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Molecular dynamics (MD) simulations face challenging problems since the time scales of interest
often are much longer than what is possible to simulate; and even if sufficiently long simulations are
possible the complex nature of the resulting simulation data makes interpretation difficult. Markov
State Models (MSMs) help to overcome these problems by making experimentally relevant time
scales accessible via coarse grained representations that also allow for convenient interpretation.
However, standard set-based MSMs exhibit some caveats limiting their approximation quality and
statistical significance. One of the main caveats results from the fact that typical MD trajectories
repeatedly re-cross the boundary between the sets used to build the MSM which causes statistical
bias in estimating the transition probabilities between these sets. In this article, we present a set-
free approach to MSM building utilizing smooth overlapping ansatz functions instead of sets and an
adaptive refinement approach. This kind of meshless discretization helps to overcome the recrossing
problem and yields an adaptive refinement procedure that allows us to improve the quality of the
model while exploring state space and inserting new ansatz functions into the MSM. Published by
AIP Publishing. [http://dx.doi.org/10.1063/1.4978501]

I. INTRODUCTION

Molecular dynamics (MD) simulations are often used to
estimate transition probabilities in phase space (or state space,
respectively). In principle, one is interested in the following
quantity:

P(t, A, B)=Pµ
(
Xt ∈ B|X0 ∈ A

)
. (1)

In this formula, A and B are subsets of the state space. P(t, A, B)
denotes the conditional probability for a molecular process
starting in A to end up in B after a certain time span t. This
quantity is not meant for one single trajectory, it is an expecta-
tion value over all possible trajectories starting in A. Usually,
A and B represent metastable conformations of the system,
such that these transition probabilities are small and cannot
be sampled efficiently by performing long-time trajectories
of the molecular system. More precisely, estimating P(t, A, B)
based on molecular simulation of many trajectories starting in
A and rarely reaching B in a given time t is not a good idea.
In this article we recall that (1) can be seen as a Galerkin dis-
cretization of a transfer operator T t . The (time dominating)
slowest processes of the molecular system are correlated with
the highest eigenvalues and their eigenfunctions of T t . Thus,
finding dominating molecular processes can be turned into
solving an eigenfunction problem of an (self-adjoint) oper-
ator T t . The sampling problem turns into an eigenfunction
problem.

Is this class of problems easier to solve? It is a good ques-
tion, because the state space is high-dimensional and we try to
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solve a function approximation problem in this space. Further-
more, for a Galerkin discretization we need to compute inner
products, which means we have to solve high-dimensional
integrals. Both of these problems have been addressed in
the literature.1 For the solution of a function approximation
problem, we will propose an adaptive meshless discretiza-
tion method. Whereas, for the quadrature problem we will
apply a Monte-Carlo approach which will be based on biased
stochastic MD simulations. There is good hope to overcome
the sampling problem by this approach, because the approx-
imated eigenfunctions have a rather simple structure (nearly
piece-wise constant). The more rarely transitions between A
and B occur, the easier the eigenfunctions become. On the other
hand, there is no need for the simulation of trajectories which
connect A and B. For Monte-Carlo quadrature the trajecto-
ries are only needed for the evaluation of the (localized) inner
products.

II. THEORY
A. Molecular dynamics

We consider a molecular system for which we would
like to know transition probabilities (1) according to a given
stochastic or deterministic molecular dynamics. LetX denote
its phase space or state space, respectively, depending on the
form of MD. The result of a MD simulation is a trajectory
(xt), where t runs through all discrete time steps of the sim-
ulation and xt ∈ X for all t. Typically this trajectory results
from (temporal) discretization of a set of equations of motion
governed by the (potential) energy function V that in principle
have time-continuous trajectories (Xt)t∈R as their solutions.
For a canonical ensemble MD, one typically assumes that
(xt) is (approximately) distributed according to the stationary
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distribution or invariant measure

µ(x) =
1
Z

exp(−βV (x)),

resulting from the ergodicity of (X t) which guarantees that for
an appropriate macro-observable f we have

lim
T→∞

1
T

∫
f (Xt)dt =

∫
f (x)µ(x)dx.

When one performs very long MD simulations repeatedly
starting from the same initial state, then the resulting trajec-
tories differ. This may be caused by the chaotic properties
of thermostatted MD2 for long enough time scales or it may
result from the fact that the underlying equations of motion
are stochastic as in the case of Langevin or Smoluchowski
dynamics. For the following, it does not matter which of the
two cases we consider; we will just assume that there is a prob-
ability distribution p(t, x, y) for observing trajectories (X t) that
start in X0 = x and end in X t = y. The transfer operator T t

associated with the dynamics is defined by

Tt f (x) = E
(
f (Xt)|X0 = x

)
=

∫
f (y)p(t, x, y)dy,

where the condition X0 = x means that all trajectories start in x.
The transfer operator tells us how the expectation value of an
observable f is evolving under the dynamics. Specific forms
of the transfer operator, e.g., for thermostatted Hamiltonian
dynamics, can be found in the literature.2,3

