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Abstract

We propose a new methodology for identification and analysis of discrete gene net-

works as defined by René Thomas, supported by a tool chain: (i) given a Thomas

network with partially known kinetic parameters, we reduce the number of accept-

able parametrizations to those that fit time-series measurements and reflect other

known constraints by an improved technique of coloured LTL model checking per-

forming efficiently on Thomas networks in distributed environment; (ii) we intro-

duce classification of acceptable parametrizations to identify the most optimal ones;

(iii) we propose a way of visualising parametrizations dynamics wrt time-series

data. The methodology is validated on a rat neural development case study; (iv)

finally we provide description of developed algorithms and evaluation of their per-

formance.

1 Introduction

Discrete modeling frameworks are commonly used in systems biology as a tool that

assists in revealing regulatory mechanisms found in biological networks [15, 11, 24].

A widely used formalism for gene regulatory networks is that of R. Thomas et al. [25]

(see [9] for review). The formalism treats changes in gene expression asynchronously,

thus bringing a sort of conservatism into the discrete abstraction at the price of large

∗This work has been supported by the Czech Grant Agency grant No. GAP202/11/0312.
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state spaces with many transitions. However, the asynchronous semantics is a natu-

ral approach to formalization of concurrent systems in computer science. This enables

application of well-established formal methods to Thomas networks [5, 18, 4, 23].

Although discrete regulatory models are very abstract, parameters determining the

behaviour of regulated components are often unknown. An important problem is there-

fore inference of these parameters from biological hypotheses and wet-lab measure-

ments e.g. time series data. There is no reliable technique to reveal the regulatory logic,

and existing reverse engineering approaches are mostly based on measurement cluster-

ing or information theory (see [16] for review).

Formal methods have been employed to assist in identifying parameters for Thomas

networks, utilizing not only time series data but also arbitrary hypotheses formalized in

terms of temporal logic. Naive (bottom-up) approaches [4, 13] repeat the procedure of

deciding for each parametrization whether it satisfies the given temporal constraints

or not. That way acceptable parametrizations are found. Since the number of possi-

ble parametrizations increases exponentially with the number of unknown parameters,

such a procedure is intractable in many real cases.

Barnat et al. [2] introduced technique of colored LTL model checking (CMC) based on

a heuristics reducing the computation effort by means of operating on the parametriza-

tion space in a top-down manner. In particular, maximal parametrization sets sharing a

required behaviour are inferred instead of analyzing each possible parametrization indi-

vidually. The technique was defined for multi-affine abstractions of continuous models

and was based on symbolic representation of parametrization sets thus allowing effec-

tive realization of required operations. When employed on Thomas networks, an ideal

symbolic representation which would allow effective realization of all required set oper-

ations was not found. Even though the algorithms performed well in the average case,

their properties could not have been guaranteed.

In [13], Klarner et al. developed a workflow for parameter identification of Thomas

networks exploiting time series data. Especially notions of edge constraints and expres-

sion monotonicity in between measurements were defined to initially restrict acceptable

parametrizations using preliminarily known facts about network dynamics.

In this paper, authors of both groups combine their approaches to obtain efficient

methods for parameter identification using colored model checking. The result of this

collaboration is a comprehensive methodology that further extends the workflow of [13]

introducing a classification of acceptable parametrizations based on optimal satisfaction of
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Figure 1: Parameter identification workflow.

selected criteria. Our methodology guides users towards selection of parametrizations

complying with given hypotheses and time series data, and proposes further filtering of

obtained parameters based on criteria such as low complexity. Moreover a visualisation

approach allowing quick and intuitive understanding of the behaviour generated by

different parametrizations. The workflow is outlined in Fig. 1.

To the best of our knowledge, the only work which attempts to employ some cri-

teria to select most plausible parametrizations in the context of Thomas networks is

mentioned in [7]. The approach is a work in progress based entirely on constraint pro-

gramming. As there are no concrete criteria defined, we currently cannot compare the

methodological side.

On the computational side, our approach is supported by a prototype tool chain

consisting of three modules: static analyzer, model checker, and behvaiour mapper.

The static analyzer module solves constraints related to the network structure and is

implemented on the top of the model checker module. The model checker module

implements CMC including computation of compliant behaviours (in model checking

terms: generation of all counterexamples for a given time series formula) and parameter

ranking. The behaviour mapper extracts portion of the transition graph relevant to the

time series employed and plots it in an intuitive manner.

Computational efficiency is obtained by direct distribution and shared enumeration

of parametrization sets. To the best of our knowledge, there is only one other efficient

approach [3] targeting discrete gene dynamics. It employs a more detailed model – the

piece-wise affine framework. The representation of parameter space is specific for the

level of abstraction employed. Efficiency is obtained by considering symbolic represen-

tation of parametrizations.

The paper, after introducing the basic notions in the next section, is structured ac-

cording to the workflow mentioned above and depicted in Fig. 1. To illustrate the ap-

proach a case study of the rat central nervous system is considered in Sect. 5. Further
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information on implementation and performance are provided in Sect. 6. The formal

description of algorithms employed concludes the paper.

2 Background

Our contributions benefit from the properties of the modeling workflow in question.

This system consists of three consecutive steps:

1. Definition of interaction graph using a generalized version of Thomas formalism.

2. Specification of the parametrization space using regulatory constrains.

3. Verification of models by the method of colored LTL model checking.

In this section we provide formal definitions associated with each of these steps.

2.1 Thomas networks

In the following we recall the logical modeling framework introduced by C. Chaouiya

et al. in [5, Section 2], which is a generalization of the formalism of R. Thomas [25].

2.1.1 Regulatory graphs

The structure of a system, i.e. the components (or species) involved and the dependen-

cies between them, can be captured in a graph. We define an interaction graph (V, E) to be

a directed graph consisting of n ∈ N1 vertices V = {v1, . . . , vn} called components and a

set E ⊆ V ×V of ordered pairs of vertices called interactions. We use the notation uv ∈ E
for interactions and call u the regulator of uv and v the target of uv. The in-neighbors

N−
E (v) := {u ∈ V | uv ∈ E} of v are called regulators of v and the out-neighbors N+

E (v) are

called targets of v.

Since we are not only interested in the structure of the network but also in the dy-

namics, we interpret the vertices as integer variables whose values signify e.g. the level

of concentration of the corresponding substance. Naturally, the impact a regulator has

on its target depends on the value of the corresponding variable. This information about

the interactions, i.e. the edges in the interaction graph, is also needed to specify the dy-

namical behaviour of the system. This leads to the following definition.

A regulatory graph R = (V, E, ρ, θ) consists of an interaction graph (V, E) and two

functions ρ and θ. The function ρ : V → N1 assigns a non-zero natural number ρ(v),
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called maximal activity level of v, to each component. For an integer interval {k ∈ N | a ≤
k ≤ b} with boundaries a ≤ b ∈ N we use the notation [a, b]. The interval [0, ρ(v)]

is called activity interval of component v and an element of the activity interval is called

activity level of v.

To a regulatory graph R we thus associate the state space X :=
∏n

i=1[0, ρ(vi)]. An

element x ∈ X is called a state of the regulatory graph and we use the subscript notation

xv to denote the activity of v ∈ V in state x.

The other function, θ, assigns interaction thresholds θ(uv) = (t1, . . . , tk) to each in-

teraction uv ∈ E. Each interaction may have a different number 1 ≤ k of thresholds.

