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Extremely rapid isotropic irradiation of
nanoparticles with ions generated in situ by a
nuclear reaction
Jan Havlik1,2, Vladimira Petrakova3, Jan Kucka4, Helena Raabova1,5, Dalibor Panek3, Vaclav Stepan7,

Zuzana Zlamalova Cilova5, Philipp Reineck6, Jan Stursa7, Jan Kucera7, Martin Hruby4 & Petr Cigler 1

Energetic ions represent an important tool for the creation of controlled structural defects in

solid nanomaterials. However, the current preparative irradiation techniques in accelerators

show significant limitations in scaling-up, because only very thin layers of nanoparticles can

be efficiently and homogeneously irradiated. Here, we show an easily scalable method for

rapid irradiation of nanomaterials by light ions formed homogeneously in situ by a nuclear

reaction. The target nanoparticles are embedded in B2O3 and placed in a neutron flux.

Neutrons captured by 10B generate an isotropic flux of energetic α particles and 7Li+ ions that

uniformly irradiates the surrounding nanoparticles. We produced 70 g of fluorescent nano-

diamonds in an approximately 30-minute irradiation session, as well as fluorescent silicon

carbide nanoparticles. Our method thus increased current preparative yields by a factor of

102–103. We envision that our technique will increase the production of ion-irradiated

nanoparticles, facilitating their use in various applications.
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Over the past two decades, nanomaterials research has
generated a wealth of experimental and theoretical data
showing that the atomic structure and morphology of

nanomaterials can be changed in a controllable manner1,2. While
a chemical approach enables a plethora of synthetic modifications
to the nanomaterial surface, currently available tools for post-
preparative tailoring of the inner atomic structure of nano-
particles are based mostly on use of ionizing radiation and
thermal annealing.

Among ionizing particles, energetic ions are attractive for
materials science because they are very efficient in causing con-
trolled structural defects in solid materials. Modification with
energetic ions thus represents a key approach to the creation of a
variety of functional nanostructured materials, which has enabled
advances in numerous research fields. In optics, this approach is
used to create lattice point defects, including vacancies, color
centers3,4, and single-photon emitters5. In nanoscience,
researchers have used modification with energetic ions to fabri-
cate and tailor new types of materials1,2,6,7, including magnetic8,
semiconductor9, and carbon10 nanomaterials. Irradiation with
energetic ions also provides a means to radiolabel nanoparticles
for biological tracing11,12.

Most nanoparticles can be engineered using so-called light ions
[1H+, 2H+, 3He+, 4He+, α particles (4He2+), and 7Li+]. Com-
pared to heavier ions, their range in materials is much higher2

and they cause less damage13. For example, irradiation with α
particles or He+ ions has been used for tuning of the optical,
electric, and magnetic properties of various nanomaterials—
including graphene14, carbon15, and boron nitride13 nanotubes;
semiconductors;16 magnetic nanoparticles;17 silica;4 and
polymers18.

Although there is an impressive range of suggested applications
for ion-irradiated nanoparticles, a major challenge remains in
well-controlled mass preparation of these particles. To achieve
uniform irradiation of a sufficient amount of material in accel-
erator sources, the ion beam is defocused and collimated just
before entry to the target. However, the ion density may vary up
to 20% due to distribution of ion density in the beam cross sec-
tion. Due to beam energy dispersion, the ion ranges in the
target also may differ significantly19. For energetic ions, pene-
tration depth is typically millimeters to centimeters in the case of
p+, but only micrometers to hundreds of micrometers for heavier
ions, depending on ion energy and target density. The energetic
ions lose energy along their path and end their way with the
Bragg peak, beyond which there is negligible influence on the
matter. Moreover, nanoparticle powders exhibit poor thermal
conductivity and may overheat under irradiation, necessitating
the use of thin nanoparticle layers in the target to prevent ther-
mally induced alterations of the nanoparticles20. These reasons
make scale-up of production extremely challenging, because only
very thin layers of nanoparticles can be efficiently and homo-
geneously irradiated3,21.

Here, we describe an approach for mass production of ion-
irradiated nanoparticles using light ions (α particles and 7Li+

ions) generated in situ. The target nanoparticles are dispersed in
boron(III) oxide (which can be 10B-isotopically enriched) and
placed in an isotropic neutron flux, where a neutron-induced
reaction on 10B occurs homogeneously. Our approach utilizes the
advantages of neutrons, including their long penetration depth
into the target determined mainly by their absorption cross sec-
tions, the absence of threshold energy for a nuclear reaction, and
the availability of scale-up of irradiated material to tens of grams.
The all-directional local flux of light ions formed in situ from 10B
uniformly irradiates the surrounding nanoparticles. Moreover,
using high neutron fluence rates (1012–1014cm–2 s–1), which are
routinely available in experimental nuclear reactors, we also

achieve unusually high fluxes of energetic ions. Therefore, we gain
comparable effects to hours of irradiation in accelerator devices in
a few minutes and with much larger volumes. We demonstrate
the benefits of our approach for the production of two fluorescent
nanomaterials: diamond nanocrystals bearing fluorescent
nitrogen-vacancy (NV) color centers in the crystal lattice (FNDs)
and cubic silicon carbide nanoparticles bearing carbon antisite-
vacancy pairs. Both nanomaterials are currently of great research
interest because they provide unprecedented optical, electronic,
and magnetic properties.

