness–

is called heaping. Heaping cannot be ignored because it is a well known fact (Heitjan and

Rubin 1991; Schneeweiß and Komlos 2009), that if we naively use the self-reported values in
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the estimation of a distribution, the estimates are biased. This is especially the case in (non-

parametric) kernel density estimation where we observe bumps und spikes at the multiples

of the rounding values. The standard methods of choosing the bandwidth are also not very

useful in this setting. The Sheather-Jones estimate (Sheather and Jones 1991), which is

mostly recommended in literature, produces often completely useless density estimates in

self reported data. This is because a pilot estimate of the integral of the second derivative is

employed to estimate the bandwidth. Due to the extremely multimodal nature of the heaped

data, this plug-in estimate of the integrated second derivative is very large leading to very

small bandwidths. Silverman’s rule of thumb shows a better behaviour because it implicitly

assumes a normal distribution for bandwidth selection but still gives not very satisfying

results. Figure 1 shows two examples from a household survey, the German SocioEconomic

Panel –‘SOEP’– (Wagner et al. 2007) wave BC (2012): body weight of the female participants

and monthly food and drink expenditures outside home.
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Figure 1: Kernel density estimator applied to self-reported female weight (left) and food
and drink expenditures (right) taken from the Socio-Economic Panel 2012. The two popular
bandwidth selectors (’Sheater-Jones’ and Silverman’s ’rule of thumb’) show more or less
severe spikes at the multiples of the rounding values.

Increasing the bandwidth thus far that the density estimate is sufficiently smooth leads

to oversmoothing: the tails of the distribution get too heavy and important features of the

distribution may be lost. Additionally, participants may be more prone to round up or down

due to social desirability. For self-reported weight measurements with validation data, for

example, respondents typically underreport their weight which can be (partially) explained

by their tendency to round off (Rowland 1990; Shields et al. 2008; Merrill and Richardson

2009). This work proposes a non-parametric density estimation of self-reported measures in

the presence of heaping. The primary goal of this work is to provide a method that reduces
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the bias in kernel density estimation and estimates the parameters of the heaping process as

well. To the authors best knowledge, this is the first general attempt for this type of problem.

A measurement error model is employed to solve it. The model is initially formulated within a

Bayesian framework whereby the resulting Gibbs-sampler was modified to a partly Bayesian

Stochastic Expectation Maximization (SEM, Celeux et al. 1996) algorithm. Additionally,

we show that under certain assumptions it is possible to identify and estimate a rounding

direction bias (unequal probability of rounding up and down).

The paper is organized as follows: Section 2.1 provides a literature overview on existing

modeling approaches for heaped data. In Section 2.2 introduces a model for the rounding

process respectively heaping. After a short introduction to kernel density estimation the

measurement error model and it’s computational implementation is presented in Section 3.

Section 4 provides a simulation study and Section 5 demonstrates an application to self-

reported data from the SOEP. A summary with an outlook concludes the article.

2. MODELING HEAPING IN SELF-REPORTED DATA

2.1 Heaping models in applications

Heaping occurs frequently in a variety of applications in quite different fields. Heitjan and

Rubin (1990) modeled the heaping process as rounding with different interval length and

used a complex imputation model in estimating the age of Tanzanian children. A similar

approch was followed by Battistin et al. (2003) in household food expenditures. Wang and

Heitjan (2008) proposed a model for heaped cigerate counts. A recent work of Crawford

et al. (2014) formulated a general model for count data involving birth-death processes and

applied this to the self-reported counts of the number of sex-partners. In addition, Bar and

Lillard (2012) lately developed an approach for event time data by modeling the density

by a mixture of two parametric distributions. However, in a very recent publication of

the DIW (German Institute for Economic Research) dealing with self-reported data from

the SOEP (Marcus et al. 2013), a modeling of the heaping process was discarded and a

parametric density was naively (without any correction for the rounding process) applied

to the reported data. This procedure was justified because of the more or less arbitrary

assumptions on the heaping process the researcher has to rely on. The authors disagree with

this assessment, because although we might not be able to reproduce the heaping pattern

perfectly by the heaping model assumptions, the bias in the parameter estimates may be

greatly reduced. Little work has been done in the context of heaping in non-parametric

density estimation. One work of Camarda et al. (2008) deals with estimating age-at-death

as well as body weight by assuming a smooth underlying density function modeled by B-
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splines. However, it was assumed that the true unobserved value was the reported value

itself or one of the two immediate neighbouring integers, which is clearly not suitable for

other data such as monthly income. The method proposed in this article pursues a more

general strategy applicable to a much wider variety of data.

2.2 A model for heaping

For this article the heaping process is modeled as follows: At first one has to assign rounding

parameters r appropriate for the data. When looking at the SOEP female body weight

example, for example, we observe that the most frequent end digit was 0 with 24.6% of the

reported cases followed by 5 with 17.4%. Moreover, the respondents seem to prefer even

over odd numbers. The end digits 2,4,6,8 are reported in 33.4% of the total cases while the

end digits 1,3,7,9 only sum up to 24.5% (see Table 1 for details).

end digit 0 1 2 3 4 5 6 7 8 9

count 2990 569 1184 1006 883 2123 776 717 1229 691
% 24.6 4.7 9.7 8.3 7.3 17.4 6.4 5.9 10.1 5.7

Table 1: End digits of SOEP female body weight in kg.

