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Mutations of FOXP2 are associated with altered brain

structure, including the striatal part of the basal gan-

glia, and cause a severe speech and language disorder.

Songbirds serve as a tractable neurobiological model for

speech and language research. Experimental downregu-

lation of FoxP2 in zebra finch Area X, a nucleus of the stri-

atal song control circuitry, affects synaptic transmission

and spine densities. It also renders song learning and pro-

duction inaccurate and imprecise, similar to the speech

impairment of patients carrying FOXP2 mutations. Here

we show that experimental downregulation of FoxP2 in

Area X using lentiviral vectors leads to reduced expres-

sion of CNTNAP2, a FOXP2 target gene in humans. In

addition, natural downregulation of FoxP2 by age or by

singing also downregulated CNTNAP2 expression. Fur-

thermore, we report that FoxP2 binds to and activates the

avian CNTNAP2 promoter in vitro. Taken together these

data establish CNTNAP2 as a direct FoxP2 target gene in

songbirds, likely affecting synaptic function relevant for

song learning and song maintenance.
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Mutations of the transcription factor FOXP2 cause Devel-
opmental Verbal Dyspraxia (DVD), a severe speech and
language disorder (Lai et al. 2001). Patients with FOXP2
mutations have profound deficits in productive and percep-
tive aspects of speech and language, and perform particularly
poorly in word repetition tasks (Watkins et al. 2002). Inter-
estingly, learning of other motor tasks is less (Alcock et al.
2000) or not affected (Watkins et al. 2002). The disorder is
inherited in a monogenic, autosomal dominant way. This
makes it possible to study the causality between FOXP2
mutations and DVD and provides an entry point to start
addressing the molecular underpinnings of human language.

Toward this end, over 800 candidate direct Foxp2 tar-
get genes have been identified in large scale screens in
mice and humans (Mukamel et al. 2011; Roll et al. 2010;
Spiteri et al. 2007; Vernes et al. 2007, 2008, 2011). Among
them is contactin-associated protein-like 2 (CNTNAP2), a
member of the neurexin protein family (Suedhof 2008;
Vernes et al. 2008). CNTNAP2 is implicated in diverse human
disorders such as autism, schizophrenia, cortical dyspla-
sia focal epilepsy (CDFE), specific language impairment
(SLI), epilepsy, Gilles de la Tourette syndrome and atten-
tion deficit hyperactivity disorder (ADHD; Rodenas-Cuadrado
et al. 2014), some of which affect language (e.g. autism,
Tourette and CDFE). How CNTNAP2 function relates to these
pathologies is not yet well understood. CNTNAP2 is rele-
vant for the clustering of voltage gated potassium chan-
nels at the juxtaparanodes of myelinated axons (Girault et al.
2003; Horresh et al. 2008; Poliak et al. 1999), but also plays
important roles in neuronal migration, network formation, and
the growth and maintenance of dendritic spines (Anderson
et al. 2012; Gdalyahu et al. 2015; Penagarikano et al. 2011;
Rodenas-Cuadrado et al. 2014). Knockdown of Cntnap2 in pri-
mary neuron cultures leads to a decrease in dendritic branch-
ing, spine head width and synaptic strength (Anderson et al.
2012). Loss of function in mice (Cntnap2−/−) results in fewer
striatal interneurons and a lower spine density in cortical layer
5b neurons compared to litter-mate controls (Gdalyahu et al.
2015; Penagarikano et al. 2011). The decrease in spine density
occurs because existing spines are eliminated, not because
newly generated spines fail to be stabilized (Gdalyahu et al.
2015). Studying CNTNAP2 as a potential target of FoxP2 in
postembryonic and adult songbirds holds the promise to illu-
minate which of the above functions are relevant for song
learning and song maintenance.