The thresholds must be ordered: t1 < · · · < tk and within the non-zero activities of the

regulator: 1 ≤ t1 and tk ≤ ρ(u).
The interaction thresholds θ(uv) = (t1, . . . , tk) of an interaction uv divide the activ-

ities of u into k + 1 intervals [0, t1 − 1], [t1, t2 − 1], . . . , [tk, ρ(u)] of different regulation

intensity. Activities of u that belong to the same interval are characterized by being

above the same number of thresholds of θ(uv). We denote the jth interval by Iuvj . The

different regulation intervals allow us to distinguish between different effects an inter-

action between two components can have depending on the activity of the regulator.

2.1.2 Parametrizations

In this subsection we discuss how to parametrize a regulatory graph. Basically, we

need to provide all the information necessary to determine effects of any regulators on

its target in every state. The effect will not necessarily depend on the exact state, but

only on the regulation intervals to which this state belongs. We formalize this idea in

the following definitions.

A regulatory context ω of a component v assigns an intensity to every interaction

uv ∈ E targeting v. For every regulator u ∈ N−(v), there is a regulation intensity Iuvj ,

such that ω(u) = Iuvj . The set of all combinatorially possible regulatory contexts of v is

denoted by Cv.

A parametrization P assigns a target activity value Pωv to every contextω ∈ Cv of every

component v ∈ V . A priori, the only condition on P is that Pωv ∈ [0, ρ(v)] is a valid

activity of v. The set of all feasible parametrizations is denoted by P .

A parametrized regulatory graph (R, P) is called Thomas network or model. Finally, a

remark about the scope of the workflow we are going to propose: In Sec. 2.3, we suggest

colored model checking to solve the problem of identifying feasible parametrizations.
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For computational reasons we will consider the values of ρ and θ fixed in a particular

problem.

2.1.3 Asynchronous dynamics

The dynamics of a Thomas model (R, P) can be captured in a so-called state transition

graph, where the finite state space X constitutes the vertex set and edges between states

represent state transitions as determined from the logical parameters in the following

way.

For every state x and every component v, there is a unique regulatory context ω ∈
Cv, such that ∀u ∈ N−(v) : xu ∈ ω(u). To see this, recall that ω(u) is a regulatory

interval, and that these intervals form a partition of the activities of u.

The parametrization P therefore defines a function F on the state space:

F : X→ X, x 7→ (Pω1
v1
, . . . , Pωn

vn
),

whereωi is the unique regulatory context of component vi in state x.

The function F can be interpreted as a finite dynamical system, i.e., the dynamics can

be derived by iterating an initial state using F. In the resulting state transition graph,

each state x has exactly one outgoing edge leading to F(x). Clearly, the synchronicity of

the involved processes is a strong idealization, which we want to avoid here.

Instead, the representation should reflect that the time delays associated with the

different biological processes corresponding to the updates may vary greatly depending

on the corresponding network components. However, the experimental information

to determine these time delays is often lacking. This leads to the definition of a non-

deterministic transition graph where each outgoing edge from a state corresponds to

one of the indicated updates.

The transitions TP of the asynchronous and unitary state transition graph (X, TP) of a

model (R, P) are derived from F by two rules. A loop xx ∈ TP exists, iff F(x) = x.

An edge xy ∈ TP, x 6= y exists, if there is a component v, such that xy is asynchronous:

∀u 6= v : xu = yu and unitary: yv − xv = sign(F(x)v − xv). Here sign denotes the sign

function.

The state transition graph (X, TP) corresponds naturally to a Kripke structure (KS)

S(R, P) := (P, X, X0, TP, L), which is of interest for formal verification of temporal logical

properties. Here, S consists of states X, initial states X0, the transition relation TP and a

labeling function L over the atomic propositions AP expressing inequalities .=∈ {=,≤
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,≥, <,>} with

AP := {v
.
= k | v ∈ V, k ∈ [0, ρ(v)]}.

If not otherwise noted, all states are considered as initial states, i.e., X0 := X. The labeling

function is defined as L(x) := {v
.
= k | v ∈ V, k ∈ [1, ρ(v)], xv

.
= k}.

Finally, the Kripke structure can be generalized to incorporate all possible

parametrizations P . For a given regulatory graph R we consider a parametrized Kripke

structure (PKS) to be a tuple S(R) := (P, X, X0, TP , L) where TP :=
⋃
P∈P TP and all other

elements are defined as above. The PKS S(R) thus represents all possible behaviours

that can be generated byR.

2.2 Constraints

In the following we introduce several notions that allow us to restrict the parameter

space to the parametrizations in agreement with all the information we have on the

system. We distinguish between static and dynamic constraints as already indicated in

Fig. 1. Static constraints refer to information related to the regulatory graph, e.g. exis-

tence and character of interactions. In contrast, dynamic constraints capture properties

of state transition graphs such as reachability requirements.

2.2.1 Static constraints

Here we focus on edge labels, which are used to characterize the impact that a regulator

has on its target. If there is an effect observable at all, it can be either activating, i.e.,

causing an increase, or inhibiting, i.e., causing a decrease in the activity of the target.

Formally, several semantics result from combinations of these effects (see [13, Def. 2.9]).

Certain edge labels have already been used successfully in case studies of D. Thieffry

(see e.g. [21],[10]) and also implemented in analysis tools [20, p. 6].

Since we are dealing with regulatory graphs, whose interactions may have more

than one threshold, the concept of edge label must be adjusted accordingly. An edge

label is therefore not assigned to a single edge uv, but to a tuple (uv, tj) where uv ∈ E
and tj ∈ θ(uv). In this paper, we restrict ourselves to unlabeled edges and labels chosen

from the set {+,−,mon+,mon−}, where the different notions are defined as follows.
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Assume a tuple (uv, tj) is labeled with mon+. A parametrization P satisfies this

label, if for all regulatory contextsω ∈ Cv, such thatω(u) = Iuvj andω ′ ∈ Cv such that

ω ′(w) :=

Iuvj−1 if w = u

ω(w) else

the target value inequality Pω ′
v ≤ Pωv holds. If instead the label is mon−, then P satisfies

this label if for allω,ω ′ ∈ Cv as defined above Pω ′
v ≥ Pωv is true.

The labels + and − correspond to mon+ and mon−, but require observability in

addition. A parametrization P satisfies the observability of (uv, tj), if contexts ω,ω ′ ∈ Cv as

defined above, exist, such that the target value inequality Pω ′
v 6= Pωv holds.

2.2.2 Dynamic constraints

In this paper we focus on identifying parametrizations that are in agreement with

time series data, which can be interpreted as conditions constraining the dynamical

behaviour of a system. A measurement is a rectangular subset of the state space X. That

is, we describe a measurement m by assigning to each component v a measurement in-

tervalmv = [av, bv] ⊆ [0, ρv]. We then identify this descriptionmwith the set of all states

x ∈ X, such that ∀v ∈ V, xv ∈ mv.

A time series is a sequence of measurements (m1, . . . ,mk). Notice that measurements

may intersect, i.e., there may be states x ∈ mi ∩mj for i 6= j.
A state transition graph S = (X, T) reproduces a time series (m1, . . . ,mk), if it contains

a finite walk (xi)1≤i≤r, r ∈ N1, such that there is a mapping M : [1, k] → [1, r] that is

ordered: i < j =⇒ M(i) ≤M(j) and correct: xM(i) ∈ mi.

We call such walk time series walk. Notice that we allow M(i) =M(j). The walk can

be thought of as a discrete simulation, and the mappingM as describing at which simu-

lation steps the measurements were recorded. We say that a parametrization reproduces

a time series, if its transition graph does.

There may of course be multiple walks satisfying these properties. We will discuss

this in Section 3, where we introduce a ranking to capture how well a model reproduces

a time series.