Results
Creation of NV centers in nanodiamonds. NV centers have
been thoroughly studied for their unique applications as ultra-
sensitive magnetic22–24 and electric25 field sensors, single-photon
emitters26, and chemical probes27–29. The fluorescence of NV
centers is spin-dependent, which enables coherent manipulation
of single NVs30 and measurement of optically detected magnetic
resonance of single spins in ambient conditions31. FNDs show
low toxicity, and their use as bright near-infrared fluorescent
probes in high-resolution imaging32–34 and nanomedicine35–38

recently has been demonstrated39. Despite recent advancements
in preparation procedures of FNDs, the currently available
techniques involve primarily time-consuming and expensive
irradiation with energetic ions3,19,21,40–42 or electrons42–44. Cur-
rent irradiation approaches are summarized in recent
reviews45,46.

The formation of NV centers in NDs is technically a two-step
process and typically involves generation of vacancies in the
diamond lattice using irradiation with energetic particles followed
by recombination of vacancies with atomic nitrogen impurities
upon high temperature annealing3,19,40–42. To efficiently produce
energetic light ions (α particles and 7Li+ ions) creating the
vacancies, we used capture of neutrons by 10B (Fig. 1)47. Two
reaction channels exist, described by equations (1) and (2), with
different probabilities (P)

10
5 Bþ 1

0n ¼ 4
2Heþ 7

3Liþ γ 0:48MeVð Þ þ 2:31MeV ð1Þ
P= 94%

10
5 Bþ 1

0n ¼ 4
2Heþ 7

3Liþ 2:79MeV ð2Þ
P= 6%

with a total absorption cross section of ~3800 barns for thermal
neutrons48. We utilized these nuclear reactions for isotropic
irradiation of a bulk sample containing homogeneously dis-
tributed nanoparticles, instead of exposing a thin layer of
nanoparticles to an energetic ion beam, the range of which is
low and results in a characteristic non-homogeneous distribution
of defects in material (Bragg peak). We generated energetic ions
homogeneously in the entire sample volume by reaction of 10B
with thermal neutrons (Fig. 1).

Interaction statistics and damage rate of NDs. To understand
the behavior of α particles and 7Li+ ions in a glassy melt, we
first simulated their trajectories for a composite containing
33 weight % NDs (approximated with 35-nm diamond spheres)
and 67% 10B2O3 (volume fraction of nanoparticles is 22.6%). We
randomly distributed the NDs in the melt and using the Geant4
toolkit analyzed the trajectories of α particles and 7Li+ ions
emitted from random surface points. From 2.5 × 106 particle
trajectories, we calculated the projected range (Supplementary
Figure 1) and the average number of ND particles hit by one α
particle or 7Li+ ion (Fig. 2a). Clearly, either an α particle or 7Li+

ion can penetrate far enough to create vacancies in dozens of
individual NDs embedded in the 10B2O3 melt.
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The vacancies are created with an efficiency that approximately
corresponds to the amount of deposited energy from the ions.
Fig. 2b shows these energy deposition curves in the 10B2O3 melt
for an α particle and 7Li+ ion as a function of distance from a
single 10B nucleus. Merging both depositions provides a region
where we can anticipate active creation of vacancies, subsequently
leading to formation of NV centers upon annealing. Note that in
the case of less probable reaction (2), this region is slightly larger
thanks to higher energy of both created ions (not shown). Because
the nuclear reaction generating the α particles and 7Li+ ions
occurs randomly in the entire volume of the melt, we expected the
irradiation of nanoparticles to be very homogeneous and
effective.

The known composition and geometry of our sample, neutron
fluence rates (see Methods) and involvement of self-shielding of
thermal neutrons by 10B allowed us to calculate the effective
thermal neutron fluence rate inside the melt49 and the
corresponding yields of ions. Irradiation of our sample yielded
5.34 × 1013 s−1 of either α particles or 7Li+ ions (1.07 × 1014 s−1

in total). Based on these values, we calculated the number of
created vacancies in NDs for each type of energetic ion using the
SRIM simulation package50. The obtained values of 1.60 × 1015

and 4.07 × 1015 s−1 for α particles and 7Li+ ions, respectively,
indicate effective and rapid formation of vacancies in the NDs
present in the neutron-irradiated melt. The known composition
of our sample enabled us to calculate an overall damage rate of
9.78 × 10–6 dpa s−1 for NDs [which was used for recalculation of

irradiation times to overall radiation damage as displacement per
atom (dpa), see Fig. 3a, c].

Irradiation of samples in a nuclear reactor. To reach the highest
efficacy of the irradiation procedure, it is essential to keep the
nanoparticles in close contact with the 10B-rich environment. We
met this condition by creating a dispersion of the nanoparticles in
molten 10B2O3, which is formed by thermal dehydration of boric
acid (H3

10BO3). As a primary source of 10B, we used isotopically
enriched boric acid (99.5 mole % 10B), because boric acid with
natural isotopic abundance contains only 20 mole % 10B and 80
mole % inert nuclide 11B. Notably, H3

10BO3 is generally available
and inexpensive because large amounts are produced for the
nuclear industry.

We prepared two glass melts containing a 33% dispersion of
35-nm and 150-nm NDs in 10B2O3. Their scanning electron
microscopy (SEM) micrographs indicated homogeneously dis-
persed nanoparticles without signs of major aggregation or
separation of both components (Supplementary Figure 2). The
size of the visible granules roughly corresponds to the size of the
nanoparticles.