Therefore, we may choose the rounding values r = (1, 2, 5, 10). In general, suitable

potential rounding parameters are r = (.., 0.5, 1, 2, 5, 10, 20, ..) for variables with decimal

numeral system (e.g. blood pressure, body weight,..), r = (1, 2, 3, 6, 12) for variables with

duodecimal system (e.g. time in months, length in inches,..) and r = (1, 5, 10, 15, 30, 60)

for the sexagesimal system (e.g. time in minutes). A probability vector p = (p1, .., pm) is

assigned to the rounding values r denoting the probability of the respondent to report a

value Wi (i = 1, .., n) which is rounded by a value Ri ∈ {r1, r2, .., rm}. For the moment p is

assumed equal for all respondents and independent from the true, unobserved value Xi. This

is a key assumption which is not always met and will be relaxed later. We then assume that

the rounding is done correctly such that Xi lies within the interval (Wi−1/2Ri,Wi +1/2Ri).

As Ri is not uniform over the individuals, we have a heteroscedastic measurement error here.

The model for the heaping process described above may not fit very well to all kinds

of data. Thus, we consider two extensions. As already mentioned the respondents may

more likely round down than round up or vice versa. A first suggestion is to define a

parameter a ∈ (0, 1) allocating the probability of rounding down. However, when imposing

the restriction Xi ∈ (Wi − 1/2Ri,Wi + 1/2Ri) (rounding mathematically correct) it is not

possible to choose the rounding direction independently from Ri and Xi. Consider the true

value Xi = 77.8, rounding values r = (1, 10) and assume mathematically correct rounding
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behaviour the respondent has to round up in any case regardless of his chosen rounding

value Ri. We therefore introduce an alternative concept. We extend Ri such that it includes

the rounding direction: Ri ∈ {−r1, ..,−rm,+r1, ..,+rm} whereby negative values indicate

a rounding up and positive values a rounding down. The rounding probabilities p are

multiplied by a when rounding down (Ri > 0) and by (1 − a) when rounding up (Ri < 0)

if the combination of Ri and Xi is compliant with the assumption of correct rounding (i.e.

Xi ∈ (Wi,Wi + 1/2Ri) for Ri > 0 and Xi ∈ (Wi + 1/2Ri,Wi) for Ri < 0) and are set to 0

else. They are scaled afterwards such that the probabilities for all Ri sum up to 1. We give

two numerical examples how the conditional probability distribution π(Ri|Xi,p, a) denoted

as π(Ri|·) is modeled:

• First, consider r = (1, 10), p = (0.4, 0.6) and a = 0.8. The respondent’s true value

is X = 12.6. Note that Wi = 12 and Wi = 20 are not compatible with mathematical

rounding. Possible reported values are Wi = 13 (rounding up by Ri = 1) and Wi = 10

(rounding down by Ri = 10). It follows that (π(Ri = −1|·), π(Ri = −10|·), π(Ri =

1|·), π(Ri = 10|·)) ∝ ((1 − 0.8) · 0.4, 0, 0, 0.8 · 0.6) = (0.08, 0, 0, 0.48). Consequently,

P (Wi = 13|·) = 1/7 and P (Wi = 10|·) = 6/7.

• A little more complex example would be the following: Let r = (1, 2, 5, 10), p =

(0.4, 0.3, 0.2, 0.1) and a = 0.15. For Xi = 23.4, possible reported values are Wi = 23

(rounding down by Ri = 1), Wi = 24 (rounding up by Ri = 2), Wi = 25 (rounding

up by Ri = 5) and Wi = 20 (rounding down by Ri = 10). The conditional proba-

bilities (π(Ri = −1|·), π(Ri = −2|·), π(Ri = −5|·), π(Ri = −10|·), π(Ri = 1|·), π(Ri =

2|·), π(Ri = 5|·), π(Ri = 10|·)) are proportional to (0, 0.3·(1−0.15), 0.2·(1−0.15), 0, 0.4·
0.15, 0, 0, 0.1 · 0.15) = (0, 0.255, 0.17, 0, 0.06, 0, 0, 0.015). Thus, P (Wi = 23|·) = 0.12,

P (Wi = 24|·) = 0.51, P (Wi = 25|·) = 0.34 and P (Wi = 20|·) = 0.03.

In general, with direction parameter a ∈ (0, 1) the conditional probability distribution of Ri

given Xi, p and a is proportional to the following expression:

π(Ri = ±rj|Xi,p, a) ∝ aI(Ri>0) × (1− a)I(Ri<0) × pI(Ri=−r1)
1 × ..× pI(Ri=+rm)

m

× I(sgn(Xi mod (|Ri|)−
1

2
|Ri|) = −sgn(Ri))

The second line serves as a check whether the combination of Xi and Ri is compatible

with the restriction of mathematically correct rounding.