The existence of a time series walk is determined by LTL model checking over the

Kripke structure (X,X0, T, L) associated with the state transition graph (X, T) (see [1]

for an introduction). The initial states are chosen in correspondence with a time series

(m1, . . . ,mk) by X0 := m1.
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A measurementm is translated into the LTL specification

σ(m) :=
∧
v∈V

∨
k∈mv

v=̇k.

A state transition graph reproduces a time series (m1, . . . ,mk) if and only if there is a

state x ∈ X0, such that the LTL specification

F(σ(m2)∧ F(σ(m3)∧ . . . F(σ(mk)) . . . ) (1)

is satisfied in x.

Time series formulae of the form (1) constitute a specific class of properties enabling

our analysis method as developed in Section 3. More general LTL formulae are used

to specify, e.g., monotonicity of gene expression between two adjacent measurements

mi,mi+1 [13] or steady gene activity expected after the last measurement.

2.3 Parameter identification by LTL model checking

In this section we describe the technology of colored model checking used for com-

puting parametrizations satisfying constraints encoded in LTL. This technology is em-

ployed in the next sections as a cornerstone for identifying optimal parametrizations.

The central notion is the construction of a map (coloring) relating each state x of a regu-

latory graph to the set of all those parametrizations from P under which x is reachable.

For a parametrization P ∈ P and its corresponding Kripke structure S(R, P) ≡
(P, XS, X

0
S, TP, L), we define a run, denoted π, as an infinite path in S(R, P). The no-

tation π0 is used to denote a run whose first node is in X0S. Since we aim to explore

parametrizations which are realizable, i.e. there exists at least one behaviour that sat-

isfies given LTL constraints, we consider existential interpretation of LTL. We say that

S(R, P) satisfies ϕ, written S(R, P) |= ϕ, if there exists a run π0 in S(R, P) satisfying ϕ.

For a given regulatory graphR and an LTL formulaϕ, automata-based model check-

ing is employed on S(R) to identify all parametrizations satisfyingϕ. As a prerequisite,

we assume an alphabet Σ = 2AP. Then ϕ is represented by means of a Büchi automaton

over Σ, denoted BA(ϕ), and defined BA(ϕ) := (Σ,XA, X
0
A, δA, FA), where XA is a set of

states, X0A ⊆ XA is a set of initial states, δA ⊆ XA × Σ × XA is a transition relation, and

FA ⊆ XA is a set of accepting states. See [1] for techniques of translating ϕ into BA(ϕ).

We utilize the approach of colored model checking (CMC) as introduced in [2]. CMC

takes a PKS S(R), a parametrization space P , and a Büchi automaton BA(ϕ). It returns
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a set of all acceptable parametrizations Pϕ := {P ∈ P | S(R, P) |= ϕ}. The procedure takes

the following steps:

• constructing product automaton BA(R, ϕ) := S(R) ∩ BA(ϕ)

• computing Pϕ by executing colored model checking on BA(R, ϕ)

2.3.1 Product automaton

BA(R, ϕ) is computed in the standard way [1] as a product of a PKS S(R) ≡
(P, XS, X0S, TP , L) and BA(ϕ) ≡ (Σ,XA, X

0
A, δ̄A, FA): BA(R, ϕ) := (P×Σ,X, X0, δ, F) where

X := XS × XB, X0 := X0S × X0A, F := XS × FA and

((xs, xa), (P, α), (x
′
s, x
′
a)) ∈ δ iff xsx ′s ∈ TP ∧ (xa, α, x

′
a) ∈ δA ∧ α ∈ L(x).

If there exists α ∈ L(x) such that (x, (P, α), x ′) ∈ δ, we use the simplifying notation

x
P→ x ′. Transitive and reflexive closure of the relation→ is denoted→∗.
BA(R, ϕ) accepts π0 - an infinite run through this product automaton - if and only

if there is an x ∈ F that occurs infinitely often on π0 (projection of π0 to the second

component is an accepting run in BA(ϕ)). Hence BA(R, ϕ) accepts exactly the paths

satisfying ϕ, and the acceptance is always caused by a cycle in BA(R, ϕ) containing

some state in F – therefore we are interested in accepting cycles and their reachability from

initial states.

Our interest is in paths that are realizable in a certain parametrization P ∈ P . We

denote by BA(R, ϕ)P the product automaton BA(R, ϕ) with the alphabet {P} × Σ (re-

stricted to the parametrization P). A run in BA(R, ϕ)P is denoted πP. We can conclude

that S(R, P) satisfies ϕ iff there exists a run π0P in BA(R, ϕ)P that is accepted.

2.3.2 Colored model checking

Naive (bottom-up) computation of Pϕ by checking each parametrization P ∈ P individ-

ually suffers from the exponential explosion of |P | wrt number of unknown parameters.

CMC [2] is a heuristic method based on the idea that transitions within PKS are shared

by many parametrizations, therefore utilizing a single PKS for a check (top-down) is

significantly faster than doing a check on every single KS S(R, P).
An important notion is mapping clP̂

X̂
: X → 2P , X̂ ⊆ X, P̂ ⊆ P , called coloring, in

which each state x ∈ X is assigned a set of parametrizations for which x is reachable
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from some state in X̂, defined and denoted clP̂
X̂
(x) := {P ∈ P̂ | ∃x̂ ∈ X̂ : x̂

P→* x}. Using

this mapping, the CMC procedure can be described as follows:

For each x ∈ F:

(1) Compute coloring reachx ≡ clPX0(x) reaching accepting state x.

(2) Compute coloring cyclex ≡ clreachx{x} (x) enabling (accepting) cycles on x.

These two steps correspond to traditional LTL model checking [1], where we ask if

there exists (1) a path from an initial to a final state and (2) a cycle containing this state,

which implies existence of an accepting run. In our case, we do not ask for an existence

of a single accepting run for each KS, but directly build a set of parametrizations that

have an accepting run in PKS.

To obtain such a set, one has to perform a graph search, which can be done in nu-

merous ways - in Section 6 we explain how to do those steps efficiently. Performance

of the algorithm can be also greatly increased by omitting step (2) when using time se-

ries formula. This property is within a set of so-called reachability properties that can be

computed without cycle detection [1].

3 Optimal Parametrizations

In the classical enumerative model checking approach to reverse engineering of Thomas

networks, that was introduced by G. Bernot et al. in [4], a given set of parametrizations

is divided into acceptable and unacceptable parametrizations depending on whether

the transition graph associated to a parametrization satisfies the temporal logic specifi-

cation or not.

From the perspective of the temporal specification, all acceptable parametrizations

are equally suitable and the parameter model checking process ends here.

For the particular class of LTL specifications that we are interested in – the time series

constraints as defined in Section 2.2.2, we introduce a method for ranking acceptable

parametrizations.

3.1 The length cost

This section starts with a regulatory graph R, a time series (m1, . . . ,mk) and a non-

empty set of parametrizations P ′ ⊆ P that all reproduce the time series.
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Denote by WP the set of all time series walks of (m1, . . . ,mk) in the state transition

graph of a single parametrization P ∈ P ′. WP may in general be an infinite set, but

most of its walks are not relevant for our purposes. To impose a ranking on the set

of time series walks, and through that a ranking on the set of parametrizations, we

impose a preference for short walks. Since the walk length can be seen as a measure

for the complexity of the behaviour in terms of the number of processes that have to

be executed to produce the desired result, this approach favors models that provide

simple explanations for the observed behaviour. In other words, we try to penalize

unnecessarily complex realizations of time series data in a model which might also be

related to a higher energy cost for the system.

We define the length cost of a parametrization P ∈ P ′ with respect to the time series as

Cost(P) := min{r ∈ N | ∃(xi)1≤i≤r ∈WP}, and denote by

SWP = {(xi)1≤i≤r ∈WP | r = Cost(P)} ⊆WP

the set of shortest walks of P.