By introducing the scaled scalar product

〈 f , g〉µ =
∫

f (x)g(x)µ(x)dx,

we can write equilibrium correlation functions as

〈 f (Xt)g(X0)〉 = E
(
f (Xt)g(X0)|X0 ∼ µ

)
=

∫
g(x)Tf (x)µ(x) dx = 〈g, Tf 〉µ

= 〈T ∗f , g〉µ,

where T ∗ denotes the adjoint transfer operator. Similarly, we
find that the transition probability between sets A and B in time
t can be expressed via the transfer operator also,

P(t, A, B) =
1
µ(A)

∫
A

∫
B

p(t, x, y)µ(x)dxdy

=
1
µ(A)
〈1A, T1B〉µ (2)

=
1
µ(A)
〈1B(Xt)1A(X0)〉,

where µ(A) = ∫A µ(x)dx = 〈1X, 1A〉µ and 1A denotes the char-
acteristic function of set A, i.e., 1A(x) = 1 if x ∈ A and = 0
otherwise.

The dynamics is called reversible if (X t) satisfies the
detailed balance condition µ(x)p(t, x, y) = µ(y)p(t, y, x). If this
is the case then the transfer operator is self-adjoint with respect
to the scaled scalar product, i.e., we have Tt = T ∗t such that
all of its eigenvalues are real-valued.3,4 Then, since the largest
(in modulus) eigenvalue of any transfer operator for ergodic
dynamics is λ = 1, the eigenvalues of Tτ for an arbitrary time
τ > 0 can be ordered,

1 = λ1 > λ2 ≥ λ3 ≥ . . . .

Let uj denote the eigenfunction of Tτ associated with λj,

Tτuj = λjuj.

Because of the self-adjointness of Tτ , these eigenfunctions are
orthogonal with respect to 〈·, ·〉µ

2 such that we find that5–7

〈 f (Xnτ)g(X0)〉 =
m∑

j=1

λ
n
j 〈g, uj〉µ〈uj, f 〉µ.

That is, for large enough times (=large enough n) the largest
eigenvalues of Tτ completely dominate the kinetic relax-
ations in the molecular system on associated dominant time
scales3,5

tj = −
τ

log λj
, j > 1

with t1 = ∞ describing the asymptotic decay to the stationary
distribution at infinite time. The observation that the domi-
nant eigenvalues of the transfer operator describe the long time
relaxation kinetics and transition probabilities of the molecu-
lar system can also be verified for non-reversible systems like
Langevin dynamics.3

The easiest example for the equations of motion in
molecular dynamics is diffusion in the energy landscape V,
i.e.,

ẋt = −∇xV (xt) +
√

2β−1Ḃt , (3)

where Bt denotes Brownian motion. This kind of dynamics is
just a simplistic example for reversible MD but will provide
a means for illustration in the following. The dynamics given
by (3) is reversible and ergodic with respect to µ3. In this case
the transfer operator has the form4

Tt = exp(tL), L = β−1
∆x−∇xV (x)·∇x,

where ∆x denotes the Laplacian operator.

B. Generalized eigenvalue problem

The main idea of MSM building is to construct a (small)
transition matrix whose leading eigenvalues and vectors are
very good approximations of the dominant eigenvalues and
functions of the transfer operator Tτ of the system for some
preselected time scale τ. Therefore, we have to consider the
eigenvalue problem

Tu = λu (4)

of the full transfer operator T = Tτ of the dynamics.
As a starting point for the discretization of the eigenvalue

problem (4) we consider a set of m non-negative ansatz func-
tionsΦ1, . . . ,Φm that form a partition of unity, i.e., for all states
x ∈ X we have that

m∑
j=1

Φj(x) = 1.

Each ansatz function Φj represents the weight

µ̂j =

∫
Φj(x)µ(x)dx = 〈Φj, 1〉µ > 0,

since the partition of unity property guarantees that
∑

j µ̂j = 1.
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All functions that can be expressed as linear combinations
of these ansatz functions form the linear subspace

D = {u : u =
m∑

j=1

ūjΦj, ūj ∈ R}.

Based on the ansatz space D, Galerkin discretization of the
eigenvalue problem (4) assumes3,8

u =
m∑

j=1

ūjΦj, i.e.,
m∑

j=1

ūj(TΦj − λΦj) = 0,

then multiplies the last equation from the left with Φk/µ̂k ,
using the scalar product 〈·, ·〉µ, which results in

m∑
j=1

1
µ̂k

(
〈Φk , TΦj〉µ − λ〈Φk ,Φj〉µ

)
ūj = 0. (5)

Introducing the two m × m matrices P and M with entries

Pkj =
1
µ̂k
〈Φk , TΦj〉µ, Mkj =

1
µ̂k
〈Φk ,Φj〉µ,

and the coefficient vector ū= (ūj)j=1,...,m, we can write
Equation (5) in the form of a generalized eigenvalue prob-
lem,3,9

Pū = λMū. (6)

It has been shown3,8 that the solution of this generalized eigen-
value problem is the best possible approximation of the solu-
tion of the full eigenvalue problem (4) if restricted to the ansatz
space D. P is a stochastic matrix with stationary distribution
µ̂ = (µ̂1, . . . , µ̂m). In fact it can be shown that the discretized
eigenvalue problem (6) inherits most of the structural proper-
ties of (4), e.g., no eigenvalue has absolute value larger than
1 and all its eigenvalues are real-valued if the dynamics is
reversible.3