The value a can be interpreted as the tendency to round off (a > 0.5) or to round up

(a < 0.5). The reason to restrict to mathematically correct rounding is that it allows us
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identify the rounding direction parameter a solely by the end digit pattern. In the simple

example of a flat density, a > 0.5 and rounding values r = (1, 10) one would observe the end

digits 1 to 4 less often than 6 to 9 (or the other way around for a < 0.5). This is because

the respondent is only able to round down by Ri = 10 if Xi mod 10 ∈ (0, 5) and round up by

r = 10 if Xi mod 10 ∈ (5, 10) with the result that for a > 0.5 most reported values Wi with

end digit 0 correspond to a true value Xi with Xi mod 10 ∈ (0, 5). The end digit pattern

gets more complicated for more than two rounding values. In the SOEP female body weight

example however, the left neighbours (9, 4) of end digits 0 and 5; show significant higher

counts (691 to 569 and 883 to 776) than their right counterparts (1, 6) indicating a tendency

to round off.

A second extension allows for non-constant rounding probabilities. For example, the

probability of a respondent with a true income of Xi = 1600 to choose Ri = 1000 (and round

up to Wi = 2000) might be much lower than for someone earning 8600 (and report 9000).

A natural choice would be to implement an ordered probit (or logit) model for the rounding

probabilities p (as already done in Heitjan and Rubin 1990) with the logarithm of the true

value as independent variable:

gi = log(Xi)β + εi , εi ∼ N(0, 1)

g denotes the latent continuous variable and we define τ = (τ0, τ1, .., τm) as threshold

parameters with τ0 = −∞ and τm = +∞. The value pj (j = 1, ..,m) for respondent i is

then defined as:

pij = P (τj−1 < gi ≤ τj)

= Φ(τj − log(Xi)β)− Φ(τj−1 − log(Xi)β)

The rounding probabilities p may also depend on other characteristics of the respondents

and can be introduced in the ordered probit regression formula as well. For a = 0.5 and

β = 0 the extended model reduces to the standard rounding model.

3. METHODS

3.1 Kernel density estimation

Kernel density estimation as a non-parametric approach for density estimation is an impor-

tant tool in exploratory data analysis. Let X = (X1, X2, .., Xn) denote a sample of size n

from a random variable with density f . The univariate kernel density estimate at point x is
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given by:

f̂h(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
, (1)

where K(·) is kernel function and h denotes a bandwidth, which governs the smoothness of

the density estimate. The kernel K(·) satisfies regularity conditions such as (a)
∫
K(x)dx =

1, (b)
∫
xK(x)dx = 0 and (c)

∫
x2K(x)dx < ∞ (Scott 2009). The performance of a kernel

density estimator is mainly affected by the particular choice of h (cf. Izenman 1991). Popular

strategies to choose h are by minimizing the AMISE (Asymptotic Mean Integrated Squared

Error) through plug-in- or cross-validation methods (cf. Izenman 1991 or Silverman 1986).

Sheather (2004) gives a short overview in kernel density estimation, kernels and bandwidth

choice methods. Unfortunately, the utilization of kernel density estimation methods with

heaped data leads to severely biased estimates as already demonstrated in the introduction.

3.2 Model

The Bayesian approach to measurement error problems is to treat the unknown true values

Xi as latent variables respectively parameters to be estimated (Carroll et al. 2010). Then the

Likelihood can be split into two parts. We specify the following models: First, a measurement

error model and second a model which assumes that all (latent) variables are observed. The

distribution of X can be modeled parametrically (e.g. by a Gaussian with θ = (µ, σ)) or

by a non-parametric formulation. In the Bayesian case the latter alternative can be realized

by a mixture of parametric distributions (Escobar and West 1995) or by kernel density

estimation through likelihood cross-validation (Zhang et al. 2006) with θ = h. Together with

a hyperpriors for p and θ, the posterior distribution can be formulated using a hierarchical

model (Carroll et al. 2010).

We start with the heaping (or measurement error) model without extensions:

π(X,R,θ,p|W ) ∝ π(W |X,R)× π(R|p)× π(X|θ)︸ ︷︷ ︸
Likelihood

× π(p)π(θ)︸ ︷︷ ︸
Priors

(2)

L(W |X,R,θ,p) =
n∏

i=1

π(Wi|Xi, Ri)× π(Ri|p)︸ ︷︷ ︸
Measurement error model

× π(X|θ)︸ ︷︷ ︸
Observation model

(3)

The measurement error model consists of two parts. Wi only depends on Xi and Ri and we
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can write it’s distribution as a Dirac distribution:

π(Wi|Xi, Ri) =

1 for Xi ∈ (Wi − 1
2
Ri,Wi + 1

2
Ri)

0 else
,

By definition of our heaping model in Section 2.2, π(Ri|p) follows a multinomial distribu-

tion. In order to implement the two extensions proposed in section 2.2 we have to introduce

the parameters a, τ (as threshold value for p) as well as β into our likelihood respectively

our measurement error model:

L(W |X,R, τ ,θ, a, β) =

 n∏
i=1

π(Wi|Xi, Ri)× π(Ri|Xi, τ , a, β)︸ ︷︷ ︸
Measurement error model

× π(X|θ)︸ ︷︷ ︸
Observation model

(4)

with

π(Wi|Xi, Ri) =


1 for Ri > 0 and Xi ∈ [Wi,Wi + 1

2
Ri)

1 for Ri < 0 and Xi ∈ (Wi − 1
2
Ri,Wi)

0 else

,

and (cf. section 2.2)

π(Ri = ±rj|Xi, τ , a, β) ∝ aI(Ri<0) × (1− a)I(Ri>0)

× (Φ(τ1 − log(Xi)β)− Φ(τ0 − log(Xi)β))I(Ri=−r1)

× ..

