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Abstract

Let C(G) denote the number of simple cycles of a graph G and let C(n) be the
maximum of C(G) over all planar graphs with n nodes. We present a lower bound
on C'(n) constructing graphs with at least 2.28™ cycles. Applying some probabilistic
arguments we prove an upper bound of 3.37".

We also discuss this question restricted to the subclasses of grid graphs, bipartite
graphs, and of 3—colorable triangulated graphs.

*Institut fiir Informatik, Freie Universitdt Berlin, Takustr. 9, D-14195 Berlin
E-mail: name@inf.fu-berlin.de
http://www.inf.fu-berlin.de/inst/theo/index.html


https://core.ac.uk/display/199423453?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1: Blum and Hewitt’s construction

1 The Problem

The question addressed in this note came up in connection with problems in the theory of
VLSI-layout and the computation of rectilinear Steiner trees [4], but is also a very natural
one in graph theory:

How many different simple cycles can there be in a planar graph
with n nodes?

Let us call this number C(n). A very simple upper bound can be obtained by the following
observation: By Eulers formula, a planar embedding of a graph with n nodes can have at
most 2n — 4 faces. Any simple cycle encloses a subset of these faces and is identified by
this subset. Consequently,

1
< 2n—-4 _ - ymn
Cn) <2 4 (1)

Observe that this upper bound was established making use of the dual version of our
problem: How many simply connected regions can be obtained by unifying countries in a
planar map? A special case of this question was studied by Blum and Hewitt [1]. Their
aim was to estimate the number of simply connected patterns in an k x k-grid. Thus, the
construction in [1] proved a first lower bound on C(n).

In particular the following set of simple cycles is constructed (see Figure 1): The
leftmost column of the k x k-grid belongs to every cycle, then in rows 1 and 2 we walk to
the right and for each step rightwards we have the choice between row 1 and 2. We insert
vertical steps between the horizontal ones, if necessary. In the same way we use rows 3
and 4 to walk back to the left. This procedure continues until, in a snakelike fashion, we
have traversed the whole grid and are back at the lower end of the leftmost column. For
any two rows, we have k — 2 choices, so altogether there are 25/2(:=2) different cycles of
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Figure 2: The Graph G,

this kind. Consequently, since the graph has n = k% nodes,

C(n) > \/§n72\/ﬁ

for infinitely many n € N.

This lower bound can be improved in an obvious way: Triangulating all tiles of the
grid by a diagonal one has three choices for any step: row 1, row 2 or the diagonal. Thus
we get

C(n) > V3" " (2)

for infinitely many n € N.

So C'(n) is exponential in n and by (1) and (2) the basis of the exponent lies somewhere
between /3 and 4. In this paper we will close this gap to some extend but not completely.
In a recent paper Ding [2] gave a minor based characterization of graph classes, such that
the number of cycles is polynominal. In fact, one can observe that our exponetial lower
bound examples correspond to one of the forbidden minor types in a very natural way.

2 Lower Bounds

In order to get a better lower bound on C(n) we first show the following lemma:

Lemma 1 Let G be a planar graph with k nodes and a,b be two nodes of G incident to the
outer face for some planar embedding of G. Let s be the number of simple paths between
a and b. Then

C(n) > ( ’“‘\I/E)n
for infinitely many n € N.

Proof: Consider the planar embedding where a,b are incident to the outer face. Then
for any t € N,¢ > 3 we can construct a graph G; with n = ¢(k — 1) nodes, as shown in
Figure 2.



basis

V2 =141..

V5 =1.171..

G
@ V132 = 2.009..

Figure 3: Lower bounds obtained by simple graphs

Since there are s simple paths from a to b, there are at least s’ simple cycles within
Gy. Consequently,

C(n) > st = W/ = (k=-y/5)"

O
Using Lemma 1 we obtain nontrivial lower bounds already for very simple graphs G, in
fact the previous bound v/2 is achieved already when G is a triangle, see Figure 3.
The best lower bound on C(n) we have, is obtained by applying Lemma 1 to the graph
shown in Figure 4. Observe, that it is sufficient for ¢ and b to be incident to some face,
since it can be turned into the outer face by a homeomorphism. It also makes sense to
triangulate the graph, since adding edges can only increase the lower bound. So without
loss of generality a,b are the endpoints of an edge. For the graph G of Figure 4 we
determined the number of simple paths between endpoints of edges by computer and
found the maximum s = 10,722,120,801 between the vertices a, b indicated in the picture.
For the basis of the exponent we obtain 2/s = 2.281..., so we have as a lower bound for

C(n):

Theorem 1 C(n) > ", where « = 3%/10,722,120,801 = 2.281... for infinitely many
n € N. O

Our computer experiments indicated that the value of « can probably be increased by
considering larger and larger graphs of the form of the graph G in Figure 4. We stopped
with G, because of the excessive computation time. For G we needed 30 hours on a
SPARC-Station-10/512 computer to determine s.