To generate all-directional local flux of α particles and 7Li+

ions creating vacancies in ND crystals, we loaded both glass melts
in quartz tubes and irradiated them in a nuclear reactor for
various times ranging from 3 to 100 min. After irradiation, we
dissolved the 10B2O3 matrix in NaOH solution and further
processed the NDs in a similar manner as previously established
for cyclotron-irradiated samples (annealing to form fluorescent
NV centers and oxidation by air followed by treatment with a
mixture of mineral acids)19,33,51. Isolation from the 10B2O3 melt
was almost quantitative in yield and provided NDs with the
characteristic size distribution (Supplementary Figure 3) and
colloidal stability in aqueous solutions (Supplementary Figure 4).
Zeta potentials were −46.7 mV for 35-nm NDs and −41.0 mV for
150-nm NDs, suggesting strong Coulombic stabilization by
negative charge of deprotonated carboxylates created by oxida-
tion on the surface of the nanoparticles.

To optimize the irradiation time, we next aimed to estimate the
minimum required dose for obtaining highly bright NDs. To our
surprise, we found that it was possible to reduce the dose to
1.76 × 10−3 dpa (corresponds to 3 min—the shortest time for
which irradiation is reproducible, due to loading-unloading lags
into the water-cooled channels of LVR-15 nuclear reactor we
used), while maintaining the quality and the intensity of ND
fluorescence (Fig. 3c). In contrast, the control samples of NDs
irradiated with neutrons only (without the presence of 10B2O3)
show more than one order of magnitude lower fluorescence
intensity (Supplementary Figure 5). This indicates that the
structural effects on NDs originate predominantly from interac-
tion with α particles and 7Li+ ions, but not directly from
interaction with neutrons.

Irradiation damage and other properties of NDs. Using Raman
spectroscopy, we analyzed the diamond lattice irradiation damage
for both types of NDs. In general, we observed a slight decrease in
sp3 and increase in sp2 carbon content caused by crystal lattice
damage with increasing irradiation time (Fig. 3a, b). The higher
amount of sp2 carbons for smaller NDs can be explained by
their higher surface/volume ratio, which is consistent with the
observation that the formation of sp2 phases in NDs occurs pre-
ferentially in the surface region52. Consistently, we observed the
highest fluorescence intensity for NDs irradiated for less than
20min (Fig. 3c). With longer irradiation times, the yield of NV
centers after annealing gradually drops, which correlates with the
observed progressive crystal lattice degradation into sp2 and

Nanoparticle

Neutron flux

Vacancyn0
10B

7Li

α

γ

10B2O3

a

b

Fig. 1 Basic principle of the implantation of energetic ions generated in situ
into nanoparticles. a A container containing nanoparticles embedded in a
glassy melt of 10B2O3 exposed to a neutron flux. b Detail of α particles and
7Li+ ions formed in situ by 10B neutron capture entering a nanodiamond
particle and creating vacancies inside
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amorphous structures (Fig. 3a). In addition to the G-band inten-
sity (~1600 cm−1), we monitored the appearance of a peak at
~1230 cm−1 (Fig. 3b and Supplementary Figure 6), which appears
in Raman spectra of ion-irradiated diamond53 due to presence of
extended defects such amorphous carbon inclusions. Correspond-
ingly, the progressive crystal lattice degradation occurring at longer
irradiation times (≥ 15min, ≥ 8.81 × 10−3 dpa; Fig. 3a) is clearly
reflected in the correlation between the intensities of the G-band
and the ~1230 cm−1 peak (Supplementary Figure 8A). Low level of
damage caused by irradiation under optimized conditions is
demonstrated by the fact that the intensities of the ~1230 cm−1

peak, as well as the G-band were undistinguishable for non-
irradiated NDs and NDs subjected to low irradiation times ( ≤ 12
min, which corresponds to ≤ 7.04 × 10−3 dpa; Supplementary
Figure 8B).

Even though Raman spectroscopy is the method of first choice
to evaluate defects in carbon materials, it might not be sensitive
enough to reveal local defects and strains in the diamond lattice
that could have a negative impact on optical properties of nearby
NV centers and limit their future applications. We have
performed low-temperature confocal fluorescence spectroscopy
to evaluate the quality of the NV centers in NDs irradiated under
optimized conditions. It is known that the linewidth of NV– ZPL
broadens with increasing local lattice damage54,55 and other
sources of local strain, such as impurities56–58. We have measured
the NV– ZPL linewidth at the temperature of 4 K. For comparison
with 150 nm ND [n-α], we chose electron-irradiated NDs (150
nm ND [e–]) and commercially available, electron-irradiated NDs
(100 nm ND [e–]) (see Methods for details). Fig. 3d shows the
average Gaussian NV– ZPL linewidths57 (see Supplementary
Figure 12 and 13 for confocal images and the spectra,
respectively). The average linewidth of the neutron-irradiated
particles was statistically not significantly different from the
electron-irradiated samples.

Another measure of the local strain in the diamond lattice is
the splitting of the optically detected magnetic resonance
(ODMR) signal at zero external magnetic field56. We find this
zero-field splitting to be between 11.5 MHz and 12.2 MHz at
room temperature for all samples (Fig. 3d), indicating that a
comparable average local strain is present in all samples,
irrespective of the irradiation method (see Supplementary
Figure 14 for ODMR spectra). These values are in the range
reported even for non-irradiated NDs (11.6 MHz to 13.0
MHz)59. Furthermore, in a separate study of the optical

properties of NDs, we found the spin relaxation times T1 of
this set of particles do not differ (unpublished results). Since the
T1 spin relaxation time is also known to be sensitive to local
lattice damage56, our measurements suggest that the spin and
fluorescent properties of NDs [n-α] produced here are overall
of high quality and they are comparable with the commonly
used electron irradiation.