Songbirds have shed light on the importance of striatal
FoxP2 expression for learned vocalizations (Adam et al. 2016;
Haesler et al. 2007; Heston & White 2015; Teramitsu & White
2006; Thompson et al. 2013; Wohlgemuth et al. 2014). Exper-
imental alteration of FoxP2 levels in the striatal song nucleus
Area X of zebra finches leads to decreased spine density and
impairs the learning and production of song (Haesler et al.
2007; Heston & White 2015; Murugan et al. 2013; Schulz
et al. 2010). We hypothesized that CNTNAP2 is a direct
FoxP2 target gene in songbirds for the following reasons:
(1) CNTNAP2 is a target of FOXP2 in humans (Vernes et al.
2008). (2) CNTNAP2 affects spine density in mice (Gdalyahu
et al. 2015) as does FoxP2 in zebra finches (Schulz et al. 2010),
raising the possibility that the observed effect of FoxP2 on
spines is mediated via CNTNAP2. (3) Expression levels of
CNTNAP2 and FoxP2 in adult zebra finches are both higher
in the striatum than in Area X (Haesler et al. 2004; Panaitof
et al. 2010; Thompson et al. 2013). Here we demonstrate
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that FoxP2 can bind to and regulate the CNTNAP2 promoter
in vitro and that CNTNAP2 expression is correlated to FoxP2
expression in Area X of juvenile and adult males. A FoxP2
knockdown can lead to a correlated CNTNAP2 down-
regulation, suggesting that the striatal regulation of
CNTNAP2 by FoxP2 is the result of a direct interaction.

Methods

Nomenclature
The FoxP2 nomenclature follows the convention proposed in Kaest-
ner et al. (2000): FOXP2 in Homo sapiens, Foxp2 in Mus musculus
and FoxP2 in all other species, including zebra finches (Taeniopygia
guttata). For all genes we use the italicized letters to refer to the gene
or cDNA and roman type to refer to the protein.

Subjects
All experiments were performed in accordance with the guidelines of
the governmental law (TierSchG). 39 male zebra finches were used
in this study. Prior to the experiments, animals were housed in large
free flight aviaries under a 12 h:12 h light:dark-cycle with food and
water provided ad libitum. Birds were sexed on the day of hatching
via polymerase chain reaction (PCR) as previously described (Adam
et al. 2014). At the beginning of the experiments, all birds (except
those that underwent surgery) were isolated in sound attenuated
recording boxes overnight to monitor morning vocal activity. Birds that
did not sing were either overdosed with isoflurane immediately after
the lights went on in the morning or 2 h later. Birds in the singing
group were allowed to sing undirected song and were overdosed
after they sang more than 500 motifs within 2 h after their first motif
of the day. The first motif had to be sung within 2 h after the lights
went on. Vocalizations were continuously monitored and recorded
using the Sound Analysis Pro software SAP2011 (Tchernichovski et al.
2000).

Injection of lentiviral vectors
Injections of lentiviral vectors mediating a FoxP2-knockdown were
performed as described previously (Adam et al. 2016; Haesler et al.
2007). In brief, at post hatch day 23 (day 23) male zebra finches
were injected into Area X with two different lentiviral vectors, in one
hemisphere with the vector carrying one of two FoxP2-knockdown
constructs (shFoxP2-f or shFoxP2-h), in the other hemisphere with
a non-silencing control construct (Haesler et al. 2007). Injections
(approximately 200 nl per site) were placed into eight sites in each
hemisphere. Injection side and order as well as the choice of the
FoxP2-knockdown construct were randomized. After surgery the
animals were transferred to their home cages and allowed to grow
up normally in the presence of their biological parents and siblings. At
day 35 birds were overdosed, the brain was quickly extracted and cut
into acute slices. Subsequently, microbiopsies of Area X were taken
and stored individually at −80∘C.

Electrophoretic mobility shift assay
HEK293T cells were transfected with pcDNA4-FoxP2-V5-HISB
(Haesler et al. 2007) or empty vector and lysates were affinity
purified via the HIS-V5 tag. One microgram of purified FoxP2 pro-
tein and 0.8 ng of DIG labeled CNTNAP2 probe (oligo sequence
5′-TATTATTATTTATTTTTGTACTCTACATTCCTTGTTATTTGATACT-3′,
FoxP2 binding sites are indicated by bold letters) were incubated in
binding buffer (20 mM Hepes KOH (pH 7.6), 30 mM KCl, 1 mM EDTA
(pH 8), 0.2% Tween-20, 10 mM (NH4)2SO4, 1 mM DTT) for 15 min at
room temperature. For the competition assay 200 ng of unlabeled
probe were added to the reaction. For the supershift assay, 1 μg
protein was preincubated with 0.5 μg anti-V5 antibody prior to the
binding reaction. Separation of protein–DNA complexes was carried
out on a 4% polyacrylamide Tris/Glycine/EDTA gel.