The method to obtain non-trivial upper bounds, that will be presented in the next
section, gives better results for 3-colorable graphs. Hence we also had a look on the lower
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Figure 4: Graph G yielding a bound of 2.275 ...

bounds for this class of graphs. A triangulated graph is 3-colorable iff the degree of each
node is even. This was already mentioned in [5], proofs and more details can be found
in [6] and [7]. We counted (36 hours of computation time) in a graph with 29 nodes, all
of degree four or six, 8,133,124,602 paths between two adjacent vertices. Observe, that if
G has only nodes of even degree and if ¢ is three times a power of 2 the Graph G can be
triangulated such that all nodes have even degree. Evaluating %/8,133,124,602 we get:

Theorem 2 For infinitely many natural numbers n there is a 3-colorable planar graph
with Q(2.259™) simple cycles. O

We also tested some bipartite i.e. 2—colorable graphs. For a graph with 36 nodes (more
or less a 6 x 6-grid) we found 38,855,881 paths between two adjacent ones. For even ¢ Gy
remains bipartite and hence we get:

Theorem 3 For infinitely many natural numbers n there is a bipartite planar graph with
Q(1.647™) simple cycles. O

3 Upper bounds

In order to get a better upper bound than O(4™) for C'(n) we use a probabilistic argument.
Suppose we have some planar embedding for a graph G = (V, E) and we color the faces
randomly under uniform distribution with 2 colors (‘black’ and ‘white’). If we are ‘lucky’
the total black area is simply connected, i.e. it has no holes and its interior is connected.
Then the boundary of this area is a simple cycle (see Figure 5). Let us call such a coloring
‘valid’. We will determine an upper bound on the probability of this event. Let us again
assume that G is triangulated, clearly any upper bound on C(n) under this assumption
holds for general planar graphs as well. Consider some node v of G and inspect its incident
faces in clockwise order (see Figure 5). Assume that there are both, black and white faces
incident to v. In the ‘valid’ case it is necessary that the black faces start at some edge ey,
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Figure 5: The total black area is simply connected and identifies a simple cycle ~

form a connected sequence and end at some edge es. Let us call v ‘good’ if this is the case
or if all faces incident to v have the same color. The number of possible colorings of the
incident faces making some node v of degree d good is

2 +d(d —1),

namely, coloring all faces black or all white or selecting edges e; and es as described before
and coloring black exactly the faces between e; and es. Therefore, the probability that v
is good is

d(d—1) +2
2d

An upper bound for the probability that a coloring is valid, is the probability psooq that
all nodes are good, since the latter condition is necessary for the former. If the goodness
of all nodes were independent events we would obtain this probability by the product

v (3)
veEV 2d( )

where d(v) is the degree of a node v. The denominator of this product equals

QZueV d(v) _ 9bn—12

’

since ), d(v) equals twice the number of edges. The enumerator in (3) is maximal
under the constraint) - d(v) = 6n — 12 if all d(v) are equal. To see this, consider the



function f(d) = d(d — 1) + 2. Straightforward calculations yield for 0 < e < d

fld+e)f(d—e) = (f(d)?+eX(e® +3 —2d% + 2d)
< (f(d)? +e2(—d® +2d —1+4)
= (f(d)*+e(4—(d—1)%)
< (f(d)?,

since G is triangulated and therefore d > 3. So, whenever two d(v) in (3) differ by some
amount 2¢ we can increase the value by increasing one by ¢ and decreasing the other by
g, thus, making them equal. Consequently, the expression in (3) is maximized by letting
d(v) = 9212 < 6, so we have

d
veV 2 @) 2

However, this is not an upper bound on the probability of obtaining a valid coloring, since
the events of the nodes being good are not independent. Let A, denote the event that the
vertex v is good for a random coloring of the faces, then it is not hard to check that the
events A, and A, are not independent for adjacent vertices u and v. However, if we choose
an independent set of vertices V, then the events A,(v € V) are mutually independent
because the sets of faces surrounding the vertices of V' are disjoint. Note that this is only
true for triangulated planar graphs. By the four—color-theorem the nodes of G can be
partitioned into 4 independent sets Vi, ..., V4. Let V; be that one which minimizes

d(v)(d(v) — 1)+ 2
II 9d(v) :

veV;

So by (4) we have

Pgood < H d(v)(d(;)d)&; 1) +2 < 1912 <%> —8 <4 %)

veV;

Since there are 2n — 4 faces, there are 22"~* colorings of the faces. This implies the
following upper bound on the number of cycles.

