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AN EXACT MATHEMATICAL PROGRAMMING
APPROACH TO MULTIPLE RNA

SEQUENCE-STRUCTURE ALIGNMENT

MARKUS BAUER, GUNNAR W. KLAU, AND KNUT REINERT

Abstract. One of the main tasks in computational biology is the com-
putation of alignments of genomic sequences to reveal their commonali-
ties. In case of DNA or protein sequences, sequence information alone is
usually sufficient to compute reliable alignments. RNA molecules, how-
ever, build spatial conformations—the secondary structure—that are
more conserved than the actual sequence. Hence, computing reliable
alignments of RNA molecules has to take into account the secondary
structure. We present a novel framework for the computation of exact
multiple sequence-structure alignments: We give a graph-theoretic rep-
resentation of the sequence-structure alignment problem and phrase it as
an integer linear program. We identify a class of constraints that make
the problem easier to solve and relax the original integer linear program
in a Lagrangian manner. Experiments on a recently published bench-
mark show that our algorithms has a comparable performance than more
costly dynamic programming algorithms, and outperforms all other ap-
proaches in terms of solution quality with an increasing number of input
sequences.

1. Motivation

Recent advances in modern molecular biology would have been impossi-
ble without the application of sophisticated algorithmic and mathematical
modelling techniques. Some of the most eminent examples are the determi-
nation of the genomic sequences of human and fruit fly [1, 44] that marked
a milestone in modern biology. Besides that, biologists use programs like
BLAST [40] as an everyday tool to find similar sequences in large databases.

Advanced combinatorial optimization entered the field around the mid
1990s when Kececioglu introduced the notion of a maximum trace [28], and
has been extended to various fields in subsequent years [2,4,6,11,29,32,38].
The interested reader is referred to [21] where the authors give a survey on
combinatorial optimization problems appearing in computational biology.

Sequence analysis of proteins, RNA, and DNA is still the core application
in computational biology. The human genome, for example, can be seen
as an approximately three billion character long string over the four-letter
DNA alphabet Σ = {A,G,C, T}. The first step in almost every analysis is
the computation of an alignment of two sequences in order to detect their
commonalities: a pairwise sequence alignment of sequences a and b denotes
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-ACGTCGCG

GAC----CG

ACGTCGCG

GACCG

CGCG

C-CG

global: local:

Figure 1. Given the two input sequences to the left, one
possible global alignment (aligning the entire sequences) is
shown in the middle, whereas the right-hand side shows one
possible local alignment (aligning two subsequences).

A C G T CACGTCGCG

GACCG

G C G

G A C C G

A C G T C G C G

G A C C G

-ACGTCGCG

GAC----CG

Figure 2. Alignment graphs. Vertices correspond to char-
acters in a sequence, solid lines to alignments of characters:
Given the input sequences on the left, we construct a com-
plete bipartite graph. The subset of edges shown in bold
represent the alignment on the right side.

an arrangement of a and b such that identical or similar characters are
written in one column. This is accomplished by inserting a so called gap
character, usually “-”, into the sequences. Scores for pairs of symbols express
the benefit or penalty for aligning these two symbols. The seminal paper
of Needleman and Wunsch described an algorithm to compute an optimal
global alignment of two strings [35], which has been subsequently modified
to detect locally similar subsequences [42]. Figure 1 shows an illustration
for both global and local sequence alignment.

A different way to model sequences and alignments is by weighted graphs:
We set the nucleotides as the nodes in the graph, and we insert edges be-
tween every node from the first to the second sequence. The edge weights
correspond to the score of aligning the first to the second nucleotide. An
alignment is then a non-crossing matching of maximum weight in a bipartite
graph. See Fig. 2 for an illustration.

Although the variety and applications of alignment problems tremen-
dously increased over the years, the core algorithms are largely based on
dynamic programming (DP). In [38] the authors describe the first graph-
theoretical formulation for the NP-hard problem of aligning multiple se-
quences and solve it exactly using branch-and-cut.

Another important class of molecules in the cell are RNAs. In recent years,
they have gained more and more attention. Unlike previously thought, RNA
molecules perform important catalytic functions in the cell, that is, RNA
itself is able to trigger or inhibit functions in the cell [33]: this discovery con-
tradicts the traditional model in molecular biology, where these functional
activities have been attributed exclusively to proteins.
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GCGGAUAACCCCU
GGAUACCAUCG

-GCGGAUAACCCCU
GG-AUA-CCA-UCG

GCGGAUAACCC-CU
--GGAUA-CCAUCG

(a) (b) (c)

Figure 3. Given two RNA sequences with their correspond-
ing secondary structure (a), alignment that maximizes se-
quences and structure score (in grey) (b), alignment maxi-
mizing sequence score alone (in light grey) (c).

From an algorithmic point of view, the algorithms for DNA still work in
case of RNA sequences, the only difference is that the four-letter alphabet
Σ contains a U instead of the T , but it has been shown that the sequence
alone does not carry all information to compute reliable alignments. An
RNA sequence folds back onto itself and forms hydrogen bonds between
pairs of (G, C), (A,U), and (G, U). These bonds lead to the distinctive
secondary structures of an RNA sequence. Figures 4 and 5 show common
representations of small toy examples of RNA sequences together with their
secondary structure.

In the course of evolution, RNA sequences mutate at a much higher rate
than the structure that they are forming, following the structure-function
paradigm: RNA molecules with different sequences but same or similar sec-
ondary structure are likely to belong to the same functional family, in which
the secondary structure is conserved by selective pressure. This in turn
means that the computation of reliable alignments must take structural in-
formation into account. For example Figure 3 shows two possible alignment
of two RNA sequences and structures, where the first maximizes the struc-
tural similarity and the second maximizes the sequence similarity.