Luciferase assays
The zebra finch cell line G266 (Itoh & Arnold 2011) was seeded
in a 96-well plate at 2× 104 cells/well and transfected with
30 ng pGL4.13-SV40-Luc or pGL4.13-CNTNAP2-Luc, 30 ng
pGL4.75-CMV-Renilla and either 125 ng of pcDNA3.1-FoxP2-Flag
(Mendoza et al. 2015) or empty vector. Forty-eight hours after trans-
fection, Luciferase and Renilla activity were measured in a plate
reader (Tecan, GENios, Männedorf, Switzerland) using the Dual
Glo Luciferase Kit (Promega, Fichtburg, Wisconsin, USA). Mean
background from wells not transfected with Luciferase or Renilla
expressing vectors was subtracted from all other wells. Luciferase
activity was calculated as Relative Luciferase Activity (Luciferase
RLU/Renilla RLU).

Microbiopsies, RNA-extraction and cDNA synthesis
All RNA samples were generated for a previous study (Adam et al.
2016), in which the FoxP2 expression data were used in conjunction
with another target, the reelin receptor VLDLR.

Microbiopsies were taken as previously described (Adam et al.
2016; Olias et al. 2014). Briefly, brains were frozen at −80∘C in
Tissue-Tek O.C.T. compound (Sakura Finetek, Tokyo, Japan) and cut
sagittaly into 200 μm sections on a cryostat. Microbiopsies (1 mm
diameter) of Area X were excised and stored individually at −80∘C.
Remaining sections were stored in 4 % (w/v) paraformaldehyde solu-
tion and inspected under the microscope for proper targeting of the
biopsy.

In the case of virus-injected animals, Area X from both hemispheres
was sampled, in the case of unmanipulated birds, only one hemi-
sphere per bird was sampled. The side was chosen randomly.

Total RNA from properly targeted microbiopsies of birds with a
FoxP2 knockdown was extracted from individual biopsies. For all
other animals, properly targeted microbiopsies of one hemisphere
were pooled. In all cases total RNA was extracted using the RNAXS
kit (Macherey-Nagel, Düren, Germany). Complementary DNA (cDNA)
synthesis was carried out using random hexamer primers and 180 ng
or 40 ng total RNA for the pooled or individual microbiopsy samples,
respectively. Reverse-transcriptase free reactions were included to
control for genomic DNA contamination. All cDNAs were diluted
with nuclease free water (10-fold for pooled, fivefold for individual
microbiopsies).

Quantitative Reverse Transcription PCR
qRT-PCR reactions were run in duplicates in a total reaction vol-
ume of 20 μl. Five microliter of diluted cDNA were added to
15 μl reaction mix containing 10 μl 2x KAPA SYBR FAST Universal
QPCR Mix (Peqlab, Erlangen, Germany), 10 pmol of each primer
(18 pmol in the case of FoxP2) and ROX (50 nM, Peqlab) as a ref-
erence dye. Reverse-transcriptase free samples as well as no
template controls were included to test for DNA-contamination
and contamination of reagents, respectively. An inter-run calibra-
tor (IRC) was always included, if samples were run on different
plates. The efficiency of each primer pair was checked prior to
all measurements using 10-fold dilution series over six orders of
magnitude. The efficiency of all primer pairs ranged within 2±10%.
We used the following primer pairs: FoxP2 (5′-CCTGGCTGTGAAA
GCGTTTG-3′/5′-ATTTGCACCCGACACTGAGC-3′) (Haesler et al.
2007), HMBS (5′-GCAGCATGTTGGCATCACAG-3′/5′-TGCTTTGCTCC
CTTGCTCAG-3′) (Haesler et al. 2007), GFP (5′-AGAACGGCATCAAG
GTGAAC-3′/5′-TGCTCAGGTAGTGGTTGTCG-3′) (Adam et al. 2016)
and CNTNAP2 (5′-GAGGGCAAGGTCAGTGTCCA-3′/5′-GAATCGAAC
TTCATGCCACTGC-3′). Reactions were run on a MX3005P system
(Agilent, Santa Clara, California, USA) using the following tempera-
ture program: 10 min at 95∘C followed by 40 cycles of 30 seconds at
95∘C, 30 seconds at 65∘C (64∘C for FoxP2 and 60∘C for HMBS) and
a melting curve to check for amplification specificity.