× (Φ(τm − log(Xi)β)− Φ(τm−1 − log(Xi)β))I(Ri=+rm)

× I(sgn(Xi mod |Ri| −
1

2
|Ri|) = −sgn(Ri))

After we have specified the measurement error model the distribution of X has to be

specified. As this paper deals with kernel density estimation π(X|θ) is defined by

π(X|h) =
n∏

i=1

f̂h,i(Xi)

, where f̂h,i(Xi) denotes the leave one out kernel density ‘estimator’ (Härdle and Scott 1992;
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Zhang et al. 2006). 1

Now we could place priors on h, a, p or τ , β and simply set up a Gibbs-sampler and

sample alternately from the full conditional posteriors π(Xi, Ri|·), π(p|·) or π(a, τ , β|·) and

π(h|·). While this is completely feasible in theory one may face difficulties when applying

computational intense methods like the likelihood cross-validation approach of Zhang et al.

(2006) to rather large datasets as in our application example. However, thanks to the con-

venient hierarchical structure of our likelihood with the result that π(h|·) does not depend

on W we propose to use a point estimate of h respectively the distribution of X within the

Gibbs-Sampler to circumvent computational issues. As a consequence, the proposed estima-

tor is a partly Bayesian method in the sense that the Xi as well as p, a, β and τ are treated

as random variables but not θ. As already discussed in Groß et al. (2015) this approach is

equal to a generalized Stochastic Expectation Maximization (SEM) algorithm (Celeux et al.

1996). This algorithm is strongly related to the Gibbs-sampler but usually converges much

faster (Diebolt et al. 1994). In the context of non-parametric kernel density estimation, this

approach enables us to use any bandwidth selection method from the rich variety available

in literature and to avoid the computational intense likelihood cross-validation method. As

discussed in the next section, Gibbs-sampler and Metropolis-Hastings steps are introduced

into the S-step of the algorithm (cf. Diebolt et al. 1994).

3.3 Computational details

As argued in the previous subsection, we replace the full conditional distribution of h by the

Sheater-Jones bandwidth selection or Silverman’s rule of thumb and define the distribution

of Xi given h by the kernel density ‘estimator’ defined in equation (1). We first consider the

case without extensions for the joint full conditional distributions of Xi and Ri (given the

rounded values Wi, the rounding parameters p, and bandwidth h):

π (Xi, Ri|Wi, h,p) ∝ I(Wi −
1

2
Ri ≤ Xi ≤ Wi +

1

2
Ri)× pj × f̂h(Xi),

Obviously, the full conditional distribution of Xi, Ri is the product of a uniform distribution

on the interval with length Ri around Wi, the probability pj of rounding to a certain degree

of courseness rj and the kernel density ‘estimator’ f̂h(Xi) (equation 1). The conditional

1Note that the expression ‘kernel density estimator’ is ambiguous here as in this context it should be
merely called ‘kernel density’. However, as we think that a second definition of a kernel density fh which
would be equal to f̂h could be even more confusing we quote the word ‘estimator’ when actually referring to
a ‘kernel density’.
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distribution of p is the Dirichet distribution Dir(α):

π(p|R) ∼ Dir(#(R = r1), . . . ,#(R = rm))

Next we consider the case of the two extensions of the heaping model. We could use

a modified expression for the joint conditional distribution of Xi an Ri but no established

distribution was found for the joint conditional distribution of τ , a and β. A Metropolis-

Hastings step turned out to be computational cumbersome because of very slow convergence

with the result that a Laplace normal approximation of the joint full conditional distribution

π(τ , a∗, β|·) was utilized instead, where the parametrization a∗ = Φ−1(a) was used for the

reason of computational convenience.

As a consequence a generalized SEM algorithm is proposed, sampling from the full con-

ditional distributions of (Xi, Ri) as well as from (an approximation of) the full conditional

distributions of (τ , a, β) in the S-step(which replaces the E-step in the EM-algorithm) and

a convenient point estimate for h as a surrogate of sampling from the full conditional distri-

bution π(h|·) in the M-step. Our simulations show that the proposed algorithm works very

well in terms of MSE and coverage intervals. The steps of the algorithm are described below:

1. Get a pilot estimate of f by setting h to a sufficiently large value such that no rounding

spikes occur (e.g. h = 2 max(r)). Set starting values for τ to Φ−1(0, 1/m, 2/m, . . . ,

(m− 1)/m, 1) and for a∗, β to 0.

2. Evaluate and save density estimate f̂X on an equally-spaced fine grid G with gridwidth

δG = min(r)
k

, whereby 1 < k ∈ N. In particular,

G =
{

min(Wi)− 1
2
rm,min(Wi)− 1

2
rm + δG,min(Wi)− 1

2
rm + 2δG, . . . ,max(Wi) + 1

2
rm
}

;

i = 1, . . . , n.

3. Sample from π(Xi, Ri|·) by computing it for every combination of Ri and valuesXi ∈ G;

i = 1, 2, . . . , n.

4. Sample from π(p|R) in case of the model without extensions or the joint full conditional

π(τ , a∗, β|X,R) using a Laplace normal approximation (model with extensions).

5. Estimate the bandwidth h by Silverman’s rule of thumb (or another bandwidth selec-

tion method) and recompute f̂h.