Figure 3 also contains a so called pseudoknot depicted by the red line
crossing the other lines in the secondary structure. Pseudoknots do occur
naturally in some classes of RNA families. Their presence or absence in the
corresponding computational models plays an important role for the compu-
tational complexity of the corresponding optimization problems. Allowing
pseudoknots makes the problems computationally hard [20]. Hence, most
approaches assume a pseudoknot-free, nested structure as their input. A
nested structure can be drawn as an outer-planar graph in its circular rep-
resentation (see Fig. 5 on the right side for an illustration): Nested structures
allow a straightforward decomposition of the entire structure into smaller
substructures leading to polynomial time algorithms using dynamic pro-
gramming. In addition it is well known that the multiple alignment problem
is NP-hard [45] even without considering secondary structure.
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Figure 4. Two ways to depict an RNA sequence and corre-
sponding secondary structure. Left the bracket notation in
which pairing brackets indicate base pairs. Right an alterna-
tive way to represent the structure using a graph.
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Figure 5. Graph-based representations of RNA structures.
The left side shows the standard graph representation,
whereas on the right side a circular graph representation is
given. Adding the dotted red edge yields a pseudoknot, i.e.
crossing base pairs, in the secondary structure.

Subsuming the above introductory discussion, we aim at solving the
sequence-structure alignment problem: Given two or more RNA sequences,
we aim at computing the optimal multiple sequence-structure alignment.

More specifically, let A denote an alignment of the sequences. We define
by sS(A) the sequence score of alignment A, whereas sP (A) denotes the
score of structural features that are realized by the alignment A. We aim at
maximizing the combined sequence-structure score, that is an alignment A∗

that maximizes sS(A∗)+ sP (A∗). Figure 3 gives a toy example showing two
sequences—with their corresponding secondary structure—and two possible
alignments, one maximizing the score of sequence and structure, and the
other one maximizing just the sequence score alone. We will elaborate on
this in Sect. 3.

2. Previous Work

Sankoff described the first algorithm for the simultaneous alignment of se-
quence and folded structure in his seminal paper [39]: the original dynamic
programming algorithm takes O(n3k) and O(n2k) in time and space, where
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k is the number of sequences and n their maximal length. This makes the
algorithm applicable only to short sequences even in the pairwise case. Con-
sequently, light-weight implementations were subsequently developed that
restricted the original recursions in various ways, like banding [25], or by
keeping some aligned positions a priori fixed [16, 24]. Bafna et al. [5] give
recursions for the simultaneous alignment of sequence and structure that
build the basis for subsequent work [23,43].

In [47] the authors gave an alternative model for comparing RNA se-
quences. They view the nested structures as a tree and compute the mini-
mal number of node operations (node substitution, node insertion, and node
deletion) to transform one tree into the other. Along these lines the authors
of [27] propose an alternative view by introducing the alignment of trees.

The authors of [26] introduce so called edit operations on RNA structures
to transform on structure into the other. A cost function gives the score for
each edit operation: the goal is then to find a series of operations of minimal
cost to transform one RNA structure into the other.

Evans presented the model of an arc-annotated sequence in [18] and re-
duces the computation of sequence-structure alignments to the computa-
tion of the longest arc-preserving common subsequence. The authors of [15]
present a novel computational model for aligning multiple RNA structure
based on the notion of a linear graph.

Reinert et al. [32] gave a different approach for comparing RNA structures:
they phrase their graph-based model as an integer linear program and solve
it afterwards by branch-and-cut. They are able to align RNA sequences
with known structure to those of unknown structure by maximizing the se-
quence and structure score. Their approach allows for pseudoknots and is
able to tackle problem instances with a sequence length of approximately
1400 bases. However, for problems of that size their algorithm already needs
prohibitive resources. Lancia and coworkers developed a branch-and-cut al-
gorithm [30] that is similar to [32] for the related problem of aligning contact
maps. In subsequent work [11] they introduced Lagrangian relaxation to the
field of computational biology: Their formulation is based on previous work
in the field of quadratic programming problems like the Quadratic Knapsack
Problem [12] or the Quadratic Assignment Problem [13].

In [6] the authors adapt the Lagrangian relaxation formulation to the
problem of aligning two RNA structures: Their implementation yields an
algorithm that is an order of magnitude faster than the algorithm from [32]
for solving the same instances with respect to the same objective function.
Along these lines, [7] describes an initial integer linear programming for-
mulation for solving multiple RNA structures simultaneously. Althaus et
al. [3] give a formulation for aligning multiple sequences with arbitrary gap
costs which also contains extensive polyhedral studies about facet-defining
inequalities.
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In this paper we present a graph-based model that unifies the formulations
given in [7] and [3] for the simultaneous alignment of multiple RNA struc-
tures. Here, we concentrate on a sound description of our mathematical
basis, a first formulation for multiple structural RNA alignments includ-
ing arbitrary gap costs in the graph-based framework, and our algorithmic
contribution. In a companion paper, we focus on the application and com-
parison of our new method to state-of-the art tools [8].

Section 3 describes the graph-based model, in Sect. 4 we give an inte-
ger linear programming (ILP) formulation for our model and show how we
find (near-)optimal solutions using Lagrangian relaxation. Section 5 is a
summary of computational results on the recently published benchmark set
BRAliBase [46]. We show that with an increasing number of input se-
quences, our approach outperforms all the traditional DP based algorithms
in terms of the quality solution.

3. Graph-theoretic framework

We first give some basic definitions that we use throughout the rest of the
paper. Afterwards, we describe our graph-theoretical model, which is based
on the formulations given in [6] and [3].