The mean Ct for each sample was derived from the run data and
used to calculate relative gene expression for the gene of interest
(GOI; FoxP2 or CNTNAP2). We used HMBS as a reference gene,
as it is the most stable of all tested potential reference genes for
our experiments (Adam et al. 2016; Haesler et al. 2007). We used the
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following formula to calculate the relative expression of our GOIs:

Rel. Exp.GOI =
E
−(Ct,GOI−Ct,IRC,GOI)
GOI

E
−(Ct,REF−Ct,IRC,REF)
REF

Relative expression values were averaged per animal and
hemisphere.

Individual biopsies of virus-injected animals were screened for GFP
expression as a marker for successful infection prior to running all
other assays. Only cDNA from GFP-positive biopsies were used to
measure the expression of FoxP2, CNTNAP2 and HMBS. Eighty-four
percent of all injected birds expressed GFP in both hemispheres.

Search for transcription factor binding sites in the

CNTNAP2 promoter
We utilized the CNTNAP2 promoter sequence that we
used in the Luciferase experiment (genomic location:
chr2:31 216 312–31 217 544, WashU taeGut3.2.4/taeGut2) to
predict transcription factor binding sites by means of three
databases – Jaspar (Mathelier et al. 2016), Patch (Matys et al.
2006) and MatInspector (Cartharius et al. 2005) – using the default
settings. We merged all results into one table and then retained
only matches of transcription factors with a zebra finch homolog
according to the current Ensembl annotation (ENS87, Yates et al.
2016). Homologs were identified using Biomart (Smedley et al. 2015).
We further filtered the list of transcription factors potentially binding
to the CNTNAP2 promoter by keeping only transcription factors
that are expressed in adult, but not juvenile Area X and vice versa,
using a published microarray dataset (Hilliard et al. 2012), and our
own unpublished transcriptome data. In a last step we removed
transcription factors with mRNA expression values that are strongly
correlated with those of FoxP2 (orange Module in Hilliard et al.
2012), because we were interested in finding potential regulators
of CNTNAP2 that act either independently of FoxP2 or counteract
FoxP2’s downregulation of CNTNAP2.

Statistical analysis
All statistical tests were performed using the data analysis software
R (R Core Team 2013): Paired t-tests (Luciferase assays) were con-
ducted using t-test(), Mann Whitney U-tests (age difference FoxP2
and CNTNAP2) using wilcox.test(),regressions (dependency of CNT-
NAP2 expression on FoxP2 expression) using lm() and Wilcoxon
signed rank tests (reduction of FoxP2 and CNTNAP2 after knock-
down) using wilcox.test(). Plots were generated using the ggplot2
package (2.0.0) (Wickham 2009).

Results

FoxP2 is directly enhancing CNTNAP2 expression in

vitro

A prerequisite for CNTNAP2 to be a FoxP2 target gene is that
it has FoxP2 binding sites in its regulatory regions and that
FoxP2 can regulate CNTNAP2 expression by binding to these
motifs. To investigate this in zebra finches, we screened for
FoxP2 binding sites (Nelson et al. 2013) in the regulatory
regions of the zebra finch CNTNAP2 gene (ENSTGUG0
0000001794). We identified several FoxP2 binding sites, in
particular in the 5′-UTR-region of the gene. To test whether
the FoxP2 protein binds to these sites, we conducted elec-
trophoretic mobility shift assays (EMSAs). We designed a
46 bp probe containing three binding sites approximately
350 bp upstream of the start-codon (genomic location:
chr2:31 216 574–31 216 619, WashU taeGut3.2.4/taeGut2).
Adding FoxP2 protein to the labeled probe resulted in an