C. Set-based MSMs

The most prominent example for a partition of unity
results from set complete partition of state/phase space:
Assume that the disjoint sets A1, . . . , Am decompose state
space, i.e., ∪jAj =X. Then their characteristic functions
Φj = 1Aj form a partition of unity and we find that3

Pkj = P(τ, Ak , Aj)

and Mkj = δkj, the standard identities used in set-based MSM
building. In this case, MSM building reduces to (A) computing
the transition matrix P and (B) solving the eigenvalue problem
Pū = λū for the dominant eigenvalues and eigenvectors. Since
the entries of P are just the transition probabilities between the
discretization sets Aj, it can be seen easily that the computation
of Pkj only requires a couple of trajectories of length τ start-
ing in Ak and setting Pkj to the fraction of these trajectories
that ends up in Aj. This procedure has been studied to quite
some extent2–4,9,10 and has been applied to a variety of molec-
ular systems. Its main disadvantage is that a reduction of the
error of the discretization often requires the unwanted refine-
ment of sets in the transition region between the metastable
sets which can lead to an explosion of the number of sets
needed.11

Therefore, alternative forms of set-based MSM building
do not use complete set partitions of state space but require

some disjoint core sets or milestones only that have to be
placed at the attractive core of the main metastable sets.9 Then
the partition of unity is formed by the committor functions
associated with these core sets. Again, the computation of the
discretization matrices P and M can be reduced to transition
counts based on trajectories.3,12 However, depending on the
size and location of the core sets, quite long trajectories may
be needed which can create severe limitations.12

D. Set-free MSMs

The form of partition of unity that we will discuss next is
constructed using radial basis functions: Based on a collection
of m so-called base points qj ∈ X, we define

Φj(x) = γ(x) exp
(
− αjd(x − qj)

2
)
, (7)

where αj is a positive constant, d a distance measure
(d-proximity), for example, the Euclidean measure d(x)2

=
∑n

k=1 x2
j , and γ is chosen so that the partition of unity

condition is satisfied, i.e.,

γ(x)−1 =

m∑
j=1

exp
(
− αjd(x − qj)

2
)
.

The efficient computation of the discretization matrices P and
M based on the ansatz space D associated with a radial basis
function based on partition of unity has rarely been discussed1

up to now and will form the main part of Sec. III.

E. Discretization error

In order to estimate the discretization error of the eigen-
value problem, we first have to understand that the Galerkin
discretization can be understood as an orthogonal projection Q
(orthogonal with respect to 〈·, ·〉µ) from the full function space
to the ansatz space D,

Q3 =
n∑

k,j=1

(M−1)kj 〈Φk , 3〉µ Φj. (8)

Let the dominant eigenvalues of the full transfer operator
T = Tτ be denoted

1 = λ1 > λ2 ≥ . . . ≥ λm, (9)

with associated eigenfunctions uj, j = 1, . . . , m. Moreover, let
the leading eigenvalues of the generalized eigenvalue problem
(6) be denoted

1 = λ̂1 > λ̂2 ≥ . . . ≥ λ̂m.

Then the discretization error is characterized by

max
j=2,...,m

|λj − λ̂j | ≤ 2λjδ,

where δ denotes the projection error of the leading eigenvectors
to D,

δ = max
j=1,...,m

‖uj − Quj‖,

where ‖3‖ =
√
〈3, 3〉µ.
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III. METHODS

In this section, we will first construct efficient methods for
computing the entries of the discretization matrices P and M
based on radial basis ansatz functions of the form (7). Second,
we will present an algorithm for refining a discretization by
adding ansatz functions in order to decrease the error of the
discretization.

A. Computation of P and M

We first have to discuss how to compute scalar products
of the form

〈Φk , u〉µ =
∫
Φk(x)u(x)µ(x) dx,

for an arbitrary function u that we will specify later. Since
µ(x) = exp(−βV (x))/Z we have

〈Φk , u〉µ =
∫

γ(x)
Z

u(x) exp
(
− βUk(x)

)
dx,

with the energy function

Uk(x) = V (x) +
αk

β
d(x − qk)2, (10)

which is composed out of the original energy function plus
an extra harmonic potential. Molecular dynamics simulation
runs with the potential Uk instead of V are easily imple-
mented in all standard MD codes and will sample the invariant
measure

µk(x) =
1
Zk

exp
(
− βUk(x)

)
,

Zk =

∫
exp(−βUk(x))dx,

so that

〈Φk , u〉µ =
Zk

Z

∫
γ(x)u(x)µk(x) dx.

When performing MD simulations with the energy function
Uk , we will produce sample points (x1,k , . . . , xL,k) that are
distributed according to µk . For each potential Uk this set of
points will be referred to as the restraint sampling points in
the following. We remark that for the procedure which gen-
erates the restraint sampling points, any rapidly mixing sam-
pling scheme can be applied independent of the choice of the
desired T t-dynamics. The reason is that these sampling points
only act as quadrature points for a Monte Carlo evaluation
of the inner products. In the numerical examples, therefore, a
standard Metropolis Hastings (MC) sampling method will be
applied.