3.1. Basic Definitions.

Definition 1. Let Σ be some alphabet excluding the gap character “-”,
and let Σ̂ = Σ ∪ {-}. Given a set S of k strings s1, . . . , sk over Σ, we call
A = (ŝ1, . . . , ŝk) a multiple alignment of the sequences in S if and only if the
following conditions are satisfied: (a) The sequences ŝi, 1 ≤ i ≤ k, are over
the alphabet Σ̂, (b) all sequences ŝi have the same length |A|, (c) sequence
ŝi without “-” corresponds to si, for 1 ≤ i ≤ k, and (d) there is no index
j such that ŝi

j = “-”, 1 ≤ i ≤ k. By si
j we refer to the jth character in

sequence si. We define Mi(j) as the mapping of si
j to its position in the

alignment, and by M−1
i (j) the mapping from the position in the alignment

to the actual position in the sequence. If ŝi
j 6= “-” and ŝl

j 6= “-”, 1 ≤ j ≤ |A|,
then we say that si

M−1
i (j)

is aligned to sl
M−1

l (j)
, and to a gap otherwise.

Alphabets commonly used in computational biology are the four letter
alphabet Σ = {A,G,C, T} or Σ = {A,G,C,U} in case of DNA or RNA
sequences, respectively. We define a scoring function σ : Σ̂ × Σ̂ → R that
represents the benefit of aligning the two characters. Usually, pairs of iden-
tical characters receive a high score, whereas different characters get a low
score (or even a negative score in case of gap characters).

We can extend the score definition to alignments:

Definition 2. Given a set S of k strings s1, . . . , sk, an alignment A consist-
ing of strings ŝ1, . . . , ŝk, and a scoring function σ, the sum-of-pairs (SPS)
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AAAAAA
AAA

(a)

AAAAAA
A-A-A-

(b)

AAAAAA
AAA---

(c)

Figure 6. Given the sequences from (a), a linear gap func-
tion would assign the same gap score to the alignment of (b)
and (c). The beginning of a gap, however, should be pe-
nalized higher compared to subsequent gap characters, and
therefore the alignment of (c) is biologically more accurate.

score of A is defined by

SPS(A, σ) =
k−1∑
i=1

k∑
j=i+1

|A|∑
l=1

σ(ŝi
l, ŝ

j
l ) .

Intuitively speaking, the sum-of-pairs score adds up all scores of pairs of
aligned characters in the alignment A. Usually, we are interested to find an
optimal multiple sequence alignment under the scoring function σ.

Definition 3. Given a scoring function σ and a set S of sequences, we aim
at computing an alignment A∗ with

SPS(A∗, σ) = max
A∈A

SPS(A, σ) ,

where A is the set of all possible multiple alignments for S. We call A∗ an
optimal multiple sequence alignment of S under the scoring function σ.

In this score model gaps are not explicitly modelled and inherently present
by the alignment of a gap character to a non-gap character. Hence it is not
possible to penalize different numbers of consecutive gaps differently. For
example a gap of length three—aligning three ‘A’s to three ‘-’—is scored
the same as three individual gaps of a single ‘A’ aligned to a single ‘-’ (see
Fig. 6 (b) and (c)).

Unfortunately this is not desirable. Biological findings motivate a different
gap model: the begin of a gap should be penalized higher compared to
subsequent gap characters. This leads to affine gap costs that score a gap
of length x by a + (x− 1)b, where a > b are the gap open and gap extension
penalties. Using this model would clearly favor the single gap (Fig. 6 (c))
over the three individual gaps (Fig. 6 (b)).

Motivated by this discussion we introduce the following score which mod-
els gaps explicitly and hence can assign affine gaps costs (or any other gap
cost) to the gaps in an alignment. Mind that by using an explicit gap model
the scores for aligning a character to a gap character might have to be mod-
ified accordingly.

Definition 4. Given a set S of k strings s1, . . . , sk, an alignment A consist-
ing of strings ŝ1, . . . , ŝk, and the set G(A) containing all gaps of alignment
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A. Let σ be a sequence scoring function, and a gap penalty function γ, then
the gapped sum-of-pairs (GSPS) score of A is defined by

GSPS(A, σ̂, γ) =
k−1∑
i=1

k∑
j=i+1

|A|∑
l=1

σ(ŝi
l, ŝ

j
l ) +

∑
g∈G(A)

γ(g) .

Note that γ assigns negative scores to gaps in the alignments, since we
want to penalize the occurrence of gaps in alignments.

As described in Sect. 1 in case of RNA molecules sequence alignments are
in general not sufficient enough to build reliable alignments. Therefore, in
addition to the gaps, one has to incorporate structural information. This
leads to the notion of annotated sequences.

Definition 5. Let s = s1, . . . , sn be a sequence of length n over the alphabet
Σ = {A, C, G, U}. A pair (si, sj) is called an interaction if i < j and
nucleotide i interacts with j. In most cases, these pairs will be (G, C),
(A,U), or (G, U). The set p of interactions is called the annotation of
sequence s. Two interactions (sk, sl) and (sm, so) are said to be inconsistent,
if they share one base; they form a pseudoknot if they “cross” each other
that is if k < m < l < o or m < k < o < l. A pair (s, p) is called an
annotated sequence. Note that a structure where no pair of interactions is
inconsistent with each other forms a valid secondary structure of an RNA
sequence, possibly with pseudoknots.

Definition 6. Given a sequence alignment A = (ŝ1, . . . , ŝk) of k sequences,
consider two annotated sequences (si, pi) and (sj , pj). We call two interac-
tions (si

k, s
i
l) ∈ pi and (sj

m, sj
n) ∈ pj a structural match if si

k is aligned with
sj
m and si

l is aligned with sj
n. Two structural matches (si

k, s
i
l), (sj

k, s
j
l ) and

(si
m, si

n), (sj
m, sj

n) are inconsistent if k = m, l = m, k = n, or k = n. We
define a scoring function τ : Σ4 → R that assigns a score to quadruples of
characters representing the benefit of matching the two interactions.

In other words, in case of a structural match of two interactions, their
“left” and “right” endpoints are aligned by A. Two structural matches are
inconsistent, if they share an aligned column: In case of RNA sequences,
we allow each nucleotide to be paired with at most one other nucleotide,
inconsistent matches represent pairings with two or more nucleotides which
we do not allow in case of RNA sequences.