Figure 1: FoxP2 binds to and activates the CNTNPA2 pro-

moter. (a) Protein lysate from HEK293T cells transfected with
pcDNA4-FoxP2-V5-HISB or empty vector was affinity purified and
subsequently used in EMSA assays. Presence of FoxP2 in the
sample led to an upward protein shift (ps) of the labeled DNA
probe (second left lane), which was successfully competed by
unlabeled probe (third lane). Preincubation of the purified protein
with anti-V5 antibody led to an additional upward shift (super-
shift, ss) of the labeled probe indicating specific binding of FoxP2
protein to the probe (last lane). (b) Overexpressed FoxP2 pro-
tein repressed luciferase transcription in the zebra finch cell line
G266 transfected with a pGL4.13 plasmid containing the SV40
promoter. In contrast, FoxP2 significantly enhanced transcription
via the CNTNAP2 promoter.

upwards shift of the band (Fig. 1a, ‘ps’), which was abol-
ished by the addition of unlabeled probe (‘competitor’).
Pre-incubation with an antibody against FoxP2-V5 led to a
supershift of the band (‘ss’), confirming that FoxP2-protein
caused the initial shift.

We further used luciferase reporter assays to test if binding
of FoxP2 to the CNTNAP2 promoter changed its transcrip-
tional activity. We performed these experiments on a zebra
finch cell line (G266) derived from tumor tissue of a male
bird (Itoh & Arnold 2011). Choosing the G266 cell line instead
of the typically used human cell lines, ensured that not only
the promoter and FoxP2-protein were from zebra finches,
but also the entire transcriptional machinery. Overexpression
of FoxP2 protein in G266 cells reduced the expression of
the luciferase reporter gene under the control of the SV40
promoter (paired t-test, n= 6, t = 3.1417, df=5, P =0.0256;
Fig. 1b, SV40) as it does in HEK293T cells (Adam et al. 2016).
When we tested the FoxP2-dependent transcription from
a 1591 bp region of the CNTNAP2 promoter including the
5′-UTR we found a significant enhancement of transcrip-
tion in the presence of FoxP2, but not in the presence of
the empty vector control (paired t-test, n=6, t =−4.2861,
df=5, P =0.0078; Fig. 1b, CNTNAP2). We thus conclude
that FoxP2 has the capacity to directly regulate CNTNAP2
expression in zebra finches.

CNTNAP2 and FoxP2 expression are positively

correlated in Area X of juvenile males

FoxP2 expression is lower in Area X of adult males than in
juvenile males (Haesler et al. 2004; Thompson et al. 2013)
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Figure 2: CNTNAP2 expression is strongly and positively correlated to FoxP2 expression in Area X of non-singing juveniles.

(a) FoxP2 mRNA expression levels in Area X are significantly higher in juvenile males (50–52 days, mean 50 days, no fill, n=15) than in
adult males (>120 days, 123–968 days, mean 297 days, black fill, n=9). Expression levels were measured by qRT-PCR from microbiopsy
samples of Area X of juvenile and adult males that did not sing prior to sacrifice. (b) CNTNAP2 mRNA expression levels are significantly
higher in adults than in juveniles. (c) Expression of CNTNAP2 was significantly and positively correlated with FoxP2 expression in
non-singing juveniles, (d) but not in non-singing adults. Each dot represents one individual; the dashed lines around the fitted line
denote the 0.95 confidence interval. Gene expression was normalized to the reference gene HMBS and the mean of the adult group
was set to 1. Upper case letters denote adult males, lower case letters juvenile males.

and is downregulated by undirected singing in both age
groups (Teramitsu & White 2006; Teramitsu et al. 2010). If
FoxP2 directly regulated CNTNAP2 in Area X of zebra finches
we would expect to see positively correlated changes in CNT-
NAP2 mRNA levels. To test our hypothesis, we measured
the expression levels of both genes in Area X of juvenile and
adult males. To exclude the influence of undirected song
on this dataset, we made sure that males did not sing on
the day of sacrifice. After taking microbiopsies from Area X
we performed qRT-PCR. The results confirmed our previous
finding that FoxP2 levels in Area X are lower in adult birds
(>120 days, 123–968 days, mean 297 days, n=9) than in
juveniles (50–52 days, mean 50 days, n=15; Mann Whit-
ney U-test, U = 120, P = 0.0009774; Fig. 2a; Haesler et al.
2004). The opposite was the case for CNTNAP2 expression,
which was significantly higher in adults compared to juveniles