Comparison with other irradiation methods. Next, we com-
pared our results with data on the creation of NV centers in
bulk diamond crystals irradiated only by fast neutrons (without
the presence of 10B2O3)60. In these cases, the number of created
NV centers grew linearly with neutron fluence, reaching an
optimum at 7 × 1017 cm−2 and dropping rapidly above this
value. Notably, under the conditions used in our setup, the
estimated optimum dose would correspond to ~27 h of fast
neutron irradiation, which is three orders of magnitude longer
than the 3 min achieved with our approach. Correspondingly,
50 h of neutron irradiation61 with a fluence of 5 × 1017 cm−2

and tens of hours62 with neutron fluencies ~1017 were necessary
for effective creation of NV centers in bulk diamond crystals.
Inelastic fast neutron scattering causes the vacancy formation
in samples without the presence of 10B2O3, while thermal
neutron capture by 10B leads to creation of vacancies upon
interactions of the formed α particle and 7Li+ ions with carbon
atoms. To ascertain the dominant process contributing to NV
center formation in our sample, we compared the cross sections
of inelastic neutron scattering on diamond carbon atoms (for
fast neutrons it is ~4.0 barns, for thermal neutrons 4.75
barns)47 and thermal neutron capture by 10B (3800 barns)48,
and found a difference of approximately three orders of mag-
nitude. Although these cross sections relate to different pro-
cesses (direct vs. indirect interaction of neutrons with carbon
atoms), the vast difference between them corresponds well with
the observed predominance of neutron capture by 10B in
vacancy formation (Supplementary Figure 5).

Moreover, FNDs produced in this way show spectral features
consistent with results obtained previously in an accelerator41.
Specifically, the 150-nm NDs had much higher fluorescence
intensity than the smaller 35-nm NDs (Fig. 3c). Because the
maximum vacancy concentration is an increasing function of the
particle size63, the vacancy capture efficiency strongly rises with
increasing size of the diamond crystal. The migration path of the
vacancies to the surface of nanoparticles during annealing is
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shorter for smaller particles, and their recombination with
nitrogen atoms is less effective.

The NV–/NV0 zero phonon line (ZPL) intensity ratios and the
width of the ZPL and phonon replicas were similar for neutron-
irradiated NDs in 10B2O3 glass and for FNDs we prepared using
direct cyclotron irradiation with either p+ or α particles (Fig. 3e).
Because these spectral parameters are related to the crystal
properties (formed irregularities, other defect centers) and surface
properties64,65, the similarities in the observed spectra indicate
that the samples prepared by the different types of irradiation
have comparable damage to the crystal lattice.

Although the spectral shapes and overall fluorescence of our
FNDs were very similar to those of FNDs irradiated in an
accelerator, we were interested in whether our procedure
increases the homogeneity of irradiation, i.e., whether the
material contains a higher fraction of FNDs. To distinguish the
fluorescent and non-fluorescent NDs present in a large ensemble
at the single-particle level19,66, we utilized simultaneous measure-
ment of fluorescence-lifetime imaging microscopy (FLIM) and
atomic force microscopy (AFM) (Supplementary Figure 7). We
found that the fraction of FNDs in material irradiated in a nuclear
reactor increased by a factor of 2.6 compared to optimally41

p+-irradiated pellet target with NDs in an accelerator (49% vs.
19%). Moreover, the particles irradiated in a nuclear reactor were
brighter on average and contained a significantly higher fraction
of very bright particles (fluorescence intensity corresponding to
~5 NV centers and higher). However, the largest fraction of
particles exhibited lower fluorescence (corresponding to < 3 NV
centers); see histograms in Supplementary Figure 9a, b.

This increase in the fraction of fluorescent particles is
close to the enhancement factor of 3.2 achieved for a
homogeneous liquid target containing a colloidal aqueous
solution of NDs compared to an optimized pellet target19. Note
that both types of accelerator irradiation took 4.5 h (compared to
3 min in a reactor).

Irradiation of silicon carbide nanoparticles. To demonstrate
the capability of our method to produce lattice defects in a
different material, we focused on silicon carbide (SiC), one of
the key materials used in development of next-generation
photonic and electronic devices5. SiC forms various polytypes
harboring a range of different lattice defects67, which can be
created upon irradiation with energetic particles. Some exhibit
single-photon emission and can be employed as room-
temperature solid-state “qubits”68,69. We used the cubic 3C-
SiC polytype, enabling creation of a single-photon emitter—the
carbon antisite-vacancy pair70. In addition, 3C-SiC nano-
particles are biocompatible and can be used as photostable
fluorescent labels in cell imaging71–73. As with FNDs, wider use
of photoluminescent SiC is limited because the current irra-
diation approaches allow production of only a small amount of
material.

Similarly as for NDs, we prepared a composite of cubic 3C-SiC
nanoparticles with B2O3, irradiated it in a nuclear reactor, and
processed the sample (see Methods). Using the SRIM simulation
package50, we calculated the number of created vacancies in SiC
as 1.41 × 1015 and 3.587 × 1015 s−1 for α particles and 7Li+ ions,
respectively, indicating a slightly higher overall damage rate of
SiC (1.42 × 10–5 dpa s−1) compared to ND. After irradiation for
15 min (1.28 × 10–2 dpa) and subsequent annealing and oxidation
in air, we obtained strongly luminescent nanoparticles (Fig. 4a)
with one dominant peak around 670 nm in the photolumines-
cence spectrum (Fig. 4b). This band was previously observed in
electron-irradiated and oxidized 3C-SiC nanoparticles and was
assigned to the carbon antisite-vacancy defect70.