The length cost partitions P ′ into classes of equal cost, and we are particularly inter-

ested in parametrizations with the minimum cost, denoted by min
Cost

(P ′) ⊆ P ′.

3.2 Robustness

Since the dynamics in the Thomas formalism are non-deterministic, several paths may

lead from one state to another and the path corresponding to the actual behaviour of

the system depends on the time delays associated with the different update processes.

If these time delays change, maybe due to environmental influences, the system may

follow a different trajectory even when considering the same initial state. However, in

some cases, e.g. if there is only one path between two states in the state transition graph,

the behaviour of the system is independent of the actual values of the time delays. This

can be interpreted as robustness of the system wrt perturbations of the time delays. In

the following we will formalize this idea as a property of a given parametrization. Since

we are interested in the realization of time series, we will focus our notion of robustness

on the time series walks.

Recall that a time series is sequence of measurements (m1, . . . ,mk) and a state transi-

tion graph reproduces the time series if it contains a finite walk (xi)1≤i≤r, such that there
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is a mappingM : [1, k]→ [1, r] that is

ordered: i < j =⇒ M(i) ≤M(j)

and correct: xM(i) ∈ mi.

A walk satisfying the given properties is called a time series walk.

In the following, we focus only on a subset of possible time series walks. Let P be a

parametrization and and (m1, . . . ,mk) a time series. A time series walk ω = (xi)1≤i≤r is

called a simple time series walk, if there is an ordered and correct mapping Mω : [1, k] →
[1, r] that satisfies M(1) = x1 and M(k) = xr. Additionally, ω is cycle-free between two

subsequent measurements, i.e., for all l ∈ {1, . . . , k − 1} we have xi 6= xj for all indeces

i 6= j with M(l) ≤ i, j < M(l + 1). Note that the mapping Mω is generally not unique.

We denote the set of all simple time series walks with W̃P.

It is easy to see that every time series walk contains a simple time series walk that can

be obtained by eliminating spurious path segments. However, the additional conditions

ensure that the set W̃P is finite since the state space is finite and the length of a simple

time series walk is bounded by a term depending on the cardinality of state space and

the number of measurements in the time series.

To define the robustness of a walk we take a local view point and start by defining

the robustness in a given state of the walk. Since the objective is to reproduce the time

series, we basically test whether deviation from the path potentially still yields a simple

time series walk. That is, if we choose in a given state of the walk a successor of that

state that does not coincide with the next state of the walk, we see whether we can

continue this new walk in a way that results in a simple time series walk.

To make this idea more precise, let ω = (xi)1≤i≤r be a simple time series walk and

j ∈ {1, . . . , r}. A valid successor of xj is a successor y ∈ N+(xj) of xj in the state transition

graph such that there exists a simple time series walkω ′ = (yi)1≤i≤r ′ with xi = yi for all

1 ≤ i ≤ j and yj+1 = y. Note that we do not demand that the mappings Mω and Mω ′

coincide in any way apart from the requirements concerning the start and end vertex of

the walk. We denote the set of all valid successors of xj with Svalid(xj).
Note that, since we are generally dealing with non-deterministic systems, we had to

make a choice on the strictness of the condition characterizing valid successors. Here,

we chose to demand the existence of a path that compensates the perturbation, but it

would also be possible to require that the perturbation is not capable at all to produce

a behaviour not in agreement with the time series. Since the non-deterministic mod-
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eling approach employed here often produces spurious paths that are not biologically

realistic, we decided to utilize the weaker condition.

Denoting the cardinality of a set Q by card(Q), we define the robustness in state xj

of the time series walk as

0 < Rob(xj) :=
card(Svalid(xj))
card(N+(xj))

≤ 1 .

The robustness of the simple time series walkω is then defined as

0 < Rob(ω) :=

r∏
i=1

Rob(xi) ≤ 1 .

If a walk is deterministic in the sense that all states of the walk have out-degree one,

then the robustness of the walk is one, in agreement with our interpretation of robust-

ness with respect to the impact of time delay perturbations. A high robustness, even

robustness one, is still possible for non-deterministic systems, if perturbations leading

to a deviation from the original walk can still be completed to a simple time series walk.

That is, the system is capable of correcting the perturbation. Low robustness indicates

that deviation from the walk often result in a situation that does not allow for correction

in the sense of measurement recovery.

It is easy to see that a single state of the walk with a low robustness can have a strong

impact on the robustness of the entire walk, illustrating the point that naturally there

is more information to be had when considering not only the global robustness of the

walk but also the local robustness of the states. We could have lessened the impact

of the local robustness by defining the walk robustness via, e.g., the mean instead of

the product of state robustness values. However, then it would be possible for a walk to

exhibit very high robustness although it might be extremely susceptible to perturbations

in particular states.

We now extend the notion of robustness from a single walk to the model by averag-

ing robustness values of all simple time series walks:

0 < Rob(P) :=
1

card(W̃P)

∑
ω∈W̃P

Rob(ω) ≤ 1 .

Again, we see that a deterministic system has robustness one. More general, every sys-

tem such that every finite random walk starting in a state consistent with the first mea-

surement is a time series walk has robustness one. Low robustness reflects that many of

the possible simple time series walks cannot recover the time series after perturbations

of the time delays.
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Often, robustness is considered not with respect to temporal processes but rather

with respect to perturbations in state space. The definitions given above can be adjusted

to fit this notion. Rather then considering the successors in the definition of robustness

in a state xj, we would then have to consider, e.g., states in the 1-neighborhood of xj,

i.e., the states that have Hamming distance 1 to xj. The valid states in the neighborhood

would be the states such that a walk consisting ofω up to xj joined with a walk starting

in the considered neighborhood state reproduces the time series. The last condition

would also necessitate a definition of when a union of walks reproduces the time series.

The notion of robustness presented above is very descriptive of the property we

want to evaluate in the models, however, computational calculation is hampered by its

comprehensive nature. In the following we present a simplification of this notion that

allows for efficient implementation. The first step is to phrase the robustness of a state

of a walk in terms that allow for a purely local verification. We achieve this by dropping

the validity evaluation of the successors and simply consider the out-degree, i.e., we use

the inverse of the out-degree as measurement of robustness for each state. This results

in the notion of robustness coinciding with the standard notion of probability for a finite

walk, as defined in [1], where each successor of a node is chosen with equal probability.

Then, we say that the probability of a finite time series walk (w) of length l is

Prob(w) :=
l−1∏
i=1

1

deg+(xi)
,

where deg+(xi) is the out-degree of the state xi of the walk.

Two further simplification steps are utilized for the definition of robustness of a

parametrization P. First, we do not consider the entire set of simple time series walks,

but only the set of shortest walks SWP defined in the preceding section. Second, we av-

erage the robustness values of all considered walks by the cardinality of the set of states

consistent with the first measurementm1. The resulting definition is

Robustness(P) :=

∑
w∈SWP

(Prob(w))
card(m1)

.

Note that the averaging using m1 still ensures that Robustness(P) has at most value

one due to the definition of Prob(w) based on the out-degree. Walks starting in the

same state x1 and reproducing the time series can be seen as branching off of each other

leading automatically to increasing out-degrees and thus decreasing probability values.

This ensures that the sum of probabilities over the set of such walks does not exceed the

value one.
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This simplified notion of robustness is a good starting point for analysis since it still

distinguishes parametrizations that reproduce the time series with low ambiguity. In

addition, it is easy to formalize and compute. The more involved definition, in contrast,

is based not only on the out-degree of a state of a time series walk, but differentiates

and weights whether the different successors of the state are themselves states of a time

series walk. Obviously, it captures the intuitive understanding of robustness much bet-

ter. Efficient methods for computing this more involved notion of robustness and the

development of robustness notions of intermediate complexity will be a focus of future

work.

