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Inspired by methods of remote sensing image analysis, we analyze structural variation in cluster
molecular dynamics (MD) simulations through a unique application of the principal component anal-
ysis (PCA) and Pearson Correlation Coefficient (PCC). The PCA analysis characterizes the geometric
shape of the cluster structure at each time step, yielding a detailed and quantitative measure of struc-
tural stability and variation at finite temperature. Our PCC analysis captures bond structure variation
in MD, which can be used to both supplement the PCA analysis as well as compare bond patterns be-
tween different cluster sizes. Relying only on atomic position data, without requirement for a priori
structural input, PCA and PCC can be used to analyze both classical and ab initio MD simulations
for any cluster composition or electronic configuration. Taken together, these statistical tools repre-
sent powerful new techniques for quantitative structural characterization and isomer identification in
cluster MD. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4864753]

I. INTRODUCTION

One of the greatest challenges of small cluster molecu-
lar dynamics (MD) is extracting meaningful information from
hundreds of thousands of time steps. The significant volume
of data requires methods that allow the researcher to reduce
or summarize, often by using averages over many time steps.
For quantities such as the potential, kinetic, or total energy,
averages or expectation values provide useful summaries in
order to extract quantities such as specific heat or tempera-
ture. As these thermodynamic measurables are inherently de-
fined by average behavior, little or no information is lost in the
summary.

In contrast, geometric structural measures present a chal-
lenge. At the most basic level, MD geometric data consist of a
large number of bond lengths and angles configured in a par-
ticular manner. For low-temperature MD, these changes may
consist only of small bond vibrations, for which averaging
may still be an adequate measure. However, at higher temper-
ature, structural averages lose more and more information –
particularly for clusters with complex potential energy land-
scapes, where isomerization is frequent.

The tools for analyzing geometric structure at finite tem-
perature have remained rather limited. Structural measures
commonly employed for larger clusters, such as common
neighbor analysis1–3 or the Steinhardt order parameter4, 5 are
less reliable for so few atoms where a bulk-like environment is
not well-defined. An algorithm based on structural alignment
has been used for the identification and tracking of sodium
isomers, which aides in exploring the potential energy sur-
face of metals.6, 7 Using a set of random rotations to compare
cluster structures, this algorithm requires that a set of possi-
ble isomers are known a priori, against which structural data

a)kgsteen@gmail.com

can be compared. As molecular similarity has been a long-
studied problem to aid in drug design, a number of other struc-
tural matching algorithms have also been proposed,8–11 each
of which require the same a priori knowledge of either the
full or partial structural landscape.

In recent applications of the graph theoretic ap-
proach, two powerful software packages for structural anal-
ysis have been introduced: moleculaRnetworks12, 13 and
ChemNetworks.14 With a wide variety of examples applied to
solute-solvent analysis, each package supplies a wide-range
of topological analysis tools which could be applied to cluster
structural analysis. The moleculaRnetworks software pack-
age is based on PageRank (used by Google to evaluate web-
site importance), and can be used to evaluate the polyhe-
dral arrangement of structures; however, this requires an in-
put of known polyhedra for comparison. The program library
of polyhedra have between 4–10 vertices, although the list
can be user-appended. The ChemNetworks package can be
used to generate a list of all geodesic and euclidean path
lengths between vertices, which have been defined by the
user, providing insight into the geometric shape. The output
of the overall shape of an individual cluster would be limited
by the library of polyhedra to “recognizable” or previously-
determined shapes.

How, then, does one go about identifying isomerization
in a simple, straight-forward manner without a priori or “li-
brary” structural data? In the process of analyzing molec-
ular dynamics simulations for small gallium clusters (9–36
atoms),15–17 we required methods allowing for the direct com-
parison of structural similarity over a range of isomers, across
multiple cluster sizes and temperatures, without any a priori
knowledge of cluster structure. We noted similarities to the
challenges encountered in the field of remote sensing image
analysis, where the analysis methods typically involve a large
amount of data measured under dissimilar conditions.