This leads to the definition of sequence-structure alignments of RNA
structures.

Definition 7. Given a set S of k strings s1, . . . , sk and an alignment A con-
sisting of strings ŝ1, . . . , ŝk. Let G(A) be the set of all gaps of A, and let σ, τ ,
γ be functions for scoring sequence, structural matches, and gaps. Then the
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-GCGGAUAACCCC

GG-AUA-CCA-UC

U--GAC-CCU-CC

ŝ1

ŝ2

ŝ3

Figure 7. Realized structural matches are highlighted
with grey edges: the structural match (ŝ2

1, ŝ
2
5), (ŝ3

1, ŝ
3
5)) (the

red dotted edge) is inconsistent with the structural match
(ŝ2

5, ŝ
2
10), (ŝ3

5, ŝ
3
10).

gapped structural sum-of-pairs score of A is defined by GSSPS(A, σ, τ, γ) =

k−1∑
i=1

k∑
j=i+1

 |A|∑
l=1

σ(ŝi
l, ŝ

j
l ) +

|A|−1∑
l=1

|A|∑
m=l+1

τ(ŝi
l, ŝ

j
l , ŝ

i
m, ŝj

m)

 +
∑

g∈G(A)

γ(g)

where we do not score inconsistent structural features, that is we ensure
that every base realizes at most one structural match.

Figure 7 gives an illustration for the definitions given above. Analogously
to the optimal sequence alignment problem, we consider the optimal sequence-
structure alignment of RNA structures:

Definition 8. Given scoring functions σ, τ , and γ for scoring sequence,
structural matches and gaps. Let set S of k sequences s1, . . . , sk. We aim
at computing an alignment A∗ with

GSSPS(A∗, σ, τ, γ) = max
A∈A

GSSPS(A, σ, τ, γ) ,

where A is the set of all possible multiple alignments for S. We call A∗ the
optimal multiple sequence-structure alignment of S.

3.2. Graph-Theoretical Model for Structural RNA Alignment.
Basic Model. We are given a set of k annotated sequences {(s1, p1), . . . ,
(sk, pk)} and model the input as a structural graph GS = (V,L). The set
V denotes the vertices of the graph, in this case the bases of the sequences,
and we write vi

j for the jth base of the ith sequence. The set L contains
undirected alignment edges between vertices of two different input sequences
(for sake of better distinction called lines). A line l ∈ L with l = (vi

k, v
j
l ), i 6=

j represents the alignment of the k-th character in sequence i with the l-th
character in sequence j. The set Lij represents all lines between sequences
i and j. We address the source node and target node of line l by s(l) and
t(l), respectively (i.e., for l = (vi

k, v
j
l ) we have s(l) = vi

k and t(l) = vj
l ). The

graph GS is a k-partite graph.
We extend the original graph GS = (V,L) by the edge set F to model

the annotation of the input sequences in our graph. Consequently, we have
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G A A G C

G A G C G

C U G G

U

s2

s1

s3

v1
1 v1

2 v1
3

. . .

v2
1 v2

2 v2
3

. . .

v3
1 v3

2 v3
3

. . .

Figure 8. Basic graph model of three annotated sequences
containing lines (grey solid lines) and interaction edges (bold
dotted edges).

interaction edges between vertices of the same sequence, i.e., an edge (vi
k, v

i
l)

representing the interaction between vertices vi
k and vi

l . Figure 8 illustrates
these definitions.
Consecutivity and Gap Arcs. In addition to the undirected alignment
and interaction edges we augment the graph by the set D of directed arcs
representing consecutivity of characters within the same string. We have an
arc that runs from every vertex to its “right” neighbor, i.e., D = {(vi

j , v
i
j+1) |

1 ≤ i ≤ k, 1 ≤ j < |si|}.
At this point, gaps are not represented in our graph model. Hence, we

introduce the edge set G: for each pair of sequences (i, j) we have an edge aij
kl

from vi
k to vi

l representing the fact that no character of the substring si
k · · · si

l

is aligned to any character of the sequence j, whereas si
k−1 (if k − 1 > 1)

and si
l+1 (if l + 1 ≤ |sj |) are aligned with some characters in sequence

j. We say that vi
k, . . . , v

i
l are spanned by the gap arc aij

kl. The entire set
G is partitioned into distinct subsets Gij with i, j = 1, . . . , k, i 6= j, and
Gij = {aij

lm ∈ G | 1 ≤ l ≤ m ≤ |si|}. Intuitively spoken, for each sequence i

we have k − 1 arcs between each pair of nodes (vi
k, v

i
l) in order to represent

gaps between the actual sequence and the remaining k − 1 sequences.
Two gap arcs aij

kl, aij
mn ∈ Gij ,w.l.o.g. k < m, are in conflict with each

other if {k, . . . , l + 1} ∩ {m, . . . , n} 6= ∅, that is we do not allow overlapping
or even touching gap arcs. This is intuitively clear, because we do not want
to split a longer gap into two separate gaps; as a result there has to be at
least one aligned character between two realized gap arcs. The set C codes
for the collection of all maximal sets of pairwise conflicting gap arcs. Finally,
we define Gij

vi
k↔vi

l

as the set of gap arcs that span the nodes vi
k · · · vi

l . See
Fig. 9 for an illustration.
Mixed Cycles. A mixed path in the graph GS is an alternating sequence
v1, e1, v2, e2, . . . of vertices vi ∈ V and lines or edges ei ∈ L∪D. It is a mixed
path if it contains at least one arc in D and one line in L. A mixed path
is called a mixed cycle if the start and end vertex are the same. A mixed
cycle represents an ordering conflict of the letters in the sequences. In the
two-sequence case a mixed cycle represents lines crossing each other. The
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s1

s2

AGGCAGC
AG----A

G C A G C

A G A

G CA G

Figure 9. A longer gap cannot be split into two shorter
gaps: the two dashed gap edges are in conflict with each
other and are replaced by the solid gap edge spanning the
two shorter gap edges.