In nanoparticles that were only irradiated (without subsequent
annealing and oxidation), another band appeared around
600–650 nm. The dominance of one spectral feature did not
occur in samples irradiated for shorter time (3 min, 2.56 × 10–3

dpa) nor in non-irradiated, annealed and oxidized samples.
Consistent with previous findings, we observed only lumines-
cence features with varying spectral position between 600–800
nm (Supplementary Figure 10) as common for intrinsic defects in
this form of SiC74,75. Oxidation further improved the solubility of
both irradiated and non-irradiated samples and led to stabiliza-
tion of luminescence. We observed bleaching of the non-oxidized
samples, while oxidized nanoparticles did not bleach over tens of
minutes of measurements. Overall, our data point towards
effective creation of photoluminescent point defects in cubic
SiC nanoparticles and demonstrate the capability of our
irradiation method for nanomaterials other than NDs.

Scale-up of the method and mass production of FNDs. Finally,
we applied our method to the preparation of a large amount of
FNDs. First, we adjusted the preparation, irradiation and pro-
cessing procedures for large-scale conditions (oxidation of ~160 g
NDs, ~340 g of melting mixture, liters of solutions). Based on the
extremely short durations needed for effective irradiation of ND-
10B2O3 composite, we expected that the process could yield
enough vacancies using less expensive B2O3 with natural isotopic
abundance (20 mole % 10B). We thus used B2O3 rather than 10B-
isotopically enriched H3

10BO3, which also facilitated the melting
procedure (no hot steam evolved upon H3BO3 thermal dehy-
dration). For irradiation, we designed double-walled containers
enabling sufficient heat dissipation to cooling media in the
nuclear reactor and isotropic irradiation of the composite by
neutrons (Supplementary Figure 11C). Upon irradiation of 10
containers containing a total of 240 g ND-B2O3 composite (each
container for 3 min, total irradiation time 0.5 h) and standard
processing, we obtained 70 g FNDs (95% yield based on the initial
amount of the composite). To the best of our knowledge, this
amount is more than two orders of magnitude higher than any
reported FND preparation.

The FNDs showed equal spectral features compared to our
initial small batches irradiated in capillaries (Supplementary
Figure 11A, B). The intensities of the ~1230 cm−1 peak and the
G-band in Raman spectra were undistinguishable for the non-
irradiated NDs and for the small batch irradiation. The large-
scale procedure thus provided FNDs with high sp3 purity and a
low level of lattice damage. Photoluminescence spectra confirmed
the presence of NV centers in FNDs with NV–/NV0 ZPL intensity
ratios identical to those of the corresponding small batch.
Importantly, the scale-up procedure only slightly affected the
homogeneity of irradiation and FND brightness (Table 1 and
Supplementary Figure 9c), as documented by simultaneous FLIM
and AFM measurements. The fraction of FNDs in the material
was higher by a factor of 2.2 than optimally p+-irradiated pellet
target with NDs in an accelerator (41% vs. 19%). These results
show that the large-scale preparation provides FNDs with
comparable quality to the small scale.

Discussion
We described an easily scalable method for production of light-
ion-irradiated nanoparticles utilizing α particle and 7Li+ ions
generated in situ. The target nanoparticles embedded in 10B-
isotopically enriched boric oxide are placed in a neutron flux,
where neutron-induced nuclear reaction on 10B occurs homo-
geneously, producing an isotropic flux of light ions. Our method
thus combines the advantages of the neutron and ion irradiation
approaches. We demonstrated its usefulness for production of

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06789-8

6 NATURE COMMUNICATIONS |          (2018) 9:4467 | DOI: 10.1038/s41467-018-06789-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


FNDs bearing nitrogen-vacancy color centers and of 3C-SiC
nanoparticles with carbon antisite-vacancy pairs. In a large-scale
pilot experiment, we prepared 70 g FNDs during a half-hour
irradiation session using boric oxide with natural isotopic abun-
dance of 10B. The irradiation was highly homogeneous, produ-
cing material with a high fraction of bright fluorescent particles.
Because of the favorably high cross section of 10B for neutron
capture, our method can operate with extremely rapid irradiation
times of only a few minutes per one batch. Overall, our large-scale
experiment demonstrated that short irradiation time and space
capacity of irradiation channels in the nuclear reactor provides
the possibility of semi-continuous production of hundreds of
grams of FNDs per day. In comparison to irradiation with elec-
trons43 or energetic ions in accelerators3,19,41,42, in which the
yield typically reaches hundreds of milligrams per day, we
increased the current production rates of ion-irradiated nano-
particles by a factor of ~102–103. This allows for unprecedentedly
high preparative yields and economically feasible production of
irradiated nanoparticles (the price per hour of irradiation is
similar for nuclear reactors and accelerators).

We envision that our technique, combined with general
accessibility to nuclear reactors (currently, 59 research nuclear
reactors useful for this type of irradiation with public access are
operating worldwide)76, can facilitate production of well-defined
light-ion-irradiated nanoparticles that can be widely used in
diverse applications, such as in semiconductor, magnetic, quan-
tum sensing, optical, and bioimaging devices.