0021-9606/2014/140(6)/064102/6/$30.00 © 2014 AIP Publishing LLC140, 064102-1
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Borrowing techniques from the field of remote sensing
image analysis, here we present two novel methods of ge-
ometric structural analysis for cluster MD which require no
a priori knowledge of cluster structure: the principal com-
ponents analysis (PCA)18, 19 and the Pearson Correlation Co-
efficient (PCC).20 These straightforward analysis techniques
represent a unique approach to extracting meaningful and
quantitative geometric information from cluster MD simula-
tions. Each method complements or extends previous analysis
methods, with a simple but powerful approach that allows for
isomer comparisons both within and between cluster sizes.
Here, we present an overview of the PCA and PCC analysis
techniques applied to small cluster MD, using representative
examples from our simulations on small gallium clusters sized
9, 12, and 20 atoms.15, 16

II. PRINCIPAL COMPONENTS ANALYSIS

The PCA18, 19 is a standard statistical tool that identifies
the axes (dimensions) of greatest variance in a data set. It is
most commonly used to reduce high-dimensional data to a
subset of orthogonal dimensions that capture the greatest vari-
ance: the principal components. Although far from the typical
application of PCA, when applied to three-dimensional xyz
coordinates, it identifies the three longest, orthogonal dimen-
sions of the coordinates.

For MD structural data, the xyz coordinates are the atomic
positions at a particular time step. PCA first identifies the axis
of maximum variation of atomic positions, or first principal
component (P1). The 2nd principal component (P2) is the axis
that captures the next greatest variation of the atomic posi-
tions, while being entirely uncorrelated (orthogonal) with the
first axis. The third principal component (P3) will then cap-
ture the largest remaining variation of the atomic positions
uncorrelated with the first two axes.

The direction of each principal axis (Pj) is found in the
eigenvectors of the PCA, which allow for the direct mea-
surement of the orthogonal axis lengths. To best visualize
the method, it may be helpful to imagine “shrink wrapping”
the atoms to create a 3D-volume which entirely, but mini-
mally, contains the data. The distance between where each
axis pierces the shrink wrap is the length of the principal com-
ponent axis. Denoted here as �1, �2, and �3, the three orthog-
onal axis-lengths yield an excellent picture of shape changes
in the course of a finite temperature MD simulation. We can
also glean information from the three principal component
eigenvalues, p1, p2, and p3. The eigenvalues measure the vari-
ance (σ 2) in the position data along each principal component
axis, which often provides a clearer representation of struc-
tural changes.

In Fig. 1, we contrast the PCA results between an elon-
gated and nearly-spherical Ga+

20 structure in order to demon-
strate the effectiveness of the PCA in capturing cluster shape.
One strength of the PCA is that it can be efficiently applied at
every time step of a MD simulation, yielding a simple method
for capturing overall geometric changes as a function of time.
As previously mentioned, this analysis requires no a priori
knowledge of structure, shape, or composition, relying only
on the xyz atomic coordinates at each time step.

FIG. 1. Representative examples of PCA for two distinctly-shaped Ga+
20

structures:15 (top) two views of an elongated structure and (bottom) two
views of a nearly spherical cluster (direction of rotation between views in-
dicated by the arrow). Each principal component axis (Pj) is illustrated. The
corresponding principal component eigenvalues (pj) and axis lengths (�j) are
annotated beside each structure.

A. Overview of PCA for MD

In the PCA for MD, we represent the coordinates of a
cluster at time step t as a matrix, X, with dimensions NxJ.
There are 3 columns, J, numbered as j = {1,2,3}, which re-
spectively represent the x, y, and z coordinates of each ion.
The number of rows, N, is equal to the number of atoms in
each cluster. The data are preprocessed by performing a sim-
ple spatial translation so that the mean of each column is zero,
i.e., the center of the cluster coordinates is (0,0,0). This yields
the centered matrix X0.