(Mann Whitney U-test, P =0.002737; Fig. 2b). This direc-
tion of regulation suggested that FoxP2 may be repress-
ing CNTNAP2 expression in Area X of male zebra finches.
If this were the case, we expected to find a negative
correlation between the expression levels of FoxP2 and
CNTNAP2 in individual birds. However, FoxP2 and CNT-
NAP2 levels were strongly positively correlated in juvenile
individuals (Linear Model, R2 = 0.467, adjusted R2 =0.4261,
F1,13 = 11.39, P =0.004973; Fig. 2c). Interestingly, this was
not the case in adult birds (Linear Model, R2 =0.009593,
adjusted R2 = -0.1319, F1,7 =0.0678, P =0.8021; Fig. 2d).
How can we reconcile the finding that CNTNAP2 expres-
sion is enhanced by FoxP2 in juvenile non-singing males
with the fact that levels of CNTNAP2 expression are not
linked to levels of FoxP2 expression in non-singing adults?
Another, unidentified, age-dependent factor might enhance
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CNTNAP2 expression in adult Area X and this could cause
the significantly higher CNTNAP2 mRNA levels in adult males
in comparison to juvenile males. To address this possibility,
we searched in silico for transcription factor binding sites on
the CNTNAP2 promoter to narrow down the list of potential
transcription factors affecting CNTNAP2 expression in adult
non-singers. We therefore only took transcription factors into
account that are expressed in adults but not in juveniles
(Hilliard et al. 2012, unpublished own data), (see Methods for
details). We identified 76 transcription factors, which are only
expressed in adult Area X and have predicted binding sites in
the CNTNAP2 promoter (Table S1, Supporting information).

CNTNAP2 and FoxP2 expression levels are positively

correlated after undirected song

Undirected song, which leads to a downregulation of FoxP2
expression in adult male zebra finches (Teramitsu & White
2006; Thompson et al. 2013) is thought to be associated
with enhanced neural plasticity (Brainard & Doupe 2013; Rit-
ers et al. 2014), which bears resemblance to the juvenile
state of song learning. We thus asked whether the singing
induced change in FoxP2 mRNA levels would lead to a
correlated downregulation of CNTNAP2 expression in adult
male birds. We hypothesized that the interaction of FoxP2
with CNTNAP2 might only occur during periods of enhanced
plasticity, like song learning or undirected song (Andalman
& Fee 2009; Brainard & Doupe 2013; Charlesworth et al.
2011; Tumer & Brainard 2007; Woolley et al. 2014). To test
this, we added an additional group of adult birds that sang
more than 500 motifs of undirected song within two hours
after the first motif of the day (see Methods for more
details). Indeed, in contrast to the results in non-singing
adults (Fig. 2d) CNTNAP2 expression was significantly and
positively correlated with FoxP2 expression in singing indi-
viduals (Linear Model, R2 = 0.3098, adjusted R2 = 0.565,
F1,6 =10.09, P =0.01916; Fig. 3).

CNTNAP2 expression is reduced after FoxP2

knockdown

To causally link our finding that CNTNAP2 expression is pos-
itively correlated with FoxP2 expression, we experimentally
reduced FoxP2 levels in Area X of juvenile males using lentivi-
ral vectors as described previously (Adam et al. 2016; Haesler
et al. 2007; Murugan et al. 2013; Schulz et al. 2010). We
expected to see a downregulation of CNTNAP2 mRNA lev-
els positively correlated to the decrease of FoxP2. Lentivi-
ral vectors mediating a FoxP2 knockdown were injected into
Area X of one hemisphere of juvenile males at day 23, while
a control construct was injected into the contralateral hemi-
sphere. After confirming that FoxP2 was downregulated on
the knockdown hemisphere compared to the control hemi-
sphere (Wilcoxon signed rank test, W = 28, P =0.01563,
n=7; Fig. 4a), we measured the expression of CNTNAP2 in
all hemispheres. CNTNAP2 levels were reduced in four of
seven knockdown hemispheres when compared to the con-
trol hemisphere of the same animal (Wilcoxon signed rank
test, W =18, P =0.1422; Fig. 4b). Moreover the expression
of CNTNAP2 was positively correlated to the FoxP2 expres-
sion levels in both, the control (Linear Model, R2 =0.6817,
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Figure 3: CNTNAP2 expression is positively correlated with