Using the restraint sampling points, the above integral can
be approximated by the respective mean value

〈Φk , u〉µ ≈
Zk

Z
1
L

L∑
i=1

γ(xi,k)u(xi,k),

where the error will vanish for L → ∞. This result allows us
to calculate the entries of the mass matrix M,

Mkj =
〈Φk ,Φj〉µ

〈Φk , 1〉µ
≈ M̃kj(L) =

∑L
i=1 γ(xi,k)Φj(xi,k)∑L

i=1 γ(xi,k)
. (11)

The entries of P, however, require knowledge regarding the
action of T on Φj,

Pkj ≈

∑L
i=1 γ(xi,k)TΦj(xi,k)∑L

i=1 γ(xi,k)
.

In order to approximate TΦj(xi,k), we need K trajectories of
time length τ of the original molecular dynamics with respect
to the energy function V, all starting in xi ,k . Let zi ,k ,l denote
the end point of the l-th of these trajectories. Then

TΦj(xi,k) = E
(
Φj(Xτ)|X0 = xi,k

)
≈

1
K

K∑
l=1

Φj(zi,k,l),

where, again, the error will vanish for K → ∞. Putting things
together, we can calculate the entries of P via

Pkj ≈ P̃kj(L, K) =
1
K

∑L
i=1

∑K
l=1 γ(xi,k)Φj(zi,k,l)∑L

i=1 γ(xi,k)
. (12)

Conclusively we found the following algorithm for approxi-
mately computing the entries of Pkj and Mkj, and approximate
the dominant eigenvalues λ and eigenfunctions u of T :

1. Assume that the ansatz functions are of the form (7).
Select large enough K and L.

2. For each k = 1, . . . , m:

• Compute L sampling points xk ,i, i= 1, . . . , L, using
MD simulation with respect to the energy function Uk

given in (10).
• Compute M̃kj(L) for all j = 1, . . . , m using (11).
• For each i= 1, . . . , L: Compute K trajectories of

length τ with end points zk ,i ,l, l = 1, . . . , K , using
MD simulation with respect to the original energy
function V.
• Compute P̃kj(L, K) for all j = 1, . . . , m using (12).

3. Solve the generalized eigenvalue problem P̃ū = λM̃ū.

B. Finding metastable sets

Finding the eigenvalues λi of the transfer operator T is
only one part of the problem. The other part is identifying the
sets in (1), such that the transition probabilities are small. We
will use PCCA+13,14 in order to characterize the metastabilities
of the dynamical system. PCCA+ is based on the following
concept: A membership function χ : X→ [0, 1] represents a
kind of “fuzzy”-set, it assigns a grade of membership χ(x) to
every state x ∈ X of the system. If T χ ≈ χ, then this set is
metastable with regard to the dynamics encoded in the transfer
operator T. If we try to find a set of n membership functions
χ1, . . . , χn which are linearly independent and which are all
as metastable as possible, then this can be written in terms
of a variational principle and the functions χ are optimally
given by a linear combination of the leading eigenfunctions
of T. In the above algorithm we have already computed an
approximation of these eigenfunctions. Given the n leading
generalized eigenvectors ū1, . . . , ūn ∈ R

m with P̃ūj = λM̃ūj

according to the above algorithm, we construct approximated
membership functions χ̃1, . . . , χ̃n by the linear combination



124133-5 Weber, Fackeldey, and Schütte J. Chem. Phys. 146, 124133 (2017)

approach in the space of ansatz functions Φ,

χ̃i(x) =
m∑

j=1

cijΦj(x).

If the vectors ci = (ci1, . . . , cim)T are non-negative and form a
partition of unity, such that

∑n
i=1 cij = 1, then χ̃ is non-negative

and forms a partition of unity, because it is a convex combi-
nation of the ansatz functions. In order to compute the vectors
ci, we denote them as a linear combination of the eigenvectors
ūj via cik =

∑n
j=1 aijūjk . PCCA+ is used to find an optimal set

of linear combination factors aij.13,14

C. Constructing an initial discretization

In the beginning of the meshless approach, an initial sam-
pling of the state space X is needed. This sampling need
not be trajectory-based, it even need not represent the invari-
ant measure µ. Additionally, it need not be completely cov-
ering X. In the numerical example, we will start with a
very localized sampling only having discovered one out of
three metastable states of the system. Out of this initial sam-
pling s1, . . . , sI , we will pick a predefined number of initial
base points. The picking algorithm is done in the following
way.15

• In the first step an arbitrary base point q1 is picked. Then
the sampling point q2 with the maximal distance to q1

is picked.
• In the next steps, always the sampling point qk

is picked which has the maximal minimal distance
to all given base points q1, . . . , qk−1. That is, qk

is the point s out of the set of sampling points
s1, . . . , sI which maximizes the following expression:
max s minj=1,...,k−1;s,qj

d(s − qj)2.
• The last base point qm picked in this way has the

maximal minimal distance dmin to all other base
points.