The PCA generally follows the well-known singular
value decomposition (SVD) algorithm. For atomic position
data, we compute the SVD of X0 as

X0 = U�VT, (1)

where ()T is the transpose of the matrix within the parenthe-
ses. U is an NxN matrix representing the normalized eigen-
vectors of X0XT

0 . V is a JxJ matrix representing the normal-
ized eigenvectors of XT

0 X0. The three eigenvalues of X0XT
0

are equal to those of XT
0 X0, represented here as λj. The mid-

dle matrix, �, is an NxJ diagonal matrix of the square roots
of the eigenvalues,

�jj = √
λj . (2)

The standard deviation of each principal component,
which for our application relate the standard deviation of the
ionic positions along each principal component axis, can then
be represented as

σj =
√

λj

(N − 1)
= �jj√

(N − 1)
. (3)

The principal component eigenvalues, pj, are simply the
variances

pj = σ 2
j = λj

(N − 1)
= (�jj )2

(N − 1)
. (4)
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The principal component eigenvectors, Pj, are repre-
sented by the rows of V. We can then project the cluster co-
ordinates onto principal component axes by taking the matrix
product

B = X0V. (5)

Each of the three columns in B now represents the x, y,
and z coordinates of the cluster atoms projected so that the
axis of maximum variance aligns with the x-axis, the sec-
ond maximum variance aligns with the y-axis, and the third
maximum variance falls along the z-axis. The lengths of each
principal component axis, �j, can be easily determined by
subtracting the minimum from maximum coordinate in each
column of B.21

We note that previous research has utilized the eigen-
values of the XT

0 X0 in order to characterize the deforma-
tion (from spherical) of global minimum sodium clusters.22,24

Solov’yov et al. further determine the atomic distribution
through the standard deviation, which differs from Eq. (3)
only in the denominator, N, relating their use of a statistical
population.22 Referred to as the principal value tensor22 or
quadrupole tensor,23, 24 it is important to discern XT

0 X0 from
the matrix V, which consists of the normalized eigenvectors
of XT

0 X0. This additional step of the full PCA analysis allows
for the projection onto principal component axes (Eq. (5)) and
the determination of the cluster axis lengths (�j).

B. PCA results for MD

Fig. 2 demonstrates the PCA results for the 450 K (aver-
age temperature) MD simulation of Ga+

20 (computational de-
tails cited in our previous work).15 The top panels illustrate
the axis lengths and PCA eigenvalues as a function of MD
simulation time. From the axis lengths (top panel), we can
easily identify transitions between two distinct structural iso-
mers. However, the PCA eigenvalues highlight a third isomer
between 25 and 30 ps. The time periods for each isomer are
annotated by the A, B, and C in the eigenvalue plot, which
correspond to each of the structures given at the bottom row
of Fig. 2.

We have tested the PCA on clusters as small as 9 atoms,
where it still effectively identifies structural transitions.
Fig. 3 demonstrates the PCA applied to the Ga9 simulation at
both 445 K and 535 K.16 PCA identifies two structural iso-
mers, each with the same cubic base and differing only in
the relative positioning of the adatom. Such a small variation
would have been difficult to systematically identify visually
or by other methods of analysis. However, PCA clearly dis-
tinguishes the two, allowing for an accurate determination of
the relative stability of each isomer at each finite temperature.
The adatom-up structure is less stable at 445 K, persisting
for only 40% of the simulation time; however, at 535 K, the
adatom-up structure persists for 74% of the simulation time,
surprisingly becoming the more stable configuration at higher
finite temperatures.

While PCA analysis is a simple, powerful tool for MD
structural analysis, there is at least one limitation: we can-
not directly compare results between cluster sizes. Each addi-

FIG. 2. (Top) Three principal axis lengths, �j and (middle) the three principal
eigenvalues, pj are given for each MD time step of the 450 K simulation of
Ga+

20.15 From the eigenvalues, it is easy to discern the three distinct structural
motifs A, B, and C, which correspond (respectively) to the representative
structures shown in (a) obtained from ∼66 ps, (b) from ∼12 ps, and (c) from
∼26 ps.