G A A G C

G A G C G

C U G G

U

s2

s1

s3

(a)

G A A G C

G A G C G

C U G G

U

(b)

Figure 10. (a) Basic graph model augmented by gap edges
(interaction edges are not displayed) , (b) showing an in-
stance of a mixed cycle.

set of all mixed cycles is denoted by M. A subset L ⊆ L corresponds to an
alignment of the sequences s1, . . . sk if L∪A does not contain a mixed cycle.
In this case, we use the term alignment for L.
Interaction Match. Two interaction edges o = (vi

k, v
i
l) ∈ pi and p =

(vj
m, vj

n) ∈ pj form an interaction match if there exist two lines e = (vi
k, v

j
m)

and f = (vi
l , v

j
n) such that e and f do not cross each other. A subset L ⊂ L

realizes the interaction match (e, f) if e, f ∈ L. Observe that the definition
of an interaction match is a graph-theoretical reformulation for a structural
match as defined in Sect. 3.1. The set I codes all interaction matches of L.
Gapped Structural Trace. A triple (L, I,G) with L ⊆ L, I ⊆ I, and
G ⊆ G denotes a valid gapped structural trace if and only if the following
constraints are satisfied:

(1) For i, j = 1, · · · , k, i 6= j we define Lij = Lij ∩ L: Then, for l =
1, · · · , |si| the vertex vi

l is incident to exactly one alignment edge
e ∈ Lij or spanned by a gap arc g ∈ Gij .

(2) An alignment edge l can realize at most one single interaction match
(l, m).

(3) There is no mixed cycle M ∈M such that M ∩ L = M .
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G

G

C

G

C

G

l

k

m

(a)

G A A G C

G A G C G

C U G G

U

s2

s1

s3

GAAGC--

C-UGG--

GA-GCGU

(b)

Figure 11. (a) Transitive edges must also be realized: If k
and l are part of the alignment, then m has to be realized
as well. (b) Example of a valid gapped structural trace of
three annotated sequences. Three interaction matches are
conserved by the alignment.

(4) There are no two gaps arcs aij
kl, a

ij
mn ∈ G such that aij

kl is in conflict
with aij

mn.
(5) Given L, then we denote by H(L) the convex hull of L. Then

H(L) = L
must hold true. This makes sure that alignment L also realizes all
transitive edges induced by L: See Fig. 11(a) for an illustration.

See Fig. 11(b) for an illustration of a gapped structural trace.
We assign positive weights wl and wij to each line l and each interac-

tion match (i, j), respectively, representing the benefit of realizing the line
or the match. Although we are able to set each weight independently, line
weights are usually given by empirically derived mutation score matrices
where σ(si

k, s
j
l ) gives a high value in case of identical (or similar) charac-

ters. We assign scores to interaction edges by calculating base pair proba-
bilities [34]. The base pair probability bpp(vi

k, v
i
l) gives the probability that

nucleotides si
k and si

l fold onto each other. To use the probabilities in an
additive scoring scheme, we have to transform the probabilities logarithmi-
cally, i.e. the actual score pi

kl for an interaction between si
k and si

l is given
by

pi
kl = lg

(
bpp(vi

k, v
i
l)

pmin

)
where lg and pmin are the natural logarithm and the minimal probability that
we consider. The weight wîĵ for an interaction match of lines î = (vi

k, v
j
m)

and ĵ = (vi
l , v

j
n) is then given by wîĵ = pi

kl + pj
mn, i.e. the sum of the scores

of the realized interaction edges.
Note that since each interaction edge occurs in two interaction matches

(m, l) and (l, m) we divide the weight of these edges by two. Finally, we
assign negative weights to gap edges aij

kl representing the gap penalty for
aligning substring si

k, · · · , si
l with gap characters in sequence j.
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3.3. Complexity. Jiang and Wang showed [45] that computing an optimal
multiple sequence alignment is NP-hard. Along these lines, the authors of
[17] prove that the problem remains NP-hard for different scoring functions.

The complexity of sequence-structure alignments depend on the input
of the problem and on the actual model one is using: pairwise sequence-
structure alignments of RNA structures—as defined in Sect. 3.1— where
pseudoknots are not allowed can be solved in polynomial time [5]. The
authors of [20] show that computing the maximal contact map overlap—a
similar problem to RNA structures—is NP-hard in the pairwise case. As
a byproduct they state that the computation of the maximal contact map
overlap, where every node has a maximum degree of 1, is already NP-hard.
Unfortunately, this problem corresponds exactly to the sequence-structure
alignment of RNA structures in our model. Hence, computing sequence-
structure alignments of two RNA structures of arbitrary structure, i.e. with
pseudoknots, is already NP-hard in the pairwise case.

In [18] Evans gave an NP-hardness prove for the computation of the
longest arc-preserving common subsequence. Along these lines, Blin and
coworkers give several NP-completeness proofs [9,10] for variants of the arc-
annotated sequence model.

Computing sequence-structure alignments in the general edit-model of
[26] turns out to be MAXSNP-hard, even if we do not allow crossing inter-
actions. If one limits the number of edit-operations by choosing appropriate
costs per edit operations, the authors give polynomial time algorithms based
on dynamic programming.

4. Integer Linear Program and Lagrangian Relaxation

4.1. Integer Linear Program. Given the graph-theoretical model it is
straightforward to transform it to an integer linear program (ILP). We as-
sociate binary variables with each line, interaction match, and gap edge,
and model the constraints of a valid gapped structural trace by adding con-
straints to the linear program.

The handling of lines and gap edges is straightforward: We associate a x
and z variable to each line and gap edge, respectively. We set xl = 1 if and
only if line l ∈ L is part of the alignment L, and za = 1 if and only if gap
edge a ∈ G is realized.