The basis functions Φk are now almost constructed; finally
we only need to define αk . The more dense the base points
are located, the higher the α-values should be, because the
restraint simulations should be localized around their individ-
ual base points. In theorem 5.10 in the doctoral thesis,1 it is
shown that the error ‖ χ − χ̃‖L1(µ) between the true member-
ship functions χ and the best approximation χ̃ (based on the
meshless discretization) is small only if α is sufficiently large.
In order to assure a small overlap between restraint samplings
for base points having a greater distance than 2dmin, the scalar
factors αj are (equally) chosen to be proportional to d−2

min (for-
mula (80) in the doctoral thesis1). For a predefined parameter
σ, we define αj = σ/d2

min for j = 1, . . . , m. The question
remains, how to sufficiently cover the relevant part ofX with
an initial discretization. One could apply the existing methods
for a good initial sampling ofX (ConCoord,16 GLAT,17 taboo
search,18 or continuation methods19). Alternatively, the above
picking algorithm could be used (and will be used in the numer-
ical example) to “fill”X: After we have constructed the basis
functions Φk , we perform the restraint simulations according
to the penalty potentials Uk . A major challenge in molecular
simulation is that the trajectories of the system run into the

next closest minimum, which is also known as the trapping
problem. This fact can hinder the system to explore additional
parts of the state space X. If we have picked a large number
of base points, then αk will be large and the penalty potentials
diminish a trapping. We simply restart the picking algorithm
on the basis of all sampling points stemming from the restraint
simulations and pick again the same number m of base points
out of this set. If dmin has extended compared to the initial
picking, then new parts of the state space have been found and
we have to restart the restraint simulations and picking again.
This iteration is done, until dmin does not extend anymore. The
result of this procedure is our initial basis for the refinement
steps.

D. Solving the generalized eigenvalue problem
and refinement

The general eigenvalue problem (6) in general is ill-
conditioned, especially, when solving it by inverting M̃. We,
therefore, tread a different path by only computing the leading
eigenvalues of P̃, i.e.,

P̃ūP,i = λP,iūP,i. (13)

This eigenvalue problem typically is well-conditioned. Using
PCCA+ the coefficients cj, j = 1,. . . .,n are computed as a lin-
ear combination of the leading eigenvectors of (13), i.e., cik

=
∑n

j=1 aijūP,jk , which we can also denote using the linear space
spanned by the leading eigenvectors, cj ∈ span({ūP,i}), j
= 1, . . . , n. If

M̃cj ∈ span({ūP,i}), j = 1, . . . , n, (14)

then the eigen vectors (ūi) of (6) meet

cj ∈ span({ūi}), j = 1, . . . , n,

which is equivalent to

M̃cj − Π
ūj
µ
(
M̃cj

)
= 0, j = 1, . . . , n.

In this equation Π
ūj
µ is the µ weighted orthogonal projection

onto the eigenvector ūj which in its matrix form can be denoted

by Π
ūj
µ = ūūT W with W = diag(µ̂k). Summing up we have

the following algorithm for solving the generalized eigenvalue
problem (6):

1. Compute the n leading eigenvectors {ūP,i} of (13).
2. Evaluate the coefficients cj, j = 1, . . . ., n via PCCA+.
3. Compute for each basis function Φk , k = 1, . . . , m the

error

rk =

n∑
i=1

����
(
M̃ci − Π

ūj
µ (M̃ci)

)
k

���� .

4. For some given tolerance TOL,

rk < TOL break,
rk ≥ TOL add new basis function (m → m + 1)

and go to 1.

We remark that (14) can be interpreted as a condition
on the discretization, which guarantees that solving the gen-
eralized eigenvalue problem (6) is not ill-conditioned. More
precisely if (14) holds, then the eigenvalues of (6) are given by
λi = λP,i/λM,i where λP,i are the eigenvalues of P̃ and λM,i are
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the eigenvalues of M̃, respectively. The algorithm can also be
considered as an adaptive refinement strategy with indicator rk .
Within each basis function Φk , k = 1, . . . , m, we check if the
restraint sampling points (x1,k , . . . , xL,k) are distributed accord-
ing to the local invariant measure µk . For this purpose we apply
the Gelman-Rubin20 criterion as described in the literature.21

One further refinement strategy1 had been proposed based on
a perturbation of the shape parameter α. Common to all refine-
ment strategies is that they require the addition of new basis
functions, which can be done in an efficient way as described in
Sec. III E.

E. Adding new base points

In order to refine the basis, m′ new base points have to be
added to the existing ones. We take the union set of all sampling
points according to all basis functions which are identified to be
refined by the above algorithm and call this union the picking
set. For choosing the base points for the additional basis func-
tions, we observe that sampling points with a large distance
to the base points qk have a large statistical weight due to the
structure of Uk and the weight γ. Consequently, the selection
of the additional base points out of the picking set is then done
by the picking algorithm in Section III C: New base points are
iteratively added having maximal minimal distance to all base
points selected so far—including the initial base points. After
adding the predefined number of new base points, the scalar
parameters αk , k = m + 1, . . . , m + m′ are again determined
according to the smallest distance (only for the added basis
functions αj = σ/d2

min). Thus, adding new basis functions only
affects the normalization function γ and has no impact on the
already sampled restraint potentials Uk . The only change is that
the computations of P and M in Equations (11) and (12) have
to be applied with regard to the new normalization function
γ.

Since the distances between the base points are assum-
ingly decreasing in each refinement step, α will increase.
New simulations according to the restraints Uk , k =m + 1, . . . ,
m + m′ are performed. In order to assure optimal acceptance
ratios, the step length of the MC sampling method is nec-
essary. Usually, the step length will decrease leading to less
“exploration” of the conformational space within the prede-
fined number of simulated points. In this way the adding of
new base points is a real refinement.