FIG. 3. Three principal axis lengths, �j are given for each MD time step of
the (top) 445 K and (bottom) 535 K simulation of Ga9.16 From the distinct
changes in the �2 over the course of the simulation, we can easily identify
two structural isomers differing only by the position of the adatom: adatom-
up (top, left) and adatom-down (top, right). Noting the axis-length patterns,
we can additionally quantify and compare the structural stability of two iso-
mers between finite temperatures: the up/down simulation time ratios are
40%/60% at 445 K and 74%/36% at 535 K.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.133.152.56 On: Wed, 25 Nov 2015 10:39:46



064102-4 K. G. Steenbergen and N. Gaston J. Chem. Phys. 140, 064102 (2014)

tional atom naturally changes the lengths of the axes. In or-
der to compare structures between cluster sizes, we utilize the
PCC.20

III. PEARSON CORRELATION COEFFICIENT

PCC20 is a simple correlation measure, calculated as the
covariance of two data sets divided by the product of their
standard deviations. For two data sets x and y, both of the
same size n, this easily simplifies to

PCC(x, y) =

n∑
i=1

(xi − x̄)(yi − ȳ)√
n∑

i=1
(xi − x̄)2

√
n∑

i=1
(yi − ȳ)2

, (6)

where x̄ and ȳ represent the average of each data set and xi

and yi are the individual data points. PCC(x,y) measures the
degree of linear correlation between x and y, yielding a value
of (+1) when the two data sets are perfectly correlated, (0)
for perfectly uncorrelated data, and (−1) for perfect inverse-
correlation.

A. Overview of PCC for MD

In order to apply the PCC to MD for the purpose of
capturing non-shape related variation, we utilize a pair dis-
tribution function (PDF) to summarize the bond structure at
each time step. We then average the PDFs over a short time
to obtain a time-average pair distribution function (taPDF).
Although some detail is lost in averaging, we found that the
single-time step PDF’s were too noisy for meaningful PCC
analysis. Each taPDF then represents a short-time average
cluster structure, which can be thought of as a structural signa-
ture. These structural signatures are compared using the PCC
analysis, which provides a quantitative measure of structural
similarity based on bond patterns.

After extensive testing, we determined that an average
over 40 fs (20 time steps with dt = 2 fs) adequately reduces
the finite temperature noise while still capturing structure-
specific bond patterns. We utilize a PDF bin size of 0.05 Å,
where n is the total number of bins. The quantities x̄ and ȳ are
then the average of each of the correlated taPDFs. The indi-
vidual data points, xi and yi, are the bond frequencies of each
bin.

B. PCC results for MD

For ease in illustrating the concept of the PCC, we uti-
lize the structural motifs A and B represented in Fig. 2. We
average the PDFs for clusters within 40 fs of structures (A)
and (B), yielding taPDF’s ga and gb (shortened from ga(r)
and gb(r)). We also calculate ga2 , another A-motif taPDF ob-
tained from ∼17 ps (Fig. 2). The top panel of Fig. 4 illus-
trates ga compared with ga2 , resulting in the relatively high
PCC(ga,ga2 ) = 0.94. The distinct structural signatures from
ga and gb are contrasted in the second panel, with the appro-
priately lower PCC(ga,gb) = 0.84. These two PCC values are
obtained by measuring a regression distance from linear (per-

(a)

(b)

FIG. 4. (a) The reference taPDF, ga, is correlated with two other taPDF’s:
(top panel) ga2 and (bottom panel) gb. Both ga and ga2 are averaged over
structures of motif A, and their similar taPDF’s yield a high correlation (PCC)
value. The taPDF for gb was obtained from an average over structures of
motif B, explaining the distinct taPDF’s and low correlation value. (b) A plot
illustrating the PCC measure, with ga plotted against both ga2 (red, circle)
and gb (blue, square). PCC perfect correlations of (+1) are demonstrated by
the respective linear regression lines (red dashed and blue dashed-dotted).
The PCC is calculated by a regression distance, graphically showing that ga

is less linearly correlated with gb, as these data points (blue squares) are less
closely clustered around their regression line (blue dashed-dotted).

fect) correlation, as illustrated in the bottom panel of Fig. 4.
By this example, it is easy to identify the origin of the higher
PCC, as the ga–ga2 data (red circle) is more closely-clustered
around its linear regression line (red dashed).