Interaction matches, however, are treated slightly differently: Instead of
assigning an ILP variable to each interaction edge, we split an interaction
match (l, m) into two separate directed interaction matches (l,m) and (m, l)
that are detached from each other. A directed interaction match (l, m) is
realized by the alignment L if l ∈ L. We then have ylm = 1 if and only if the
directed interaction match (l,m) is realized (note again that ylm and yml are
distinct variables). Figure 12 gives an illustration of the variable splitting.
Note that this does not change the underlying model, it just makes the ILP
formulation more convenient for further processing.
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l m

G A U C

G A U CG

G A U C

G A U CG

Figure 12. One interaction match is split into two directed
interaction matches.

Splitting interaction matches has first been proposed by Caprara and
Lancia in the context of contact map overlap [11], whereas the process of
splitting variables has already proven useful in the context of the Quadratic
Knapsack Problem [12].

max
∑
l∈L

wlxl +
∑
g∈G

wgzg +
∑
l∈L

∑
m∈L

wlmylm

(1)

s. t.
∑

l∈L∩M

xl ≤ |L ∩M | − 1 ∀M ∈M
(2)

xl + xk − xm ≤ 1 ∀(l, k,m) ∈ L, (xl, xk, xm) forming a cycle
(3)

∑
a∈C

za ≤ 1 ∀C ∈ C
(4)

∑
l∈Lij

xl +
∑

a∈Gij
s(l)↔s(l)

za = 1 1 ≤ i, j ≤ k, i 6= j

(5)

∑
l,m∈L

ylm ≤ xl ∀ l ∈ L

(6)

ylm = yml ∀ l, m ∈ L
(7)

x, y, z ∈ {0, 1}
(8)

Definition 9. We call the ILP containing (1)—(8) the master ILP.

Note that we set the weights wl, wg, and wlm for l,m ∈ L and g ∈ G as
described in Sect. 3.2, and therefore we have wg < 0, g ∈ G.
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Lemma 4.1. A feasible solution to the ILP (1)–(8) corresponds to a valid
gapped structural trace and vice versa.

Proof. We first prove that a feasible solution (x̂, ŷ, ẑ) of the ILP describes a
valid multiple gapped structural trace.

Let L̂ = {l ∈ L | x̂l = 1}. Observe that constraints (2) guarantee that
L̂ does not contain mixed cycles. If L̂ generated a mixed cycle M , then
|L̂∩M | = |M |. But this would contradict (2) that

∑
l∈L̂∩M xl ≤ |L̂∩M |−1.

Furthermore, there cannot be lines k, l ∈ L̂ such that there exists a line m
that is induced by k and l, i.e. m is the transitive edge induced by k and l.
If this was the case, we have a sum of 2, contradicting constraints (3).

Constraints (4) guarantee that there are no mutually crossing gap edges:
Assume there exists two gap edges aij

kl and aij
mn that cross each other. Conse-

quently, they are in the same set C ∈ C of conflicting gap edges contradicting
that the sum of (4) is constrained by 1.

Equality (5) guarantees that every node is incident to exactly one align-
ment edge or spanned by exactly one gap edge. If a node was not incident to
any line or gap edge, we had a sum of 0. There cannot be any node incident
to a line and spanned by a gap edge, because this implies a sum of 2.

Finally, a line cannot realize more than one directed interaction match,
otherwise this violates constraints (6).

To complete the proof, we have to show that a valid gapped structural
trace represents a feasible solution to the ILP. Given (L, I,G) with L ⊆ L,
I ⊆ I, and G ⊆ G that form a valid multiple gapped structural trace. Set
the values of the x̂, ŷ, and ẑ variables in correspondence if the respective
edges are part of L, I, or G. �

Definition 10. We call the relaxed ILP consisting of (1)—(8) without (7)
the slave ILP.

Lemma 4.2. The slave ILP is equivalent to the multiple sequence alignment
problem with arbitrary gap costs.

Proof. The key observation is that after the removal of constraints (7), vari-
ables ylm appear only in constraints (6), each variable xl associated with a
set of ylm, the set of outgoing interaction matches that l can realize.

Hence, we have to distinguish two cases, depending on whether a line l
is part of an alignment or not. First, assume xl = 0. In this case, as a
consequence of (6), all ylm must be zero as well, and due to (5) there has
to be a ga ∈ Gij with ga = 1 (remember that a vertex is either incident to
an alignment edge or to a gap arc). Hence, the contribution of line l to the
objective function is less then zero.

If, however, a line l = (vi
k, v

j
l ) is part of an alignment, its maximal con-

tribution to the score is given by solving
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pl := max wl +
∑
m∈L

wlmylm +
∑

a∈Gij
s(l)↔s(l)

,Gji
t(l)↔t(l)

waza(9)

s. t.
∑
m∈L

ylm ≤ 1(10) ∑
a∈Gij

s(l)↔s(l)
,Gji

t(l)↔t(l)

za = 0(11)

x, y, z ∈ {0, 1}(12)

Inequality (10) states that we can choose only one single interaction
match. According to the objective function (9) it is clear that this will
be the one with the largest weight wlm. Furthermore, there cannot be a
gap arc that spans vertex vi

k or vj
l , since otherwise constraints (11) would

be violated. This ILP (for each line l) is easily solvable by just selecting the
most profitable outgoing interaction match (l, m̂) such that l and m̂, which
can be done in linear time. Therefore, the profit a line can possibly achieve
is solely computed by considering the weight of line l and the best directed
interaction match (l, m̂) that line l can realized, i.e. pl = wl + wlm̂.