FoxP2 expression in singing adults. CNTNAP2 expression in
adult males (248–405 days, mean 352 days, n=8) that sang
more than 500 motifs of undirected song was strongly and
positively correlated with FoxP2 expression. Each dot represents
one individual; dashed lines around the fitted line denote the 0.95
confidence interval.

adjusted R2 = 0.618, F1,5 = 10.71 P =0.02215; Fig. 4c) and
the knockdown group (Linear Model, R2 =0.5686, adjusted
R2 =0.4823, F1,6 =6.591 P = 0.0502; Fig. 4d) as indicated by
the significant positive correlation between the expression of
the two genes. We concluded that FoxP2 can indeed regulate
CNTNAP2 expression in vivo.

Discussion

In this study, we investigated whether CNTNAP2 is a
direct FoxP2 target gene in songbirds as reported for
humans (Vernes et al. 2008). We found that FoxP2 protein
directly bound to and regulated the CNTNAP2 promoter.
In non-singing juvenile zebra finches CNTNAP2 and FoxP2
expression were positively correlated, which was also the
case in adult males when they were singing vigorously. In the
same vein, an experimental knockdown of FoxP2 led to lower
CNTNAP2 levels in four of our seven birds, even though this
difference did not reach statistical significance. The reg-
ulatory relationship between FoxP2 and CNTNAP2 may
contribute to the behavioral and neuroanatomical changes
observed after knockdown of FoxP2 in male songbirds,
like the previously observed effect on striatal spine density
(Schulz et al. 2010).

CNTNAP2 expression in zebra finches can be

regulated by FoxP2

We found CNTNAP2 expression levels in Area X to be lower
in non-singing juveniles than in non-singing adult male zebra
finches. While age-related upregulation of CNTNAP2 was
also reported in LMAN of zebra finches (Condro & White
2014; Panaitof et al. 2010) and in cultured murine pyramidal
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Figure 4: Knockdown of FoxP2 reduces

CNTNAP2 expression levels. Lentiviral
vectors mediating the expression of either
a shRNA directed against FoxP2 or a
non-silencing control shRNA were injected
into left and right Area X of juvenile (day
23) male zebra finches. Injection order and
side were randomized. (a) FoxP2 expres-
sion was significantly decreased on in the
knockdown hemisphere (black fill) com-
pared to the control hemisphere (no fill) of
the same animal. (b) Expression of CNT-
NAP2 was decreased in some animals.
(c) CNTNAP2 expression was significantly
and positively correlated with FoxP2 expres-
sion in both, the control and (d) knockdown
hemisphere. Each dot represents one indi-
vidual; the dashed lines around the fitted
line denote the 0.95 confidence interval.
Numbers denote individual males.

neurons (Varea et al. 2015), Panaitof et al. (2010) did not find
expression differences between juvenile and adult Area X.
The discrepancy between our findings and those by Panaitof
et al. (2010) might be due to the fact that we used qRT-PCR
whereas Panaitof et al. (2010) performed in situ hybridiza-
tions, methods with different dynamic ranges. Additionally,
Panaitof et al. (2010) normalized the CNTNAP2 expression in
Area X to the expression in the surrounding striatum, so that a
concomitant upregulation of CNTNAP2 in the striatum could
obscure the upregulation of CNTNAP2 in Area X.