3.3 Computing optimal parametrizations

The set of optimal parametrizations is obtained in the following manner:

1. Describe the set P of all possible parametrizations.

2. Remove parametrizations that do not satisfy imposed edge constraints.

3. Compute the set of acceptable parametrizations based on an LTL formula.

4. From the set, select parametrizations having the globally minimal cost.

5. Finally, select parametrizations with the globally maximal robustness.

This way we obtain only parametrizations we have identified to be optimal, whose num-

ber is usually significantly smaller then the size of P .

Such a procedure can be done automatically. Interpretation and further analysis of

the results is left to the user. To support this step, in the following section we suggest

two methods for visualization of results.

4 Visualization

In this section we present methods to visualize differences and similarities of

parametrizations. To our knowledge, two automated lines of analysis of a set of

parametrizations exist. In [8, Sec. 3.2], consensus target value inequalities are derived,

while in [13, Sec. 5.1] the focus is on deriving consensus edge labels.
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Here we propose a method for construction of behaviour maps that visualize the tran-

sitions within the state space of a set of acceptable parametrizations, highlighting agree-

ment between parametrizations. The information whether certain state transitions are

shared by the walks, if present, can be immediately exploited for experimental design.

For example, new measurements would be most useful if placed between two origi-

nal measurements that generated many different walks leading from one to the other

across the valid parametrizations, since the additional information would then enable

us to distinguish between them. The plots proposed in this section aim at making this

information about the distribution of state transitions of shortest time series walks easy

to assess.

Let SW be any finite set of shortest time series walks of (m1, . . . ,mk). In each walk

we mark the measurements 1, . . . , k. We lay all the transitions of these walks horizon-

tally and align for every 1 ≤ i ≤ k, the states marked as the ith measurement vertically.

This way we can interpret the horizontal axis as a discrete time axis, progressing from

earlier (left) to later (right).

We treat each pair of successive measurementsmi,mi+1 independently and partition

the walks into classes of equal length in betweenmi andmi+1. Two states are identified

as equal if they appear between the same pair of measurements. Note that acyclicity

between measurements is ensured as the path containing cycle between two measure-

ments is surely not the shortest one and therefore is not present in the set SW.

If time series walks of more than one parametrized structure are plotted at once, we

scale nodes and edges of the map to highlight those appearing more often. Note that

sizes of incoming edges usually do not correspond to size of outgoing ones for a single

node. This property is satisfied only in the trivial case i.e. when the state has only one

predecessor and one successor.

In Fig. 2 we provide an example of such a plot. For this example we have constructed

a simple regulatory network as depicted in Fig. 2a. The behaviour map of this network

wrt time seriesm1 = {(0, 0)},m2 = {(2, 0)},m3 = {(0, 1)} is given in Fig. 2.

Colored states represent points of measurements. The stroke of a transition scales

linearly with occurence of the transition in the set SW. Shape of a state expresses two

properties - width of the ellipse grows with the in-degree of the state and its out-degree

is depicted in the same manner by its height. States are labeled with comma separated

list of integers corresponding to current activation levels of all components. The last,

semicolon-separated integer marks current measurement interval.
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(a) Sample interaction graph.

(b) Plot of the shortest time series walks.

Figure 2: Visualisation example.

5 Development of the central nervous system in rats

We have applied our methods to the model of development of the central nervous sys-

tem (CNS) in rats. We base our results on data published by two groups. First, in 1998,

Wen et al. ([27]) recorded the gene expression patterns of more than a hundred signal-

ing genes in different development tissues. They observed that the patterns cluster into

four “waves” of similar activity. Although interesting in itself, they remarked that this

does not explain “the nature of genetic information flow” and that “simple models may

be required to conceptualize” it.

Consequently, in 2001, Whade and Hertz ([26]) suggested a number of abstractions

that lead to a model consisting of only four differential equations. Each equation de-

scribes the activity of one of the gene clusters. The model consists of 24 parameters, 16

of which determine the regulatory effects between the clusters. The parameters were

then fitted to the expression patterns by a genetic algorithm that returned average and

significance values. They concluded with a gene cluster interaction graph we use in our

study.

5.1 Formulating the model

The aim of this case study is to find and rank all boolean models that are
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1. compatible with the interaction graph and interaction strengths of Whade and

Hertz, and

2. can reproduce the expression patterns of Wen et al.

The results will then be used to describe, in logical terms, the regulatory control

between the gene clusters.

The interaction graph of Whade and Hertz, including interaction strengths, is de-

picted in Fig. 3a. In the graph positive effects are depicted by green and negative effects

by red arrows. Additionally, thick lines indicate strong effects (large absolute parameter

values) while thin lines indicate weak effects.

To tackle the first step, we have to discuss ways of incorporating the strength of an

interaction into the modeling process. We could, for example, restrict the admissible

logical functions of targets of strong interactions to canalizing functions. The value of

canalizing functions is completely determined when a strong interaction is effective,

reflecting the dominance (or strength) of those interactions. However, this approach

goes beyond the methodology defined in the previous sections.

Another approach is to enforce different static constraints for strong and weak in-

teractions. In Fig. 3b we have translated strong interactions into constraints requiring

observability, as defined in Sec. 2.2.1, while weak interactions are merely monotonous

and may not be observable in the resulting parametrizations. In this interpretation of

interaction strengths we therefore allow the effect of weak interactions to be negligible.

The second step requires us to interpret the quantitative data of Wen et al., depicted

in Fig. 3c, in qualitative, binary terms. We binarized the data using the approach of [22]

as implemented in the BoolNet package [17] for the R software [19].

The original time series consists of 9 measurements. However, these are in some

cases mapped to the same binary vector. After removing the duplicate subsequent mea-

surements we obtained a time series of five measurements as depicted in Fig. 3d.
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(a) Regulatory graph (b) Static constraints.

(c) Quantitative time series.

C1 C2 C3 C4

1. 1 0 0 0

2. 1 1 0 0

3. 1 1 1 0

4. 0 1 1 1

5. 0 1 0 1

(d) Qualitative time series.

Figure 3: CNS development data.

Even though the structure provided in [26] is quite strict, its parametrization is still

not obvious - there are 162 possibilities of how kinetic parameters may be aligned. From

these 108 result in a transition graph containing the required time series walk. From the

point of standard analysis using a temporal logic formula, these 108 are completely

equal.

5.2 Optimal parametrizations.

The minimum cost among the 108 compatible parametrizations is 6. In fact, every

parametrization among the 108 has a time series walk of this cost. The robustness ranges

from roughly 1% to 25%, whereas the value of 25% is attained by 2 parametrizations that

we consider to be optimal in this case. The parameter values of each of the two are given

in Fig. 4.
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C1 P C2 P C3 P C4 P

∅ 1 ∅ 1 ∅ 0,1 ∅ 0

C2 1 C1 1 C1 1 C1 0

C4 1 C4 0 C3 1

C2,C4 0 C1,C4 1 C4 0

C1,C3 1

C1,C4 0

C3,C4 0

C1,C3,C4 1

Figure 4: The 3 optimal parametrizations with cost 6 and robustness 25%. Differing

values are bold.