F. Exploring additional transitions

For performing the described meshless algorithm and the
refinements, it is not mandatory that there exist one simulated
trajectory which covers all parts of the state spaceX. Even the
initial discretization can be based on unconnected samplings
of different parts of the conformational space. The advan-
tage of a meshless approach with global radial basis functions
(instead of sets) is the assured construction of dense matrices
P̃ and M̃. The “transition matrix” P̃ is dense and also accounts
for d-proximity of the base points (cp. (7)). More precisely,
the computed membership functions χ̃ account for transitions
where they occur and for d-proximity where transitions do not
occur. The discrimination between dynamical and geometrical
proximity is coded in the difference between M̃ and P̃, because
M̃ only includes the pure proximity information. The extension

based stopping criterion in Section III C probably leads us to
resolve only the main transitions between the metastable states
in the beginning. However, in the refinement procedure later on
it is likely to find additional transitions between the identified
conformations. The reason is the following. The added base
points will be concentrated in those regions of the state space
X where the transitions between the conformations occur.
These regions are related to level sets of χ̃i ≈ 0.5. If the refine-
ment is performed “completely along” these level sets, then
all transitions between the corresponding conformations are
identified in the end. In the illustrative example we will show
that the refinement procedure identifies a transition region
between two conformations which was not explored in the
beginning.

IV. NUMERICAL EXPERIMENTS

A. Illustrative example

As an illustrative example the following potential energy
function is analyzed:

V (x) = 3 exp

(
−x2

1 − (x2 −
1
3

)2
)

− 3 exp

(
−x2

1 − (x2 −
5
3

)2
)

− 5 exp
(
−(x1 − 1)2 − x2

2

)
− 5 exp

(
−(x1 + 1)2 − x2

2

)
+ 0.2 x4

1 + 0.2

(
x2 −

1
3

)4

. (15)

Contour lines of the potential energy function are plotted in
Fig. 1. In the numerical experiments the inverse tempera-
ture is β = 4, which leads to very rare transitions between
the three metastable regions of the potential energy func-
tion. On average, only every 100 000th step of the selected
Langevin dynamics overcomes energetic barriers and is able
to leave one of the major metastable regions. Long-term tra-
jectories are, thus, inefficient in order to sample transition
probabilities between the three wells, because the transi-
tions occur rarely. There exists an eigenvalue solution based
on the infinitesimal generator of that potential (Eq. (5.3) in
Ref. 22). From this solution we get that λ2 ≈ 0.999 98 and
λ3 ≈ 0.997.

1. Two different settings

In this first example, we investigate the insertion of new
basis functions as described in Section III E. More precisely,
by setting αj = σ/dmin and using different values for σ, we
control the influence of new basis functions onto the shape of
all basis functions. By setting first σ = 1, the shape param-
eter α increases moderately, such that a very deep refine-
ment of the state space is realized, see Figs. 2(a) and 2(c).
Second, we chose σ = 3 such that α increases rapidly, and
only a few refinement steps are performed. Below, the two
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FIG. 1. Contour lines of a three-well potential with two symmetric metasta-
bilities (on the left and on the right) and one less metastable region (top).
The blue trajectory shows an initial sampling of the state spaceX starting in
the left metastable region. 500 steps of a discretized Langevin dynamics have
been computed. This number is too low to expect a transition into another
metastable region. However, by the restricted samplings, one transition path
from the left (via the top) to the right metastable region is detected. The black
circles correspond to the initial nodes.

choices of σ are discussed based on the results of the rough
discretization.

2. Initial discretization for σ = 1

The initial discretization of the state space X has been
done according to the above algorithm in Sec. III C. For an
initial sampling, we start 500 steps of a diffusion process
as described in Eq. (3) in the left minimum (cf. Fig. 1). In
the next step, 25 initial base points are selected out of this
initial sampling. For each of the corresponding basis func-
tions, we compute the restraint subsampling points according
to the restraint potential Uk , k = 1,· · · ,25. We then employ the
picking algorithm (Sec. III C) and subsample the new basis
functions. Repeating this procedure enables us to cover three
minima with an initial discretization. This corresponds to the
black points in Fig. 1.

3. Refinement for σ = 1

If we apply the refinement procedure in Sec. III D for
determining the basis functions that have to be refined and
if we interpret the potential as a 2-metastabilities-situation,
then mainly the region which directly connects the two deep
minima is refined, see Fig. 2(a). In this region the membership
functions have the largest gradients and need to be represented
by a finer “grid” of meshless basis functions. If we plot cir-
cles with the rk-values as radii and base points as centers in
conformational space (Fig. 2(b)), we can directly see that in
this region the mandatory subspace argument for the well-
conditioned computation of λi via λi = λP,i/λM,i is violated
at most.