6. Repeat steps 2-5 B (burn-in iterations) + N (additional iterations) times.
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7. Discard the burn-in samples and get final estimate of f by averaging over the remaining

samples. The samples of the measurement error parameters p or τ , a∗ and β can be

used to compute a point estimate by averaging as well as uncertainty intervals.

3.4 Computational Implementation in R

All computations were performed with R version 3.1.2 (R Core Team 2014). A package called

Kernelheaping (Gross 2015) was made available on CRAN by the authors. It includes the

full functionality as presented in this article and an additional example dataset concerning

the hours per week of learning reported by students (taken from Utts and Heckard 2014).

Kernel density and bandwidth estimation is done via the density function coming with the

default installation of R. For non-negative data the boundary correction method introduced

in Jones (1993) is utilized which is implemented in the evmix package (Scarrott and Hu

2014). For a sample size of n = 5000, 1000 iterations take about half an hour on a modern

computer. The package also provides functions to perform convergence diagnostics and other

convenience functions as well as functions to perform Monte-Carlo simulation studys.

4. SIMULATION STUDY

In this section we present results from a Monte-Carlo simulation study which we performed

to evaluate the performance of the proposed kernel density estimator for heaped data in the

previous section. The properties of the estimator are investigated and it’s performance is

compared to a simple Naive kernel density estimator, which ignores the heaping process.

The data is generated under different univariate distributions. Four scenarios, denoted by

A-D, are considered. The sample size is always n = 1000. Under Scenario A we consider the

heaping model without extensions. The data are generated by using a normal distrution,

XA ∼ N(0, 100),

with rounding values r = (1, 10, 100) and rounding probabilities p = (0.3, 0.4, 0.3).

In Scenario B we introduce a rounding bias with a = 0.8. Following the inspiring example

of a weight distribution, the data are generated by a gamma distribution with shape α and

scale θ with offset:

XB ∼ Ga(α = 4, θ = 8) + 45

The rounding values are r = (1, 2, 5, 10) with corresponding probabilities (which were arbi-

trary chosen) p = (0.1, 0.15, 0.4, 0.35).

11



In the third scenario the data follow a log-normal distribution with unequal rounding

probabilities (β = −1) to model an income-like distribution,

XC ∼ logN(7, 0.6),

with rounding values r = (10, 20, 50, 100, 200, 500, 1000) and threshold values

τ = (−∞, 6.33, 6.66, 7, 7.33, 7.66, 8,∞). These threshold values coincide for rounding prob-

abilities of p = (0.28, 0.12, 0.13, 0.13, 0.11, 0.09, 0.14) or

p = (0.01, 0.02, 0.03, 0.05, 0.08, 0.11, 0.70) for x = 1000 or x = 5000.

A bimodal mixture of two normal distributions is considered in scenario D. With

XD1 ∼ N(40, 4) and XD2 ∼ N(55, 6),

and mixture probabilities 0.4 (XD1) and 0.6 (XD2), an underlying heaping model with

rounding bias a = 0.2 and unequal rounding probabilites (β = −0.5) with threshold val-

ues τ = (−∞, 1.84, 2.64, 3.05,∞) is utilized in this case.

For each scenario we performed nSim = 500 simulation runs with B=100 burn-in iterations

and N=500 additional iterations. We compare the following three estimators:

a) The Naive estimator, which naively applies the kernel density estimator to the heaped

data

b) The Corrected estimator, that uses the algorithm presented in section 3.4 for kernel

density estimation for heaped data

c) The Oracle estimator, that uses the original data (which are only available in simula-

tions) for density estimation.

The Sheather-Jones estimator was used to for bandwidth estimation in each case. Figure

4 shows these three kernel density estimators as well as the true density from which the data

is generated for a single simulation run of each scenario.

While the Naive estimator is very spiky and shows large deviations from the true density

at the heaping points, the proposed Corrected density estimator is very close to the oracle

estimator and represents the true density pretty well. In scenario D, we are able to recover

the bimodal structure of the distribution, whereas with the Naive estimator this feature of

the data gets lost.

Tables 1 shows the RMISE of of the three estimators for each scenario. While the Naive

estimator exhibits a rather poor performance with a RMISE up to more than 10 times as
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Figure 2: Graphical presentation of single simulation runs of scenarios A-D. The plots show
kernel density estimators applied to heaped data (Naive, black solid line), applied to rounded
data with correction algorithm (Corrected, red point-dotted line), applied to original data
(Oracle, blue short-dashed line) and the true density function (True, green long-dotted line)
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high as with the non-feasible Oracle estimator, the Corrected estimator leads to a negligable

loss of some percent in RMISE. This slightly worse performance of the proposed estimator

can be most likely assigned to the information loss induced by rounding.

Scenario RMISE
Naive Corrected Oracle

A 0.0330 (0.0041) 0.0032 (0.0010) 0.0031 (0.0010)
B 0.2046 (0.0076) 0.1271 (0.0024) 0.1269 (0.0023)
C 0.0133 (0.0022) 0.0018 (0.0006) 0.0017 (0.0006)
D 0.2196 (0.0085) 0.0159 (0.0029) 0.0145 (0.0023)

Table 2: Root Mean Integrated Square Error (RMISE) for scenarios A-D for each estimator.
Standard errors are given in parenthesis.