Since the CNS model consists only of binary components, we can convert every

parametrization into boolean functions - one for each component. We have therefore

converted both parametrizations into following boolean functions:

C1 := ¬(C2∧ C4)

C2 := 1

C3 := C1 or C3 := C1∨ ¬C4

C4 := C3∧ (C1∨ ¬C4)

The ambivalence between the optimal parametrizations rises from the insufficiency

in the amount of data provided - with more precise time series or somehow more de-

tailed specification we might be able to pick only one of the two, but since there is no

step in the time series where both the regulators of C3 are not present, there is not way

how to determine the optimal behaviour for such a case. Motivated by the Occam’s ra-

zor principle, we would suggest taking the parametrization with C3 := C1 as the single

most optimal one.

With this qualitative model, we can now attempt to “conceptualize the flow of ge-

netic information” as Wen et al. demanded:

• The genes of cluster C1 are only inhibited when both clusters C2 and C4 are ac-

tive. This logical conjunction suggests either the formation of complexes of some

kind between proteins of C2 and C4, or additive inhibitory effects, where neither
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proteins of C2 or C4 alone are sufficient to inhibit the expression of C1 proteins

fully.

• C2 protein synthesis is autonomous, i.e. independent, of the activity of proteins

from the other clusters. This suggests that the second wave may occur earlier

(before C1) or later (after C3) without disturbing the CNS development.

• Proteins of C3 require sufficient activities in C1-proteins.

• C4-proteins require sufficient activity levels of C3-proteins for synthesis (when

¬C4 is true). After synthesis, in order to sustain high levels of activity, additional

presence of C1-proteins is required.

5.3 Visualization.

To give a better picture of the behaviour the models exhibit alongside the time series

path, we present two behavioural maps.

The one in Fig. 5a depicts transitions recorded from all the parametrizations that

were compatible with the time series. As can be seen the time series walk is quite

straightforward which, as we will show later in this section, may be a sign of a well-

formed model.

The second map is built from transitions belonging to the two parametrizations that

were evaluated as optimal. In this case the map is even simpler since the path between

the only two consecutive measurements that differ in more than a single value is now

deterministic. Since this map depicts behaviour of models with the highest robustness,

we conclude that in this case the metric indeed filtered the models which were less

deterministic in their behaviour alongside the path given by the time series.
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(a) Complete behavioural map

(b) Optimal behavioural map

Figure 5: CNS behvaioural maps.

5.4 Reverse time series experiment

Our metrics are based on the hypotheses that models with better ranking i.e. higher

robustness or lower cost are more compliant with their respective time series and there-

fore impose more reasonable behaviour. Since the interaction graph we are using in our

case study is already heavily restricted due to edge constrains we took from the study

of Whade and Hertz, we expected the set of parametrizations allowing for reproduction

of the time series to be quite felicitous. The behaviour map in Figure 5 as well as high

resulting robustness suggests that our expectations were legitimate.

Complementarily, it seems reasonable to expect that a time series that is in conflict

with the anticipated behaviour will cause the possible models to score poorly. To test

this assumption, we have conducted an experiment using the rat model with the time

series having order of its measurements reverted. Such change basically means inver-

sion in the purpose of the network - from the growth we obtain decay. A robust model

should forbid such a behaviour or at least restrict probability of its occurrence signifi-

cantly.

This expectations were correct as can be seen from the comparison of the best scores

of parametrizations when tested with the original and the reverted time series:

23



Figure 6: Behavioural map for all parametrizations.

parametrizations count lowest cost highest robustness

original 108 6 25%

reverted 81 12 0.78%

It can be seen, that our expectations were met. Even though the decrease in size

of the set of feasible parametrizations is not that significant, the ranking has changed

greatly. It is also worth noting that unlike in the case of the original time series, the

parametrization with the lowest cost is actually not the one with the greatest robustness.

To provide a more detailed picture, in Fig. 6 we also present a behaviour map for the

parametrization having the highest robustness from those with the cost of 12. Mainly

between the third and fourth measurement one can see that the model must undergo

vast amount of changes just to switch off a single component, which behaviour is prob-

ably not natural.

6 Implementation and evaluation

In this section we briefly describe methodology of synthesis and analysis as well as

the tools deployed for these tasks. Further we focus on description of a time and space-

efficient computation of acceptable parametrizations and evaluate it using two different

models.

6.1 Usage description

Our current workflow of analysis is divided into following steps:

1. Creation of a model - regulatory network is described in a single XML file using

our own syntax designed for this purpose. In a future work we expect to imple-

ment an option to import models from standard formats.
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2. Specification of the property - the property (most usually a time series) is currently

specified within a model file in the form of Büchi automaton, also using an XML-

based syntax.

3. Synthesis - the model is analyzed using the colored model checker Parsybone 1, im-

plemented in C++. The tool works in two steps. First, reduction of parametriza-

tion space is conducted if there are any initial constrains specified. The reduced

parameter space than undergoes the process of parameter synthesis. By default,

this step produces only enumeration of acceptable parametrizations. However,

for each of the parametrizations we can optionally compute and output its short-

est paths or the robustness value.

4. Plotting - finally, for the time series walks produced in the previous step we use the

BehaviourMapper tool. The tool creates a behaviour map for a given Parsybone

output file. Such a map can be than viewed using the Cytoscape [6] tool.

6.2 CMC procedure implementation

Algorithm for colored model checking as presented in [2] does not specify, how distinct

parametrizations should be stored and manipulated. For continuous models, we have

used bounded intervals of values for each component, creating a parametrization space

as a Cartesian product of those. We have later employed this approach for discrete

models as well, but it turned out that in this case it suffers from high complexity of often

performed operations like set intersection (for more information about the algorithm,

see [14]). To tackle this problem, we have moved to explicit representation where all

parametrizations are enumerated. We will show that this approach provides numerous

advantages and allows for analysis of large parametrization sets.

6.2.1 Encoding

Our approach is based on a computationally efficient encoding of parametrization

space. We encode each parametrization set P ′ ⊆ P as a word of length |P | over al-

phabet Σ = {0, 1}. Such a word naturally corresponds to a bit vector of the same length

and allows fast computation using bitwise operations.

1Parsybone – http://github.com/sybila/Parsybone/tree/release
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We consider lexicographical ordering of the set P . We denote Pi ∈ P an i-th

parametrization in P . Now to encode an ordered set P ′ ⊆ P , we use the encoding

function Code : 2P → {0, 1}|P | where Code(P ′) = b1b2...b|P |, ∀i(bi = 1 ⇔ Pi ∈ P ′). This

way we encode a coloring of every state as a single word of length |P |.
The encoding function is of a crucial importance, because the idea of the CMC and

its main performance improvement lies in the option to create only a single PKS for the

whole parametrization space. To create such a structure, we need to be able to label

edges of the PKS with transitive parametrizations. This can be done using the encoding

function by which we label every transition x→ x ′ with a word Code({P|x P→ x ′}).

In general, by using such an encoding we reduce the CMC problem to a sequence of

bitwise operations.

6.2.2 Splitting

Our coloring algorithm is based on an iterative computation of a fixed point. Com-

plexity of this computation can be improved using multiple heuristics, for complete

information we refer to [14]. The most important is the procedure of splitting.

Our idea is based on the assumption that similar parametrizations generate similar

KSs [2]. When computing a coloring of a PKS we split its parametrization space to

multiple neighbouring regions and work only with a single region at a time. Most of

parametrizations within a single region are likely to be either all accepted or all rejected,

allowing us to quickly reach the fixed point.

Due to lexicographical ordering of possible parametrizations within a bit vector, we

already have similar parametrizations in the neighbouring positions. During the com-

putation we then split the parametrization space by working always with next m bits

of the bit vector. Each region is stored within a single integer variable, therefore m is

equal to size of an integer in bits on a target platform. Note that usage of integers also

ensures quick computation of bitwise operations. With this region, we go through the

whole process of analysis, output the data, free the memory and continue with another

round (ensuring low memory requirements).