4. Results for σ = 1

In the above example, the potential energy function is
regarded as a 2-metastabilities-situation with a direct transition
between the two deep minima and a (lower minimum) tran-
sition region at the top. The refinement procedure stopped,
when α > 60. The computation of the second largest eigen-
value according to λi = λP,i/λM,i yields λ2 = 0.999 96. Both
transition pathways between the main metastabilities have
been detected. However, the potential energy function can
be seen as a 3-metastabilities-situation too. In that case we
aim at computing 3 generalized eigenvectors instead of 2. Let
us rephrase that condition (14) is fundamental for a well-
conditioned computation of leading eigenvalues of T. For
instance, if we would try to compute the third eigenvalue
based only on the refinement in Fig. 2(a), then the approxi-
mation yields λ3 = 1.0237 which is obviously wrong, because
T cannot have eigenvalues greater than 1. Thus, the target
invariant subspace condition of the refinement procedure is
mandatory.

If we apply the refinement procedure for 3 eigenvectors,
then the refinement will not only take place in the region where
the two main metastable regions meet each other but also takes
place inside the small top basin. This can be seen in Fig. 2(c).
The resulting leading eigenvalues are λ2 = 0.999 94 and
λ3 = 0.996 95.

FIG. 2. (a): In this plot we try to identify 2 metastabilities n = 2. Mainly the direct transition region between the deep minima is refined. The red crosses represent
the selected nodes, while the black circles represent the “size” or variance of the penalty potentials. The smaller the circles, the higher α. (b): The error evaluation
for the 2-metastabilities-situation. Bigger black circles have higher error values rk . Clearly, the subspace condition is mostly violated in the direct transition
region between the two deep minima. (c): If the refinement procedure is based on 2 metastabilities, then mainly the direct transition region between the deep
minima is refined. If the refinement, however, is based on 3 metastabilities, then the top region of the state spaceX is refined, too. This is shown here.
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5. Results for σ = 3

Using a higher value for σ leads to a faster increase of
α. In the initial phase of the algorithm, a higher value of α
leads to an exploration of regions with a higher energy. Thus,
both transition pathways between the main metastabilities are
already included in the initial discretization. The final dis-
cretization is already found after two refinement steps, see
Fig. 3. Only near the direct transition region between the two
main metastabilities additional base points were located. The
resulting eigenvalues of the approximated Galerkin projection
are λ2 = 0.999 91 and λ3 = 0.997 33. This is already a very
good approximation compared to the very fine discretizations.
In the numerical experiments, the second eigenvalue mainly
increases during the refinement, whereas, the third eigenvalue
decreases. There is a reason for this. On the one hand, there
is the (Rayleigh’s) variational principle.23 The better the dis-
cretization can resolve the leading eigenfunctions, the higher
the eigenvalues are of the corresponding Galerkin projection of
the transfer operator. This could explain why λ2 increases with
a finer discretization. On the other hand, the transfer operator
is not analytically given, it is represented by a sampling pro-
cedure. This means, as long as not all transition pathways are
found, the processes seem to be “more metastable” as they are.
This could explain that a certain level of discretization has to be
reached in order to account for all possible transition pathways
in the system. This means that eigenvalues can decrease with
a finer discretization, seemingly contradicting the variational
principle.

B. Molecular example

The second example is a nine-dimensional molecular sys-
tem. In this system 3 argon atoms (in three dimensional space)
are interacting with each other. The interaction potential is a
Lennard-Jones potential

VLJ (r) = ε
((

r0
r

)12
− 2

(
r0
r

)6)
,

FIG. 3. If the parameter σ is high, then α increases rapidly. The algorithm
stops after only a few refinement steps of the discretization. The meshless basis
functions are indicated in this plot. A fast convergence could lead to unre-
vealed transition regions. However, the probability to find different transition
pathways in the initial discretization phase is high for σ = 3.

which depends on the pairwise distance r between the argon
atoms. In our example the LJ-energy is ε = 94.87[kJ/mol] and
the optimal distance between the argon atoms is r0 = 3.74 Å.
In addition to the LJ-potential, there is a quadratic penalty
potential to restrict each atom coordinate to be in the interval
[�2 Å, 2 Å]. The inverse temperature has been set to β = 0.1
mol/kJ in order to have rare transition events. As in the above
example, we set σ = 3 for the adaptive calculation of the
parameter α of the modified potential. We set the trial step
size to be 0.03 Å for the Metropolis Hastings sampling (MC)
of the inner products. This assures an acceptance ratio of about
80% during our simulations. For the refinement we combine
the invariant subspace condition of Sec. III D with a standard
Gelman-Rubin criterion. The samplings should at least con-
verge. This is reached, if the Gelman-Rubin-indicator is less
than 1.3.

We start our simulation with a conformation, where all
pair-wise distances between the argon atoms are optimal, i.e.,
r = r0. The transfer of the molecular process is given by a
diffusion process where the drift is based on the gradient of
the LJ-potential, see Eq. (3).

This system has four different metastable conformations,
see Fig. 4. The first one “1-2-3” is the main conformation,
where all distances between the atoms are nearly r0. In the
other three conformations one atom is unbound and two atoms
form a pair; these symmetric conformations can be denoted
by “1-2 3, 1 2-3, 1-3 2.” Because of this, we refer to the main
conformation as the doubly bound one and call the other three
the singly bound conformations.