Methods
Chemicals. Sodium hydroxide, hydrochloric acid (35%), nitric acid (65%), and
sulfuric acid (96%) were purchased from Penta (Czech Republic). Potassium nitrate
and hydrofluoric acid (40%) were purchased from Sigma Aldrich (Prague, Czech
Republic). All chemicals were p.a. quality and were used as received without further

purification. Boric acid enriched to 99.5% 10B was supplied by Katchem Ltd., Czech
Republic. Boron (III) oxide (99.9+%) was purchased from Strem Chemicals, Inc.
Deionized water used for all washing steps and preparation of solutions was pre-
pared with a Millipore Synergy UV Ultrapure water system. The sample of com-
mercially available electron-irradiated fluorescent NDs (high brightness) was
obtained from Adamas Nanotechnologies, USA (abbreviated as 100 nm ND [e–]).

ND and SiC pretreatment. NDs were supplied by Microdiamant Switzerland
(MSY 0–0.05 and MSY 0–0.25, containing ~100–200 ppm of natural nitrogen
impurities). The NDs were oxidized by air in a furnace (Thermolyne 21100 tube) at
510 °C for 5 h and subsequently carefully purified to remove trace amounts of
elements (e.g., iron) that may activate in neutron flux, producing undesirable
radioactive contamination of the product. The product had negligible radioactivity
after the following purification was implemented. The NDs were treated with a
mixture of H2SO4 and HNO3 (9:1) at 90 °C for 3 days and washed with water, 1 M
NaOH, and 1M HCl. They were washed an additional 5 times with water and then
freeze-dried. Purified ND powder (500 mg) was mixed with 2.0 g H3

10BO3 ground
in a mortar and transferred into a synthetic corundum crucible. The mixture was
placed in a vertical furnace (Thermolyne 21100 tube) and heated to 600 °C for
5 min (until the development of water vapor ceased). The temperature was then
increased to 700 °C, and the melt was homogenized by mixing and left to cool to
RT. The final glassy composite was first ground in a mortar and then pulverized in
a small ball mill. The typical weight loss within such melting was 39% due to
dehydration of boric acid to boron(III) oxide. The final melt used for irradiations
contained 33 weight % NDs and 22% 10B.

Cubic SiC nanoparticles (PlasmaChem GmbH, PL-CT-SiC, 150–200 nm; 1.00
g) were mixed with boron oxide (2.25 g) and ground in an agate mortar. The
mixture was transferred into a porcelain crucible and heated in a vertical furnace
(Nabertherm RT 50–250/13) at 720 °C for 10 min. The viscous melt was
homogenized by mixing, scraped out with a spatula, and left to cool down to RT.
The final light-gray glassy composite was ground in a ball mill and finely pulverized
in a mortar.

Irradiation in nuclear reactor and treatment of ND and SiC. The powderized
melts of ND and 10B2O3 were sealed in quartz glass, sodium-free capillaries (inner
diameter, 1.5 mm; height of the melt, 11 mm), inserted in an aluminum container,
and irradiated in a vertical water-cooled (~45 °C) channel H8 positioned in the Be
reflector of the LVR-15 nuclear reactor of Research Centre Rez, Ltd. at neutron
fluence rates of 2 × 1013 cm−2 s−1, 1 × 1013 cm−2 s−1, and 7 × 1012 cm−2 s−1 for
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Fig. 4 Spectral characterization of irradiated SiC nanoparticles. a Confocal image of irradiated, annealed and oxidized SiC nanoparticles deposited on a glass
cover slip. The scale bar corresponds to 5 μm. b Photoluminescence spectrum of only irradiated (w/o oxidation) and of irradiated, oxidized and annealed
(oxidized) SiC nanoparticles. The band around 670 nm was assigned to the carbon antisite-vacancy pair70

Table 1 Fraction of fluorescent particles and fluorescence intensities for different irradiations

Irradiated in reactor Proton irradiated Irradiated in reactor (large scale)

Fraction of fluorescent particles 49% 19% 41%
Normalized average fluorescence intensity per particle
(arb. units)

3.2 1.7 2.7

Normalized median fluorescence intensity per particle
(arb. units)

2.1 1.4 1.8

The table compares fluorescent nanodiamonds (NDs) prepared by neutron irradiation in a reactor and proton irradiation in a cyclotron using an optimized pellet target with large-scale production of NDs
in the reactor (irradiation of 240 g ND-B2O3 composite). The fluorescence intensity is normalized to the average intensity of one NV center in a ND particle. Parameters were calculated from more than
400 particles. Isotropic irradiation with energetic light ions leads to a higher fraction of fluorescent particles and to higher fluorescence intensities.
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thermal, epithermal, and fast neutrons, respectively, for various periods of time
(3–100 min). Neither NDs nor quartz glass should contain traces of sodium
because the natural monoisotope 23Na is readily neutron-activated into 24Na,
which is a beta and gamma emitter with a half-life of 14.997 h. If there are traces of
sodium in the starting materials, an easy option is to allow 24Na to decay for 10
half-lives (one week, or a shorter time if less contaminated) after irradiation. The
sample can be handled then as non-radioactive. After irradiation, the capillaries
were opened and left overnight in a vial with 6M NaOH at 60 °C to dissolve boron
(III) oxide. The residue adhering to quartz glass was released in an ultrasonic bath.
Supernatant was washed gradually with 6 M NaOH, H2O, 1 M HCl, and 5 times
with H2O. Possible quartz glass splinters were separated by sedimentation. The
supernatant was treated with concentrated HF for 12 h; washed with H2O, 1 M
HCl, and 5 times with H2O; and lyophilized.