6.2.3 Distribution

When using the split parameter space (which we can do only when using explicit

data representation), we can easily distribute the computation. This is because every
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parametrization is completely independent on all others, giving us great potential for

a data-parallel distribution. Therefore, we distribute regions of parametrization space

between non-communicating processes differing only in their ID.

Each independent worker does its own parsing and pre-computation and then goes

through the procedure of parameter identification with a subset of parametrization

space that is disjunctive with subsets of other workers.

To achieve as optimal load balance as possible, distribution of regions is interlaced,

meaning that in computation of n processes, process with ID i, 1 ≤ i ≤ n is assigned

only regions i + k · n, k ∈ N. This method is again based on the assumption that simi-

lar parametrizations generate similar behaviour, causing acceptable parametrizations to

cluster. This way we ensure that such clusters are distributed evenly between processes.

6.3 Evaluation

In this section we present performance measurements of our tool using two different

models. First we evaluate overall performance on a model of mammalian cell cycle

with more than half a billion parametrizations - this evaluation has mainly the purpose

of showing what is actually computable. In the second part we use the bacteriophage

model from Section 5 which is quite fast to compute and show that even on such a small

model our algorithm scales well with number of processes.
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6.3.1 Mammalian cell cycle

(a) Regulatory graph of Mammalian cell cycle with edge constraints.

Rb E2F CycE CycA p27 Cdc20 Cdh1 UbcH10 CycB

0 0 0 0 0 1 1 1 0

0 1 0 0 0 0 1 1 0

0 1 1 0 0 0 1 0 0

0 1 1 1 0 0 1 0 0

0 0 1 1 0 0 0 0 0

0 0 0 1 0 0 0 1 1

0 0 0 1 0 1 0 1 1

0 0 0 0 0 1 1 1 0

(b) Tested time series.

Figure 7: Mammalian cell cycle - known data.

To test capabilities of our algorithm, we had it analyze a model of mammalian cell cy-

cle [10] with 9 components depicted in Figure 7a. For this model we have defined partial

parametrizations given as valuations of following logical formulas:

• CycA := Rb∧ Cdc20∧ Cdh1∧UbcH10∧ (E2F∨ CycA)

• UbcH10 := Cdh1∨ (UbcH10∧ (Cdc20∨ CycA∨ CycB))
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reducing size of parametrization space to final number of 675, 584, 064 parametrizations.

As a guide for the analysis we have used a time series with 8measurements as depicted

in Figure 7b.

Parametrization space was evenly distributed between 8 independent process, each

one of them having initial set of size 84, 448, 008. Computation was run on a Linux

server using two processors with four 2.27 GHz cores and took roughly a day with

308, 180, 639 acceptable parametrizations computed. During computation each of the

processes used less than 15 MB of RAM. Exact results for each process are presented

in Figure 8. As can be seen, parametrizations space has been partitioned to sets with

almost identical numbers of acceptable parametrizations.

Process ID Runtime Result set size Process ID Runtime Result set size

1 29.07 h 38,522,403 5 29.70 h 38,523,691

2 31.08 h 38,521,943 6 28.81 h 38,523,255

3 27.22 h 38,521,656 7 29.55 h 38,522,328

4 32.32 h 38,522,343 8 28.83 h 38,523,020

Figure 8: Results of distributed analysis of Mammalian cell cycle.

As can be seen, there are slight differences in run times up to 20%, some of which

probably has been caused by background noise of the server. Other than that, we can see

that parametrizations space has been partitioned to sets with almost identical numbers

of acceptable parametrizations.

6.3.2 Bacteriophage

To demonstrate the improvement in performance since the old version, we have used an

another, smaller example - the network of Bacteriophage λ infection [24]. Since our old

tool has many functional restrictions, i.e. absence of edge constrains interface, we had

to use the model in a very general form as depicted in Fig. 9a. With the model we have

conducted analysis using the time series described in Fig. 9b marking the lysogenic fate

of the cell.

We have also imposed some restriction on the initial set of parametrizations, obtain-

ing the initial parametrizations space of 589, 824 parametrizations, out of which 90, 148

were acceptable. This model has then been analysed five times using each version of

the tool. Analysis using the old version took on the average 967 seconds and used at
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(a) Regulatory graph of bacteriophage λ with

edge constraints.

cI cII cro N

1. 0 0 0 0

2. 2 1 0 1

3. 2 0 0 0

(b) Lytic time series. The last three

measurements indicate an oscillation.

Figure 9: Bacteriophage λ - known data.

max 50 MB of RAM, whereas the new version needed only 6 seconds and did not need

more than 3MB RAM.

Not only is our new tool usually significantly faster, it also provides almost linear

speedup - there is some overhead in pre-computation that must be conducted by each

of the processes, but this procedure is very fast - for example in analysis of mammalian

cell cycle it takes less than second which is absolutely insignificant in comparison with

tens of hours of following model checking.

To demonstrate scalability we have analyzed the bacteriophage model using up to 8

independent processes. In Fig. 10 we show average runtime of all the processes used.

The resulting numbers are again produced as an average of three independent experi-

ments conducted on the same platform. As can be seen from the graph our algorithm

scales linearly wrt number of processes used.

Process count Average runtime
1 5.315 s
2 2.634 s
3 1.767 s
4 1.332 s
5 1.048 s
6 0.884 s
7 0.754 s
8 0.657 s

0 1 2 3 4 5 6 7 8
0
2
4
6
8

Number of processes

S
p
ee
d
u
p

Figure 10: Scalability evaluation using the Bacteriophage λmodel.
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7 Algorithms

In Section 6.2.1 we present a method for concise representation of a parametrization

space. This representation further allows for computation of all necessary operations

on multiple parametrizations at once, using only fast bitwise operations on integers.

Using this operations, we can compute all forms of analysis presented in this article in

three successive steps:

1. coloring procedure and computation of the cost value,

2. time series walks search,

3. computation of the robustness value.

In this section we present methods for all of above. Each of these is based on the idea of

coloring - labeling of the transition graph with subsets of parametrization space, which

is described in the Section 2.3.2. To correspond with definition of function Code in

Section 6.2.1 we will represent this labeling as a word from the language {0, 1}|P |, where

P is a parametrization space of some regulatory network. For a state x of the transition

graph of the network we denote the coloring of the state as a word Colx ∈ {0, 1}|P |.

We also employ the usual notation Colx(n), 1 ≤ n ≤ |P | for an n-th letter of the word

Colx, which corresponds to the n-th parametrization in the P , denoted P(n). For a

coloring of a state x, Colx(n) = 1 marks the presence and Colx(n) = 0 the absence of

the parametrization P(n).
We also need to extend a semantics of bitwise operators to apply to such words. For

words w1, w2 ∈ {0, 1}|P | and number n : 1 ≤ n ≤ |P | we use the following operations:

• w1&w2 ∈ {0, 1}|P |, (w1&w2)(n) = 1 iff w1(n) = 1 and w2(n) = 1,

• w1|w2 ∈ {0, 1}|P |, (w1|w2)(n) = 1 iff w1(n) = 1 or w2(n) = 1.