Besides trying to recover the true distribution one might be also interested in estimating

the rounding parameters. We investigate some (frequentist) properties, namely the bias,

standard deviation, Root Mean Square Error (RMSE) and the coverage rate of the 90%

uncertainty intervals, of the estimates computed by the introduced algorithm. The results

are shown in Tables 2-5.

Parameter
p1 p2 p3

True value 0.3 0.4 0.3
Bias -0.0030 0.0018 0.0013
SD 0.0143 0.0168 0.0144
RMSE 0.0147 0.0169 0.0144
Coverage in % 88.6 87.0 93.8

Table 3: Scenario A: Bias, standard deviation, Root Mean Square Error and coverage rate
of 90% uncertainty intervals for rounding parameters

Apparently, the algorithm is able to identify the rounding parameters very well. The

coverage rates of the 90% uncertainty intervals are near to the nominal value as well. One

may note that the threshold values have a rather large standard deviation, but this is due to

the high correlation with β. The resulting rounding probabilities are pretty stable, though.

In general, the algorithm was very stable for the proposed starting values and showed

very good and fast convergence. Depending on the application and heaping model only

B = 5 to B = 50 burnin iterations were sufficient, but one should always consider trace

plots of the MCMC-chains to ensure convergence. Trace plots for an application example

can be found in the next section.
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Parameter
p1 p2 p3 p4 a

True value 0.1 0.15 0.4 0.35 0.8
Bias 0.0012 0.0029 -0.0046 -0.0005 -0.0079
SD 0.0164 0.0188 0.0344 0.0339 0.0501
RMSE 0.0165 0.0191 0.0348 0.0339 0.0507
Coverage in % 89.0 86.2 93.4 91.2 89.2

Table 4: Scenario B: Bias, standard deviation, Root Mean Square Error and coverage rate
of 90% uncertainty intervals for rounding parameters

Parameter
τ1 τ2 τ3 τ4 τ5 τ6 β

True value 6.33 6.66 7 7.33 7.66 8 -1
Bias -0.0493 -0.0327 0.0165 0.0415 0.0410 -0.0307 -0.0353
SD 0.7564 0.8167 0.9243 0.8342 0.5915 0.6281 0.2412
RMSE 0.7580 0.8174 0.9244 0.8352 0.5929 0.6288 0.2431
Coverage in % 87.8 85.6 92.2 94.6 90.4 87.2 88.6

Table 5: Scenario C: Bias, standard deviation, Root Mean Square Error and coverage rate
of 90% uncertainty intervals for rounding parameters

Parameter
τ1 τ2 τ3 a β

True value 1.84 2.64 3.05 0.2 -0.5
Bias -0.0545 -0.0561 0.0562 -0.0059 -0.0093
SD 1.1705 1.1532 1.1601 0.0524 0.1323
RMSE 1.1717 1.1545 1.1615 0.0527 0.1326
Coverage in % 89.0 92.8 87.0 91.4 90.8

Table 6: Scenario D: Bias, standard deviation, Root Mean Square Error and coverage rate
of 90% uncertainty intervals for rounding parameters
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5. APPLICATION

Now we examine the two self-reported data examples of the SOEP 2012 already presented

in the introduction. In our first example we have body weight data of n = 12168 German

women. The sample mean is 67.23 kg and the standard deviation amounts to 12.66 kg.

We expect different probabilities for the rounding values depending on the actual weight. In

particular, when looking at the data 51.7% of the respondents with reported weight above 90

kg report an end-digit of 0 or 5 while this is only the case for 40.3% of the group with reported

weight lower than 90 kg. Additionally, we like to investigate a possible rounding bias.

Therefore, the heaping model with both extensions is utilized. For bandwidth estimation

we used the Sheater-Jones estimate as well as Silverman’s rule of thumb. The algorithm

was executed with B = 500 burn-in samples and N = 2000 additional samples and with

rounding values r = (1, 2, 5, 10). The resulting densities of both the Corrected and the

Naive estimator are shown in Figure 3. Though the algorithm produces a considerably

smoother density estimate as the Naive method, but it is still very wiggly for the Sheather-

Jones bandwidth selector. The authors attribute this to the fact that the imposed heaping

model does not capture the actual heaping process completely. The rule of thumb bandwidth

generates much smoother density estimates. However, the Naive estimator exhibits small

bumps at the multiples of the rounding values compared to the Corrected estimator.
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Figure 3: Kernel density estimation of self-reported female body weight for Naive and
Corrected method for different bandwidth choices

Table 7 states the rounding parameter estimates. The threshold values τ and the slope

parameter of the ordered probit β suggest rounding probabilities of

p = (0.653, 0.099, 0.222, 0.026) for the rounding values r = (1, 2, 5, 10) at the sample mean.

The point estimate of the rounding bias a is 0.76 which means –as one could expect– that the
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survey respondents are much more likely to round off than to round up. As a consequence,

the mean of the imputed weights Xi is more than 200 g higher now (67.45 kg). The lower

border of the 95% uncertainty interval for a is considerably above 0.5. However, to further

approve this result we ran the algorithm on a different survey data sample on weight, namely

the German General Social Survey 2008 (‘ALLBUS’, Wasmer et al. 2007). In this survey

n = 1451 women reported their body weight and the rounding bias was estimated to a =

0.694 (with 95% uncertainty interval [0.503,0.853]), which is very similar to the estimate on

the SOEP data. Men, as a remark, were less prone to biased rounding with point estimation

values of (a = 0.596 for SOEP and a = 0.569 for ALLBUS).