Extending this analysis to MD, we refer to the illustrative
example in the top panel of Fig. 5. We first calculate a taPDF
for every 40 fs window of the simulation, annotated as gtn .
Selecting a reference taPDF of ga, we calculate the PCC be-
tween ga and each time-window’s taPDF, PCC(ga,gtn ). When
calculated for an entire MD simulation, the correlation trends
yield a detailed picture of structural variation as measured by
bonding patterns. Exemplified in the second panel of Fig. 5,
we select both ga and gb as reference taPDFs for the Ga+

20 sim-
ulation at 450 K. With the highest PCC values illustrating the
best bond-pattern correlation, we observe that the PCC pat-
terns exactly match those demonstrated by the PCA for this
same simulation (Fig. 2). It is noted that the PCC does not
distinguish structural motif C, which may arise from either
the short duration of this structural motif (∼5 ps) or due to a
bond structure closely resembling that of motif A.

An additional strength of the PCC is that it can be ap-
plied across a range of cluster sizes. We select a reference
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(a)

(b)

(c) (d)

FIG. 5. (a) An illustrative example of PCC analysis applied to a MD simu-
lation. The reference taPDF, ga, is correlated with each time window taPDF,
gtn , yielding the series of correlation values PCC(ga,gtn ). (b) PCC analysis
for the Ga+

20 simulation at 450 K, using reference taPDF’s ga (black) and gb

(red). The pattern closely matches the PCA for the same simulation (Fig. 2),
as demonstrated here by the motif labels A and B. We also include a PCC
comparison between this Ga+

20 simulation data and a reference taPDF from
the Ga12 simulation at 450 K (g12, blue). We note g12 has maximum PCC
when compared with taPDF’s of motif A and closely follows the PCC trend
of ga, illustrating how PCC can be used to correlate bond patterns across
cluster sizes.

taPDF from the Ga12 simulation16 at 450 K (g12) and com-
pare it to the same-temperature Ga+

20 taPDFs. Illustrated by
the blue curve in Fig. 5, although the correlation values are no-
tably lower due to the significant reduction in cluster size, the
PCC pattern closely follows ga: exhibiting maximums when
correlated with structures of motif A and minimums for mo-
tif B. From this PCC analysis, we can discern that the bond
structure of this Ga12 cluster best matches the 20-atom A-
motif structures. Figs. 5(c) and 5(d) compare a representative
structure from g12(r) with the Ga+

20 A-motif structure (differ-
ent perspective from Fig. 2(a)). The double-row, hexagonal
ring structure is common to both clusters, although it is only
highlighted for the uppermost ring for visual clarity.

While the PCC analysis can also be applied across a
range of finite temperatures, it is particularly sensitive to any
x-stretching, which arises in taPDF data as the temperature
is raised (bonds lengthen). The PCC values will, therefore,
be notably lower when correlating between different temper-
atures, which greatly affects the clarity of the results. For

our simulations, we noted that the correlations were still in-
structive for average temperature differences up to 100 K (not
crossing the phase transition); however, this would likely be
unique for each different system.

IV. SUMMARY

We have demonstrated the PCA and PCC analyses for
representative examples of the 9, 12, and 20-atom gallium
simulations. With no a priori structural input, we have illus-
trated that PCA can be used to easily discern changes in the
overall shape of a cluster, while the PCC can be used to iden-
tify both changes to the bond structure as well as common
structural motifs between different cluster sizes. Since both
methods rely only on the atomic positions, they can be ap-
plied to both classical and ab initio MD data across a wide-
range of sizes and compositions. While each analysis method
has weaknesses, coupling the PCA and PCC analyses cre-
ates a powerful tool for quantifying structural variation at fi-
nite temperature. Future work will include an investigation of
x-stretching models that may allow PCC comparison across
a wider temperature range, as well as additional correlation
methods that may enhance or extend the analysis.
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