In the second step, we compute the optimal overall profit by solving the
ILP consisting of the remaining constraints:

max
∑
l∈L

plxl +
∑
g∈G

wgzg

s. t.
∑

l∈L∩M

xl ≤ |L ∩M | − 1 ∀M ∈M

xl + xk − xm ≤ 1 ∀(l, k,m) ∈ L, (xl, xk, xm) forming a cycle∑
a∈C

za ≤ 1 ∀C ∈ C∑
l∈Lij

xl +
∑

a∈Gij
s(l)↔s(l)

za = 1 ∀i, j ∈ 1, · · · , k, i 6= j

x, z ∈ {0, 1}

The remaining ILP only considers x and z variables, because due to the
case distinction described above the values of the y variables depend on
the value of the corresponding x variables. Then, the remaining constraints
corresponds to the multiple sequence alignment formulation given in [3].

Let (x∗, z∗) be the solution to this problem. We claim that an optimal
solution of the relaxed problem is given by (x∗, y∗, z∗) by setting y∗lm =
x∗mylm̂ (remember that ylm̂ is the highest scoring directed interaction match
that l can realized), and by setting the x and z variables according to the
solution of the multiple sequence alignment problem. First, it is easy to see
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that (x∗, y∗, z∗) is indeed a feasible solution of the relaxed problem, since
(x∗, z∗) represent a valid alignment (with arbitrary gap costs) and our choice
of y∗ does not violate the restrictions given in (6). To see that (x∗, y∗, z∗) is
optimal, observe that its value is given by

∑
l∈L

plx
∗
l +

∑
g∈G

wgz
∗
g =

∑
l∈L

(wl + wlm̂)x∗l +
∑
g∈G

wgz
∗
g

=
∑
l∈L

wlx
∗
l +

∑
g∈G

wgz
∗
g︸ ︷︷ ︸

optimal solution for MSA

+
∑
l∈L

∑
m∈L

wlmy∗lm︸ ︷︷ ︸
optimal solution for ylm̂ due to (9)—(12)

For the sake of contradiction, assume that there exists a valid solu-
tion (x̄∗, ȳ∗, z̄∗) that has a higher objective function value than (x∗, y∗, z∗).
(x∗, z∗) and (x̄∗, z̄∗) differ in at least one position, and both form valid align-
ments (we have to consider only x and z variables, because the values of y
follow from the choice of x). If, however, (x̄∗, z̄∗) forms a valid sequence
alignment, we would have found it in the first place, because we are com-
puting optimal multiple sequence alignments.

�

4.2. Lagrangian Relaxation. Obviously we have not yet solved the mas-
ter ILP, since we dropped equalities (7). Instead of just dropping them,
we relax the master ILP in a Lagrangian fashion: We move the dropped
constraints into the objective function and assign a penalty term—the La-
grangian multiplier—to each dropped constraint. The multipliers represent
a penalty to objective function in case the dropped constraint is not satisfied.

Moving constraints (7) into the objective function yields the Lagrangian
dual

max
∑
l∈L

wlxl +
∑
g∈G

wgzg +
∑
l∈L

∑
m∈L

wlmylm +
∑
l∈L

∑
m∈L

λlm(ylm − yml)

which can then be reformulated to

max
∑
l∈L

wlxl +
∑
g∈G

wgzg +
∑
l∈L

∑
m∈L

(wlm + λlm)ylm

Note that, according to Lemma 4.2, we can solve instances of the La-
grangian problem by solving a multiple sequence alignment problem with
arbitrary gap costs where the profits of the interaction matches are coded
in the weights of the lines.

The task is now to find Lagrangian multipliers that provide the best
bound to the original problem. We do this by employing iterative subgradient
optimization as proposed by Held and Karp [22]. This method determines
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the multipliers of the current iteration by adapting the values from the
previous iteration.

More formally, we set λ1
lm = 0,∀m, l ∈ L and

λi+1
lm =


λi

lm if si
lm = 0

λi
lm − γi if si

lm = 1
λi

lm + γi if si
lm = −1

where si
lm = y∗lm − y∗ml and γi = µ

vU − vL∑
l,m∈L

(si
lm)2

.

Here, µ is a common adaption parameter and vU and vL denote the best
upper and lower bounds, respectively. A fundamental result [37] states that
for lim

i→∞
γi = 0 and

∑∞
i=1 γi = ∞ the value of vU always converges to the

optimal value of the Lagrangian dual.
In each iteration of the subgradient optimization procedure we get a value

for the Lagrangian dual. Given this series (v1, v2, . . . , vn) we can set vU to
min{vi | 1 ≤ i ≤ n}, the lowest objective function value of the Lagrangian
dual solved so far. To obtain a high lower bound is more involved and we
show in Sect. 4.3 how to use the information computed in the Lagrangian
problem in order to deduce a good feasible solution.

In our computational experiments we also tried more advanced methods
to solve the Lagrangian dual, for example bundle methods [31]. However,
currently the described subgradient optimization yields better bounds than
bundle methods.

Note that unless the lower and the upper bound, vL and vU coincide, we
have not found the provable optimal solution. Even if we had already found
the optimal value v∗ of the Lagrangian dual, the solution corresponding to v∗

is not necessarily a valid solution in the primal problem. Our experiments,
however, show that in case of instances that share medium or high structural
similarity, the lower and upper bound often coincide yielding provable opti-
mal solution for our original problem. If, however, the two bounds do not
match, an incorporation of the Lagrange bounds into a branch-and-bound
framework is straightforward.

4.3. Computing a Feasible Solution. A solution (x∗, y∗, z∗) of the La-
grangian dual yields a multiple alignment L (represented by x∗) plus some
information about interaction matches coded by the y∗-values; see Fig-
ure 13 (a). If for all lines l and m the equation y∗lm = y∗ml holds, then
the solution is a feasible multiple structural alignment, and we have found
the optimal solution to the original problem. Otherwise, some pairs y∗lm and
y∗ml contradict each other. For a valid secondary structure, however, we have
to ensure that y∗lm = y∗ml for all pairs of l, m ∈ L.