Parameter Mean SD 95% uncertainty interval

τ1 8.050 0.544 [6.996 9.140]
τ2 8.337 0.541 [7.299, 9.419]
τ3 9.604 0.551 [8.543 10.667]
a 0.760 0.027 [0.706, 0.805]
β -1.826 0.126 [-2.076, -1.583]

Table 7: SOEP female body weight: Mean, standard deviation and 95% coverage intervals
for rounding parameters

In the second example, households were asked to state their monthly food and drink

expenditure outside home. The n = 6096 respondents stated a mean expenditure of 92.42e

with a standard deviation of 78.07e . The algorithm was applied with rounding values

r = (1, 2, 5, 10, 20, 50, 100). The heaping model with the ordinal probit model extension for

non-constant rounding probabilities was utilized here, as the data suggest strong dependence

of rounding behaviour on the magnitude of the expenditures. All reported values above

180e are divisible by 10, while at least 6.7% of the reported values below 100e are not.

Figure 4 displays the resulting density estimates for different bandwidth choices. Again,

for the Sheather-Jones bandwidth selector, the algorithm produces a markedly improved

density estimate which is still quite rough nevertheless. For Silverman’s rule of thumb, the

estimate is conveniently smooth but shows a bimodal structure that may not be genuine to

the underlying true expenditures. To produce a sufficiently smooth estimate, the authors

suggest to manually tune the bandwidth. A bandwidth of 1.5 times the rule of thumb

generates a smooth unimodal density estimate, while the Naive approach is still very spiky

(to obtain a comparable smooth estimate, a bandwidth of 4 times the rule of thumb was

necessary leading to a flatter density estimate).

The summary statistics for the rounding parameters τ and β can be found in Table 8.

The negative value of β indicates that higher rounding values (r = (1, 2, 5, 10, 20, 50, 100))
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Figure 4: Kernel density estimation of food and drink expenditures outside home in e for
Naive and Corrected method for different bandwidth choices

are utilized for higher monthly expenditures. Specifically, for expenditures of 25e the model

suggests rounding probabilities p = (0.8%, 0.4%, 19.4%, 48.4%, 11.9%, 18.9%, 0.1%), while p

equals (0.0%, 0.0%, 0.2%, 5.6%, 5.9%, 73.8%, 14.5%) for monthly expenditures of 150e.

Parameter Mean SD 95% uncertainty interval

τ1 1.322 0.183 [0.951, 1.662]
τ2 1.479 0.129 [1.223, 1.738]
τ3 2.896 0.124 [2.656, 3.138]
τ4 4.213 0.137 [3.952, 4.484]
τ5 4.592 0.135 [4.333, 4.854]
τ6 6.840 0.172 [6.508, 7.189]
β -1.154 0.0316 [-1.215, -1.093]

Table 8: Food and drink expenditures outside home: Mean, standard deviation and 95%
coverage intervals for rounding parameters

The algorithm converged to the same parameter values under multiple runs and different

starting values for both examples (and the simulation scenarios). Trace plots for rounding

parameters of the SOEP data are shown in Figures 5 and 6. Convergence is achieved after a

burn-in period of about 50 iterations. The density estimates and the rounding parameters a

and β were relatively robust to different choices of rounding values (for example r = (1, 5, 10)

or r = (1, 2, 5, 10, 20) in the body weight example). However, in general, for rounding values

which are not or very weakly supported by the data, the estimates (especially the threshold

values as well as β) can get pretty unstable. The user should always consult the trace plots

and eliminate the concerned rounding values if necessary.
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6. DISCUSSION

In this paper, a novel approach for kernel density estimation for heaped data was introduced.

A Stochastic Expectation Maximization algorithm was presented, that generates smoother

and more realistic non-parametric density estimates and gives additional insights into the

rounding process. More specifically, the rounding probabilities as well as a rounding bias is

estimated within the proposed algorithm. This can be very helpful for researches in assessing

and validating self-reported data. In the presented example of self-reported body weight the

approach was able to discover a biased response behaviour without validation data solely

on the basis of reported values. The algorithm is easy to implement and is provided by

the authors in a R-package. The algorithm exhibited very good statistical properties in the

simulations.

However, it was necessary to make some restrictive assumptions on the heaping process.

Both applications indicated that these assumptions are not completely fullfilled in real-world

data. As Crawford et al. (2014) remarks, the assumption that, for example, a reported value

of Wi = 100 with rounding value Ri = 10 means that the true unobserved value Xi lies

inside the interval (95,105) is rather strong. A possible solution would be to decompose

the reporting process into an recall error (i.e. the person does not know its body weight

exactly) and a rounding error. This could be modeled by a measurement error model of

classical error mixed with rounding but it is not clear how to estimate the recall error

without validation data (one could set the recall error equal to the rounding error, but

that would impose another assumption). Concerning the improved but still spiky density

estimates under the Sheather-Jones bandwidth selector, the authors recommend to use the

Silverman’s rule of thumb instead and tune the bandwidth manually if necessary. However,

a possible solution would be to introduce a random effect into the ordered probit model for

the rounding probabilities. As the preference for some heaped values may not be captured

by the model a grouping structure which assigns every Xi to the nearest possible rounded

value is introduced (represented by design matrix U with rows ui):

gi = log(Xi)β + u′iγ + εi , εi ∼ N(0, 1),γ ∼ N(0, τ )

The implementation is straightforward (a Metropolis-Hastings step is necessary) and first

tests show very promising results, i.e. the estimated density is sufficiently smooth regardless

of the bandwidth choice method. However, the authors are currently faced with stability

and computing speed issues, but he is optimistic to solve these problems in the near future.