Theorem 4

4n <

(4 1/2-4)”

N | —

1
C < C—
(n) = Pgood 16

and thus the basis is at most \/1/2-4 =3.363....

The general upper bound can be improved for 3—colorable triangulated planar graphs in
an obvious way. Since there are only three color classes we will find one such that

dw)(dv) —-1)+2 n\" N n
==y (5) = 16- /172"




Corollary 1 The number of simple cycles in a 3—colorable triangulated planar graph is
bounded by

16/1/2" . 224 = (3 1/2-4)”§3.175". O

Now one could expect a further improvement of the upper bound for 2-colorable (i. e.
bipartite) graphs. In fact we will obtain a much better bound, but we cannot argue as
before, for the following reason: A bipartite graph is not triangulated and therefore the
events A, are no longer independent for vertices of the same color. On the other hand
bipartite graphs have at most n — 2 faces and thus the number of cycles can be at most
2"=2, Hence, our aim is to improve this bound by probabilistic arguments.

Analogously to the general case we may assume that all faces of the graph G are
cycles of length four. Then by Euler’s formula we have n vertices, 2n — 4 edges and n — 2
faces. Again, let A, denote the event that a random coloring of the faces is good at v.
Multiplying the probabilities of all events A, we get

2 +d(v)(d(v) — 1 2+4-3 \"
[ 25400 < 2 (1)

veV

Now we want to partition V in such a way that each corresponding subproduct represents
mutually independent events A,. Let V' = V, UV, be the partition of V given by the
bipartiteness of G. We define auxiliary graphs G, (G}) with vertex sets V, (V3) and edge
sets F, (Fp) consisting of all face diagonals between vertices from V, (V}). Both graphs
are planar. So we can color V,, with the colors {1, 2, 3, 4 } and V}, with the colors {5, 6, 7,
8 }. It follows that for two vertices v, u of the same color the sets of the faces surrounding
them are disjoint and thus the events A, and A, are independent. Consequently, there is
a color class V; such that

2+ d(v .
O

Taking into account that there are 2”2 face colorings we get the following

Theorem 5 The number of simple cycles in a bipartite planar graph is bounded by

n n
2-{3/; -2"2§<§3/;2) < 1.967". O

For grid graphs one can get a slightly better bound because in this case G, and G, are
bipartite, which implies a partition of V into four color classes.

Corollary 2 The number of cycles in an m X k-grid(n = m - k) is bounded by

n
4-(‘%) cgn—(mtk=1) Y14 < 1.935". O



4 Conclusions

The following table summarizes the lower and upper bounds on the maximal number C'(n)
of cycles in planar graphs on n vertices:

‘ graph class ‘ lower bound ‘ upper bound ‘
general planar 2.281" 3.364"
3—colorable, triangulated 2.259™ 3.175™
bipartite 1.647" 1.967"
grid graphs 1.414™ 1.935™

The remaining challenge in this context is of course to further close the gaps between the
lower and upper bounds. As already mentioned one can obtain minor improvements of the
lower bounds counting the number of ab—paths for larger graphs. A similar lower bound
of 2.279" has been proved recently by Chrobak and Eppstein [3]. Their method does not
require an excessive path counting but instead they have to compute the eigenvalues of a
6 x 6-—matrix.

An other way to get minor improvements of the lower bounds consists in triangulating
the inner and the outer face of the graph G constructed in the proof of Lemma 1. However,
we could not improve the basis of the lower bound much more than by the factor of 1.001.

It would be interesting to prove an upper bound for not necessarily triangulated 3—
colorable graphs which is better than the general one. Note that the additional assumption
that the graphs have to be triangulated was necessary to get 3 sets of mutually indepen-
dent events. On the other hand there are 3—colorable graphs for which no 3—colorable
triangulations exist.

There is a natural approach to improve the upper bounds. In fact our previous upper
bounds estimate the number of face colorings which are good in every vertex. In the dual
version this means that we have bounds on the number of families of disjoint cycles in a
graph. So one could try to estimate the probability that a random family of disjoint cycles
in a graph consists of exactly one cycle. Consequently one improves the previous upper
bound by multiplying it with the probability. So far we did not succeed in this way.

Finally we remark that it could be helpful to have an upper bound on the number
of Hamiltonian cycles in planar graphs. Indeed, a bound of the form " would imply
C(n) < (a+1)"™ applying the bound to each induced subgraph with k vertices k = 1,... ,n
and making use of the binomial formula.
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