Six quartz glass capillaries, each filled with 55 mg of SiC-B2O3 composite,
were sealed into aluminum containers. The capillaries were irradiated for various
periods of time (3–15 min) in vertical water-cooled (~45 °C) channel H8 of the
LVR-15 nuclear reactor at neutron fluence rates of 3.6 × 1013, 8.4 × 1012 and
5.6 × 1012 cm−2 s−1 for thermal, epithermal and fast neutrons, respectively. After
irradiation, the capillaries were opened and twice washed with 2 M NaOH at 95 °
C to dissolve boron oxide. The supernatant was gradually washed with H2O
(twice), 1 M HCl, and H2O (five times) and lyophilized. The obtained SiC
powder was oxidized by air in a furnace (Nabertherm RT 50–250/13) for 3 h
at 550 °C.

Large-scale irradiation of NDs. For large-scale preparation, NDs were supplied by
Henan Huifeng Diamond Co., Ltd., China (HFD-F, 35 nm). A thin layer of NDs
(166.8 g) in a ceramic dish was oxidized by air in a furnace (Clasic CZ, 1013 S) at
510 °C for 3 h, providing 119.8 g of oxidized NDs (72% yield). The oxidized NDs
(105.0 g) were mixed with boron oxide (236.3 g), ground in a mortar, and heated in
20 g doses in a vertical furnace (Nabertherm RT 50–250/13) at 700 °C, 10 min per
dose. The viscous melt was homogenized by mixing, scraped out with a spatula,
and left to cool down to RT with a 94% total yield (321.8 g). The final glassy
composite was ground in a ball mill (Retsch MM 400) and finely pulverized in a
mortar.

The 10 purpose-made aluminum containers (Supplementary Figure 11C)
were filled with a composite powder (24 g per container), sealed and irradiated
for 3 min in vertical water-cooled (~45 °C) channel H6 of the LVR-15 nuclear
reactor at neutron fluence rates of 5.4 × 1013, 7.7 × 1013, and 6.5 × 1012 cm−2 s−1

for thermal, epithermal, and fast neutrons, respectively. After the irradiation, the
containers were left for 2 weeks in a shielded hot cell to allow decay of residues
of short-lived radionuclides created by neutron activation. The containers were
opened and the obtained powder was mixed with 1000 ml of 10% NaOH, stirred
at 95 °C for 1 h to dissolve boron oxide and possible aluminum residues and left
to sediment overnight. The sediment was washed once with H2O, separated by
centrifugation and treated with 800 ml of boiling aqua regia for 1 h to dissolve
possible traces of long-lived radionuclides. The sediment was washed four times
with H2O (Supplementary Figure 11D) and lyophilized. The final yield was 70 g
of NDs in the form of a light gray powder (95% yield after workup;
Supplementary Figure 11E).

Irradiation with electrons. Purified ND powder (Microdiamant Switzerland, MSY
0–0.25) was irradiated in an external aluminum target holder for 21 h with a 16.6
MeV electron beam (1.25 × 1019 particles cm−2) extracted from MT-25 microtron,
as previously described29. The sample is abbreviated as 150 nm ND [e–].

Annealing and oxidation. All ND samples were annealed at 900 °C for 1 h in an
argon atmosphere followed by air oxidation at 510 °C for 4 h at normal pressure in
a Thermolyne 21100 tube furnace calibrated with an external thermocouple (Testo
AG 1009). According to the transmission electron microscopy (TEM) image
analysis77, the obtained particles were 35 nm in diameter.

TEM measurement. For FND particle size distribution evaluation, we used image
analysis of TEM micrographs (Supplementary Figure 3A, B). For each sample, we
analyzed ~1000 particles, acquired their equivalent circular diameters, and recal-
culated them to volume-weighted histograms (Supplementary Figure 3C).

Samples for TEM were prepared similarly as described in our previous work77.
Carbon-coated copper grids (Pyser) were oxidized in a UV-ozonizing chamber
(UV/Ozone Pro Cleaner Plus, Bioforce Nanosciences) for 15 min, then incubated
in poly(ethyleneimine) solution (MW= 2.5 kDa, 0.1 mg ml−1) for 10 min, washed
with water, and incubated in an aqueous solution of NDs (0.1 mg ml−1) for 3 mins.
Micrographs were taken with a JEOL JEM 1011 microscope at 80 kV acceleration
voltage.

Analysis of particle size distributions was performed with ImageJ software using
a previously described procedure77. Particle size was expressed as equivalent
circular diameter (deq), defined as the diameter of a circular particle with the same

area as the particle of interest (S).

deq ¼
ffiffiffiffiffiffiffiffiffiffi

4S=π
p

ð3Þ

Equivalent diameters were used to calculate particle volume (PV).

PV ¼ 4
3
π

deq
2

� �3

ð4Þ

and subsequently for creation of volume-weighted histogram.

SEM measurement. A silicon wafer (10 × 3 mm) with a small fragment of boron
oxide-ND composite sample put on its surface was placed in a quartz tube. The
sample was melted at 700 °C for 15 min under an argon atmosphere in a Ther-
molyne 21100 tube furnace and left to cool down to RT. Immediately after pre-
paration, the silicon wafer with melted sample was fixed to a holder with double-
sided tape and coated with a thin layer of gold. The morphologies of samples were
observed by using a Hitachi S-4700 field emission scanning electron microscope
(FE-SEM) at 15 kV.

Geant4 and SRIM simulations. Geant4 v10.2 general particle transport
toolkit78,79 was used to calculate the projected range and average number of ND
particles hit by one α particle or 7Li+ ion in a dispersion of NDs in 10B2O3. The
user application was developed using the TestEm11 extended electromagnetic
example as a template.