Afterwards, this extension will be implemented into the R-package. A further extension

could introduce a non-constant rounding bias as well. Respondents with owerweight, for
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example, are possibly more inclined to round off than normal or underweight surveyed per-

sons. Additionally, the estimation of parametric distributions is straightforward to integrate

into this approach and with some minor modifications of the algorithm density estimation

for classified data should be possible as well. In sum, the algorithm presented in this paper

delivers a powerful and easy to use tool for users concerned with heaped data.
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Härdle, W., and Scott, D. W. (1992), “Smoothing by Weighted Averaging of Rounded

Points,” Computational Statistics, 7, 97–128.

Heitjan, D. F., and Rubin, D. B. (1990), “Inference from Coarse Data via Multiple Imputa-

tion with Application to Age Heaping,” Journal of the American Statistical Association,

85(410), 304–314.

Heitjan, D. F., and Rubin, D. B. (1991), “Ignorability and Coarse Data,” Annals of Statistics,

19(4), 2244–2253.

Izenman, A. J. (1991), “Recent Developments in Nonparametric Density Estimation,” Jour-

nal of the American Statistical Association, 86(413), pp. 205–224.

Jones, M. C. (1993), “Simple Boundary Correction for Kernel Density Estimation,” Statistics

and Computing, 3(3), 135–146.

Marcus, J., Siegers, R., and Grabka, M. M. (2013), Preparation of Data from the New SOEP

Consumption Module: Editing, Imputation, and Smoothing,, Technical Report 70, Data

Documentation, DIW.

Merrill, R. M., and Richardson, J. S. (2009), “Peer Reviewed: Validity of Self-Reported

Height, Weight, and Body Mass Index: Findings from the National Health and Nutrition

Examination Survey, 2001-2006,” Preventing Chronic Disease, 6(4).

22



Otterbach, S., and Sousa-Poza, A. (2010), “How Accurate are German Work-Time Data? A

Comparison of Time-Diary Reports and Stylized Estimates,” Social Indicators Research,

97(3), 325–339.

Pudney, S. (2008), Heaping and leaping: Survey Response Behaviour and the Dynamics of

Self-Reported Consumption Expenditure,, Technical report, ISER Working Paper Series.

R Core Team (2014), R: A Language and Environment for Statistical Computing, R Foun-

dation for Statistical Computing, Vienna, Austria.

Rowland, M. L. (1990), “Self-Reported Weight and Height.,” The American Journal of

Clinical Nutrition, 52(6), 1125–1133.

Scarrott, C. J., and Hu, Y. (2014), “evmix: Extreme Value Mixture Modelling, Threshold

Estimation and Boundary Corrected Kernel Density Estimation,”. Available on CRAN.

Schneeweiß, H., and Komlos, J. (2009), “Probabilistic Rounding and Sheppard’s Correction,”

Statistical Methodology, 6(6), 577–593.

Scott, D. W. (2009), Multivariate Density Estimation: Theory, Practice, and Visualization,

Vol. 383 John Wiley & Sons.

Sheather, S. J. (2004), “Density Estimation,” Statistical Science, 19(4), 588–597.

Sheather, S., and Jones, C. (1991), “A Reliable Data-Based Bandwidth Selection Method for

Kernel Density Estimation,” Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 53(3), 683–690.

Shields, M., Gorber, S. C., and Tremblay, M. S. (2008), “Estimates of Obesity Based on

Self-Report Versus Direct Measures,” Health Rep, 19(2), 61–76.

Silverman, B. (1986), Density Estimation for Statistics and Data Analysis, Chapman &

Hall/CRC Monographs on Statistics & Applied Probability Taylor & Francis.

Taylor, A. W., Grande, E. D., Gill, T. K., Chittleborough, C. R., Wilson, D. H., Adams,

R. J., Grant, J. F., Phillips, P., Appleton, S., and Ruffin, R. E. (2006), “How Valid

are Self-Reported Height and Weight? A Comparison Between CATI Self-Report and

Clinic Measurements Using a Large Cohort Study,” Australian and New Zealand Journal

of Public Health, 30(3), 238–246.

Utts, J., and Heckard, R. (2014), Mind on Statistics, Boston, United States: Cengage Learn-

ing.

23



Wagner, G. G., Frick, J. R., and Schupp, J. (2007), The German Socio-Economic Panel

Study (SOEP)-Evolution, Scope and Enhancements, Vol. 127 Schmollers Jahrbuch.

Wang, H., and Heitjan, D. F. (2008), “Modeling Heaping in Self-Reported Cigarette Counts,”

Statistics in Medicine, 27(19), 3789–3804.

Wasmer, M., Scholz, E., Blohm, M. et al. (2007), Konzeption und Durchführung der ”Allge-
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