The given molecular example has three difficulties. First,
the starting point of the simulation 1-2-3 has a very low
potential energy such that the transition from that confor-
mation to another conformation is very unlikely. Second,
the transitions between the conformations of the system are
not only driven by the potential energy term, they are also
driven by entropic contributions, because the unbound atom
has to “find” its binding partners. Thus, there is no sad-
dle point in the potential energy landscape. And third, the

FIG. 4. Statistical weights of the conformations of argon. The red colored
circles and arrows are the conformations and transitions that have been found
in the initial discretization, i.e., the first row in Table I.
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TABLE I. Showing the refinement steps of the procedure explained in Section III D. Initially, we started the
picking procedure with 37 500 steps (3 iterations of the picking algorithm). The column # steps corresponds to
the number of restraint sampling points. The number of conformations (# clusters) has been determined with the
minChi criterion25 and increases during the procedure. The angle (column “subspace”) between the subspaces of
the eigenvectors ūP and MūP decreases within the refinement steps, whenever the number of clusters is unchanged.
This shows that the idea of the refinement indicator applies. Furthermore, we provide the number of additionally
picked base points (# base points), the number of propagated sampling points (# propagated), and the leading
eigenvalues of the discretized transfer operator.

Refinement level # steps # propagated # base points Subspace λP,2, λP,3, λP,4 # cluster

0 37 500 7 500 25 0.031 0.78, 0.77, 0.68 3
1 21 000 4 200 14 0.029 0.78, 0.77, 0.74 3
2 18 000 3 600 12 0.0602 0.78, 0.78, 0.74 4
3 21 000 4 200 14 0.0394 0.79, 0.78, 0.74 4

Total 135 000 19 500 65

three conformations “1-2 3, 1 2-3, 1-3 2” are equivalent.
Thus, the corresponding transition probabilities should be
equal.

In the initial discretization phase, two singly bound con-
formations are already covered. Furthermore, the transitions
between these conformations and the doubly bound confor-
mation are revealed. Analyzing the transition matrix after
that phase reveals only 2 further eigenvalues close to λ1 = 1
(the system should have three). The refinement of the con-
formational space mainly takes part in the entropic region.
The transitions between the singly bound states are dis-
covered at a later stage of the refinement. In Table I the
results of the initial level and the three refinement levels are
shown. For measuring the similarity between the subspaces
spanned by ūP and MūP, we computed the angle between the
subspaces.24

After four refinement steps with 65 base points in total, the
analysis of the transition matrix reveals all four conformations,
i.e., all transitions indicated in Fig. 4.

Although the discretization is far from being symmetric,
the calculated transition probabilities between the conforma-
tions are symmetric: The conditional transition probabilities
from the minor conformations into the main conformation are
in the range of 7%–8%. Thus, the maximal absolute devia-
tion from the symmetry is 1%. The eigenvalues λ2, λ3, and
λ4 of M are near 0.84, while the corresponding eigenvalues
of P are near 0.77. This indicates a relatively good mixing
and a good overlap between the meshless basis functions.
Although in the meshless approach the eigenvalues are low,
the computation of the eigenvalues of M̃−1P̃ and of the statis-
tical weights reveals that the main conformation covers about
99.997% of the conformational space, and transitions from
that doubly bound conformation into one of the singly bound
ones on average only take place every 30 000th time step, if an
unrestricted sampling of the diffusion dynamics (3) is applied
instead of our meshless discretization approach. In total, we
sampled 154 500 steps for the whole procedure and figured out
the statistical weights and all transition probabilities to correct
symmetry.

For comparison, we performed a straightforward simu-
lation without any restraints of the dynamics with 300 000
steps (same stepsize as above). An analysis of the

trajectory with PCCA+ classifies the atomic distance of 4 Å
to be “unbound,” whereas, in the meshless approach it was
7 Å. The reason for the difference is that the farthest distance
between the atoms during the simulation has only been 5 Å.
This explains also why the main conformation had a lower
statistical weight in the straightforward simulation: 299 840
steps were found in the main conformation, which are 99.94%
of all steps. In total, the trajectory changed 4 times between
the conformations, and only 2 of the 3 unbound conformations
were visited. A straight simulation giving the correct symme-
try and reaching the conformations where the atoms have a
distance of more than 7 Å seems computationally extremely
demanding.

V. CONCLUSION

In this article, we presented a set-free approach to MSM
building utilizing smooth overlapping ansatz functions instead
of sets. In addition, an adaptive refinement procedure of this
kind of meshless discretization was proposed that allows
to improve the quality of the model while exploring state
space while in parallel improving the approximation qual-
ity of the MSM by inserting new ansatz functions into the
discretization.

Furthermore, the choice of Gaussian-like ansatz functions
makes it easy to implement the Galerkin projections underly-
ing the discretization by means of existing sampling software
via quadratic penalty potentials. We combined this easily avail-
able restraint sampling procedure with a reweighting strat-
egy such that the ansatz functions are approximate indicator
functions of sets such that the popular interpretation of the
resulting MSM in terms of transition probabilities can again be
used.

A generalized eigenvalue problem has to be solved for
the resulting non-orthogonal Galerkin projection. In order to
avoid ill-conditioned eigenvalue problems, we proposed to
adaptively refine the ansatz space such that the eigenvectors
of the “transition matrix” P are also invariant with regard to
the “mass matrix” M. It turned out that this approach explores
the transition regions of the conformational space, and can
reveal conformations of the molecular system which were
undiscovered by the initial sampling.
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