In our study, FoxP2 expression was positively correlated
with CNTNAP2 expression in zebra finches. The direction of
regulation differs in human neuron-like cell line, where over-
expression of FOXP2 leads to downregulation of CNTNAP2
expression (Vernes et al. 2008). Likewise, in the developing
human cortex CNTNAP2 is expressed highest in layers with
low FOXP2 expression and vice versa (Vernes et al. 2008).
One explanation for these tissue differences could be that
transcription factors binding to the same site can repress
or enhance a gene depending on the presence of other
transcription factors (Diamond et al. 1990). Different cofac-
tors exist in different cell lines and tissues, influencing the
direction of regulation. Examples for such cofactors could
be other FoxP-family members (FoxP1 and FoxP4), Nkx2.1,
CtBP1, PIAS1, members of the NuRD chromatin-remodeling
complex and members of the FoxO-subfamily, all known to
interact with FoxP2 and to modulate its ability to regulate tar-
get gene expression (Chokas et al. 2010; Estruch et al. 2016;

Li et al. 2004; van Boxtel et al. 2013; Zhou et al. 2008). Fur-
thermore, all of these cofactors are expressed in Area X of
juvenile as well as adult male zebra finches (unpublished own
data, Hilliard et al. 2012). Especially the FoxO-family members
are promising candidates because FoxO3 and FoxP1 are
known to bind to the same enhancers. Through this interac-
tion FoxP1 is able to regulate specific FoxO3 target genes
(van Boxtel et al. 2013). The same kind of interaction might
occur between FoxP2 and FoxO4 binding sites, which are
very similar to the FoxP1 and FoxO3 binding sites, respec-
tively (Mathelier et al. 2016).

Tissue specific differences determining the direction of reg-
ulation are also likely since the negative correlation of FOXP2
and CNTNAP2 levels in human cortex (Vernes et al. 2008)
is not mirrored in developing dorsal thalamus and striatum
of humans where both genes can be co-expressed strongly
(Alarcon et al. 2008; Teramitsu et al. 2004). Furthermore, in
the zebra finch brain CNTNAP2 and FoxP2 expression over-
lap in the striatum, Purkinje cell layer and the optic tectum,
whereas in LMAN and nidopallium CNTNAP2 is expressed
but FoxP2 is not. In general, CNTNAP2 has a much wider
expression pattern in the songbird brain (Condro & White
2014; Panaitof et al. 2010) than FoxP2 (Haesler et al. 2004;
Teramitsu et al. 2004). In areas where both FoxP2 and CNT-
NAP2 are co-expressed, as is the case in Area X, our data
show that FoxP2 can positively influence CNTNAP2 expres-
sion (e.g. in juveniles and singing adults); however, FoxP2
expression does not always have this effect, shown by the
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absence of a relationship in non-singing adults. In the latter
case, FoxP2 might not bind to the CNTNAP2 promoter or if it
does, additional factors prevent its transcriptional regulation
of CNTNAP2.

In summary, FoxP2 is clearly not the only transcription fac-
tor regulating CNTNAP2 expression. To search for additional
ones expressed in Area X we used an in silico approach and
identified 76 transcription factors with predicted binding sites
in the CNTNAP2 promoter. These transcription factors are
good candidates to mediate the age-dependent upregulation
of CNTNAP2 expression. Further experiments are needed to
address whether the candidates from this list actually bind
to the CNTNAP2 promoter in vivo. The candidate gene with
most binding sites in the CNTNAP2 promoter was SP3, a
transcription factor known to repress the SP1 mediated acti-
vation of the human D1A receptor gene (Yang et al. 2000).
Interestingly, D1A is regulated by FoxP2 in zebra finches
(Murugan et al. 2013). Being regulated by FoxP2 and SP3
might thus be common to a subset of FoxP2 target genes.

Taking our findings and published data together, FoxP2
does regulate CNTNAP2 in Area X of male zebra finches, yet
the relationship is more complicated than a simple ‘more
is more’ dependency. We propose that during periods of
enhanced plasticity, such as in juvenile males and during undi-
rected singing in adult males, FoxP2 influences CNTNAP2
expression in a linear manner. However, in the ‘default state
of the adult motor system’ (Brainard & Doupe 2013), when
the anterior forebrain pathway is not injecting variability into
the motor pathway, the influence of FoxP2 on CNTNAP2
might be overridden by other factors, e.g. miRNAs or other
transcription factors.
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