ND particles were approximated by carbon spheres with radius 35 nm and
density 3.5 g cm−3. ND particles were then randomly distributed into 10B2O3

material, with density 1.82 g cm−3, forming a homogeneous dispersion. Due to
memory constraints, the nested replicated approach was applied to build the whole
sample volume. The volume of the sample was filled by replicating a single building
block with base 0.3 × 0.3 μm and height set to match the sample height. The sample
volume was set to 2.7 × 2.7 × 6 μm for α particles and to 2.7 × 2.7 × 2.4 μm for 7Li+

ions. Primary particles generated by nuclear reaction (1) (1.47 MeV α particle and
0.84 MeV 7Li+ ion) were emitted perpendicular to the building block base plane,
from a random point in a square with 100 nm sides placed in the center of the
entry surface of the middle building block.

Two hundred and fifty different ND distributions inside the building block were
generated, and for each of those configurations, calculations were run for 104

primaries. Results are presented for the resulting 2.5 × 106 primary particles for
each type.

SRIM-2013 code (www.srim.org) was used to simulate damage of NDs and SiC
upon irradiation. The damage rate (expressed as the number of vacancies created in
the overall sample) was estimated using the known atomic composition (see ND
and SiC pretreatment) and yields of 5.34 × 1013 s−1 for α particles (1.47 MeV) and
7Li+ ions (0.84 MeV) generated upon neutron irradiation in the overall sample.
Because the range of the energetic ions in the material (a few μm) is negligible
compared to the dimension of the sample (a cylinder of diameter 1.5 mm and
height 11 mm), we considered all created ions to be captured in the sample. The
dpa values were recalculated for the fraction of carbon (and silicon) atoms in the
material.

Raman and other measurements. The samples were prepared by drop-casting of
the aqueous dispersion of NDs on the polished silicon wafer. Raman and lumi-
nescence spectra were measured using a Renishaw InVia Raman Microscope; the
excitation wavelength was 514 nm (luminescence measurements) and 325 nm
(Raman measurements) with 15 mW laser power, ×20 objective. The exposure time
was 6 seconds, accumulation 10 times; 20 measurements were made on each
sample. The Raman and luminescence spectra were taken at room temperature and
normalized to the diamond Raman peak. The changes in sp3 carbon content were
measured and evaluated according the literature procedure80. Raman spectra were
analyzed using the Peak-o-mat program.

Low-temperature imaging and spectroscopy were performed using a custom-
built confocal fluorescence microscope. Briefly, a 532 nm (60 µW) continuous-wave
laser beam was focused onto the samples located inside a cryostat (Montana
Instruments, Cryostation) through an optical window using a long working
distance objective (Olympus, LC Plan N, ×50, NA 0.65). Fluorescence was collected
with an avalanche photodiode (Excelitas, APD, SPCM-AQRH-14) for imaging and
a spectrometer (Princeton Instruments, SpectraPro with a PIXIS CCD camera) to
obtain fluorescence spectra. 532 nm laser line, dichroic and notch filters were used
to separate excitation and fluorescence signals.

ODMR measurements (at room temperature): a modulated microwave field was
created using a microwave signal generator (Rohde & Schwarz, SMIQ03B) with
amplifier and delivered using a custom-built sample holder with an Ω-shaped wire.
Excitation and PL detection was carried out as described above for low-
temperature measurements, but using a higher numerical aperture objective (NA
0.9) and a lower excitation intensity (8 µW).
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FLIM and AFM measurements of ND. The FNDs were deposited on an oxygen-
plasma-cleaned glass cover slip by dip coating for 5 min and rinsed using DI
water (MilliQ). The concentration of the stock solution of nanoparticles was
0.001 mgml−1. For FLIM, fluorescence images were taken using a time-resolved
fluorescence confocal microscope (MicroTime200 – PicoQuant), with excitation
wavelength 532 nm, 1.2 mW laser power, using a ×60 water-immersion objective
(Olympus) and a 650 long pass filter (Edmund Optics, OD4). Data were processed
using Matlab (R2014b, Mathworks). Selection of FNDs was performed using cal-
culated fast fluorescence lifetime (FLIM) ( > 6 ns) and counts/pixel ( > 10 cts)
thresholds. To obtain normalized PL intensity per particle, the measured fluores-
cence intensities were normalized to the calculated average fluorescence intensity of
single NV center (based on correlation measurements). The normalized intensity
therefore represents ~the number of NV centers in the particle. AFM images were
taken on a JPK Nanowizard® AFM combined on the FLIM Microtime setup. Scans
were performed using AC mode measurements using silicon probes (ACTA, with
aluminum coating of the reflex side, ACTA300 – TL).

Spectral characterization of SiC. Round microscope cover glasses with 25-mm
diameter were used as substrates. The coverslips were immersed overnight in a
concentrated KOH/methanol solution and then thoroughly washed with deionized
water and dried. The samples were prepared by drop-casting 15 μL 0.01 mgml−1

aqueous solution of SiC particles. To localize the particles, a time-resolved confocal
fluorescence microscope system [MicroTime 200 (PicoQuant, GmbH) with ×60,
1.2 N.A. equipped with a 532 nm pulsed diode laser and water-immersion objec-
tive] was used to record fluorescence images. Fluorescence spectra of single par-
ticles were recorded in fixed-point measurement mode using a fiber-coupled
Shamrock 303i spectrograph with an iXon Ultra EMCCD camera (Andor). Spectra
were recorded at 30 μW excitation power and 15 s integration time. Final spectra
were prepared by subtracting a dark spectrum recorded from an empty substrate
under the same conditions.

Data availability
Data available on request from the authors.
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