7.1 Coloring

According to the method presented in Section 2.3 a regulatory network R with

parametrization P satisfies some property described by a Büchi automaton BA(ϕ) if

and only if their parametrized product BA(R, ϕ)P contains a path from a initial to a fi-

nal state and a cycle containing that state. For a proof of this claim refer to [12]. Here we

restrict ourself to a method for computing the exact set of parametrizations that satisfy

this condition.
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Algorithm 1 Color

Require: X0 the set of initial states from X, P the initial coloring

Ensure: Col is a coloring of X from initial states X0
Updates← X0

Updates ′ ← ∅
Col← ∅
for all x ∈ X0 do

Colx ← Code(P)
end for

while Updates 6= ∅ do

while Updates 6= ∅ do

x ∈ Updates
Pass(x,Col,Updates,Updates ′)

Updates← Updates/{x}

end while

Updates← Updates ′

Updates ′ ← ∅
end while

Algorithm 2 Pass(x,Col,Updates,Updates ′)

Require: Updates set of states scheduled for an update, x ∈ Updates, Col coloring

Ensure: Col is coloring after updating all neighbours of x, Updates ′ contains all states

that have received a new coloring

Neigh← {y|∃P(x P→ y)}

for all y ∈ Neigh do

Pnew ← Colx&Code({P|x
P→ y})

if (Pnew|Coly) 6= Coly then

Updates ′ ← Updates ′ ∪ {y}

Coly ← Coly|Pnew

end if

end for
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The whole process is executed in three steps:

1. compute the coloring of the state space from the initial states using Algorithm 1,

2. for each of the final states, take the resulting coloring and run Algorithm 1 again

from that final state and store the resulting coloring of that state,

3. for f1, f2, ..., fn final states, compute a word w = Colf1 |Colf2 |...|Colfn from the

stored colorings.

Proposition 7.1. Ifw is the result of the procedure above, then ∀n, 1 ≤ n ≤ |P | : w(n) = 1⇔
∃π0P(n) in BA(R, ϕ)P(n).

We now need to prove that Algorithm 1 correctly computes coloring of the state space,

formally that the condition ∀x ∈ X, ∀n ∈ {1, ..., |P |} : Colx(n) = 1⇔ ∃x0 ∈ X0, x0 P
−→* x is

satisfied.

Lemma 7.2. After m-th execution (round) of the inner while loop in Algorithm 1, Colx(n) =

1⇔ ∃x0 ∈ X0, x0 P
−→≤m x.

Proof. Before the first execution, only the initial states are colored.

In them-th round,Updates contains all states that have been colored in the previous

round and each of these states is colored with parametrizations that allow to reach it in

at mostm−1 rounds. For each of these the Pass function is called. Pass takes a coloring

of a state and for each of the neighbours:

1. removes those parametrizations that do not allow transition to that neighbour -

Col(x)&Code({P|x
P→ y}),

2. tests if there is any parametrization that is not present in the coloring of that neigh-

bour,

3. if the test succeeds, the succesor state is colored.

If the test fails it means that either the state has been already colored with these colors,

therefore the coloring has been passed from the state in previous round and the reach-

ability is preserved, or the transition is not allowed for any of parametrizations present

in coloring of the source state.

Theorem 7.3. Algorithm 1 computes the coloring clPX .
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Proof. According to Lemma 7.2, after at most |BA(R, ϕ)| rounds, every state is colored

with all parametrizations that allow a path in at most |BA(R, ϕ)| transitions. Because

the structure has size of |BA(R, ϕ)| there is no possibility for a path longer than that,

therefore every state is colored by P iff P allows a path to this state.

As a corollary, after at most |BA(R, ϕ)| rounds, the test in function Pass fails for all

states in Updates set, therefore Updates and Updates ′ remain empty and the algo-

rithms finishes.

Theorem 7.4. Complexity of the algorithm is O(|BA(R, ϕ)|2 ∗ |R| ∗ |P |), where |R| is number

of components of the regulatory network.

Proof. According to Theorem 7.3 the outer while loop is executed at most |BA(R, ϕ)|
times. Updates contains at most |BA(R, ϕ)| states, therefore the inner while loop can

be also executed always at most |BA(R, ϕ)| times. Each node can have at most |R| ∗
2 neighbours, each of them differing by +/-1 in at most one component. Finally, the

complexity of bitwise operations is linear in the size of the parametrization space.

Note that even though operations with coloring vectors are expensive their compu-

tation is in practice very fast due to the usage of bitwise operations. Also splitting of

the parametrization space loweres the complexity in an average case, because the size

of the reachable state space is reduced.

Remark 7.5. If the property belongs to a class of reachability properties, like a time series walk,

it is not necessary to conduct a cycle detection [1].

Algorithm 1 also allows for easy computation of the cost function. Before each round

of the outer cycle we go through the states in the Updates set, find final ones and check

if they are colored with parametrizations whose cost is not yet known. If we find such,

their cost is set equal to the number of this round.

7.2 Analysis

Knowing the cost value, we can compute all time series walks allowed by a parametriza-

tion. We have tried multiple approaches and the most efficient one seems to be a depth-

first traversal with marking of states, which we briefly describe here. This method re-

quires a structure that has transitions labeled with colors that have been actually passed

during the computation. This information, however, can be easily stored within the

coloring procedure.
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The search starts from final states using a coloring of the individual states. From

each of these states we then recursively descend to its predecessors, using only the col-

oring that has been passed through the transition originating in an individual predeces-

sor. During the procedure the cost of each parametrization is compared to the current

depth of the search. If the depth is greater, the parametrization is removed from the

coloring, because the current path is then certainly not a part of the shortest time series

walk. The procedure descends until the current coloring is not empty or until an initial

state is found. In this case all transitions from the root of the search are stored for all

parametrizations that remain in the coloring.

This algorithm can be improved by adding an instruction to store the current color-

ing and depth of the search during every visit of a state. When the state is visited again,

this information is retrieved and parametrizations that have been already passed from

the state at a depth lower or equal to the current depth are removed from the coloring

because a shortest walk passing through this state, if it exists, has been already found.

Note that this basically corresponds to the standard idea of marking the visited states

in depth-first traversal.

Having a set of transitions for each parametrization, we can also easily compute the

robustness value. There are many possibilities of how to compute such a value, for a

reference see [1]. We have settled for a simple iterative algorithm that attaches a new

floating point variable Prob : 0.0 ≤ Prob ≤ 1.0 to each state, and works in rounds,

adjusting and passing the current Prob value for each transition from its source to its

sucessor.

To be correct, the algorithm has to distribute the initial value evenly between initial

states that are sources of some transition. The sum of Prob values for these states must

be equal to 1.0. The Prob value is then for each state, that is source of some transition

divided, by a number of outcoming edges and passed to the successor. Values that

have been passed are then summed at each state and used as a new Prob value in the

following round. This procedure is repeated as many times as is the greatest cost value,

which assures that all shortest paths have been traversed. The sum of Prob values from

all final states then gives robustness value for each parametrization.
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8 Conclusions

We have contributed to solving the parameter identification problem for Thomas net-

works in three aspects. First, we have proposed a new methodology based on a colored

model checking approach, extended with parametrization ranking procedures. Second,

we have introduced a new idea of parametrization encoding that allows us to synthesize

parametrizations in an efficient manner on distributed platforms. Third, we have im-

plemented a prototype tool chain that supports all steps of our methodology including

visualization of obtained results.

By evaluating our algorithms on several biological models, we have demonstrated

that the computation scales well w.r.t. number of parallel processes, and moreover,

that it copes with larger parameter spaces. Comparing these results with our previous

results [2, 13], capabilities of parameter identification by model checking have been

improved.

On the methodological side, our achievement brings new insights into applying dis-

crete modeling frameworks to gene regulatory networks. The case study shows that the

approach can help researchers identify reasonable parametrizations thus allowing for

more elaborate approach to reverse engineering of regulatory networks.

In future work we want to focus on additional methods of raking as well as on ex-

tending the knowledge we can extract from the values we already have. This, we hope,

could give us more certainty when reasoning about the properties of the network.
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