The set of lines and gap edges that constitute the alignment is fixed: the
problem is is to find a subset Î of interaction edges of maximum weight
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G G U C U A

A G C U A G G

l k m n ol k m n o

(a) (b)

G G U C U A

A G C U A G G

l k m n o

(c)

Figure 13. Given the alignment L = (l, k,m, n, o) , we have
different possibilities to augment the alignment with struc-
tural matches. Creating an interaction matching graph (b)
and calculating a general matching of maximum weight yields
the structural completion of L (c).

such that the structural information for each sequence is valid, that is, each
base is paired with at most one other base. Figure 13 (a) illustrates the
problem: Given the alignment L = (l, k,m, n, o), we have different possibili-
ties to augment L by structural matches: We can for example either realize
the structural match (l,m) or (l, n), but not both. Realizing both interac-
tion matches yields an invalid secondary structure. We therefore define the
problem of finding the structural completion of an alignment L.

Definition 11. Given an alignment L and a set I of interaction matches
that L realizes. Find a subset Î ⊆ I such that Î forms a valid secondary
structure of maximal weight on L. We call Î the structural completion of L.

We can formulate this problem as a general weighted matching problem
in an auxiliary graph MS , the interaction matching graph: MS = (V,E)
where the set V and E constitute vertices and edges, respectively. We have
V = (v̂1, . . . , v̂|L|) where v̂i corresponds to the ith element of L. We insert
an edge ei = (v̂i, v̂j) if and only there exists a pair of interaction edges
(vi

k, v
i
l) and (vj

m, vj
n) whose endpoints are adjacent to a pair (o, p) ∈ L × L

(see Fig. 13 (b)). The weight of edge ei is given by the weight of the two
interaction edges (vi

k, v
i
l) and (vj

m, vj
n).

Lemma 4.3. A matching of maximum weight in the interaction matching
graph MS corresponds to the structural completion of L.

Proof. The equivalence follows directly from the construction of MS and the
definition of a matching. �

5. Computational Results

Note that, according to Lemma 4.2, solving an instance of the Lagrangian
problem corresponds to the computation of an exact multiple sequence align-
ment problem with arbitrary gap costs. Although the problem is NP-hard,
the branch-and-cut algorithm of [3] is able to solve medium-sized instances
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within reasonable time. Our experiments, however, showed that with an
increasing number of iterations, the average computation time per instance
grows significantly due to the adaption of the Lagrangian multiplier in the
relaxed problem.

We therefore constrained ourselves to the computation of sequence-struc-
ture alignments of two sequences, because pairwise sequence alignments
can be computed in O(nm)—with n and m being the sequence lengths—
independent from the values of the Lagrangian multipliers. In practice, the
length of RNA sequences rarely exceeds 1500 nucleotides, yielding fast com-
putations of a pairwise sequence alignment.

Furthermore, for the fast computation of multiple sequence-structure align-
ments, we computed all pairwise alignments and used the tool T-COFFEE
[36] to heuristically infer a multiple sequence-structure alignment based on
the pairwise information. Although this approach does not compute true
multiple sum-of-pairs sequence-structure alignments, the performance on
real-world instances is very good, as we will show in the following.

We evaluated the performance of our implementation—called Lara (Lag-
rangian Relaxed Alignments)—on a recently published benchmark set for
RNA sequence-structure alignments called BRAliBase [46]: the bench-
mark contains approx. 18900 high-quality sequence-structure alignments
containing either 2, 3, 5, 7, 10, or 15 input sequences. For the case of two
input sequences, we computed sequence-structure alignments as described
in Sect. 4, whereas for multiple sequence-structure alignments we resorted
to the T-COFFEE approach as described above.

We compared our algorithm to three other sequence-structure alignment
programs: FoldalignM [43] which is based on a variant of the Sankoff
algorithm, Marna [41], and Stral [14]. These programs have time re-
quirements of O(nm∆2), O(n2m2), and O(nm), with n and m being the
sequence lengths, and ∆ being a FoldalignM-specific parameter. Addi-
tionally, we took Muscle to compare our alignments with a program that
is pure sequence-based.

The authors of [19] showed that structure-based alignment programs pro-
duce significantly better alignments compared to sequence-based programs
if the sequence similarity drops below approx. 50−60 percent. For our tests,
we therefore excluded all instances that had a pairwise sequence similarity
greater than 50 percent.

Figure 14 shows the results of our experiments: the x-axis denotes the
pairwise sequence similarity of the input instances, whereas the y-axis gives
the Compalign score of the computed alignment: The Compalign score
codes the degree of similarity to a given reference alignment as given by
the percentage of columns that are identically aligned as in the reference
alignment. A value of 1 states that the reference and test alignment are the
same, whereas 0 denotes that no column was correctly aligned with respect
to the reference alignment. Hence, the higher the value is, the bigger is the
similarity of an alignment to the reference alignment.
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Figure 14. Results of our implementation on instances con-
taining 2 (top left), 3 (top right), 5 (middle left), 7 (middle
right), 10 (bottom left), and 15 (bottom right) input se-
quences. One dot corresponds to one alignment, the lines
represent the Lowess function, i.e. they give the trend of
the computed alignments. A line at 1.0 means that every
alignment is identical to the reference alignment: Hence, the
closer the line is to 1.0, the better the alignments are on av-
erage. The legend from the top left applies to all other plots
as well.
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As one can see, in the pairwise case Lara and FoldalignM show the
same Compalign performance: Lara, however, only needs 86 minutes to
compute all 2251 pairwise sequence-structure alignment. On the same input
set FoldalignM needs 172 minutes.

With an increasing number of input sequences, however, Lara outper-
forms all other programs: in case of the 123 instances containing 15 input
sequences per instance, Lara yields an average Compalign score of 0.82.
The second best sequence-structure alignment tool, Stral, has an average
value of 0.69. Surprisingly, sequence-based Muscle achieves an average
Compalign score of 0.76. For a detailed analysis the interested reader is
referred to [8] for an in-depth analysis of the entire dataset. Furthermore,
the paper also discusses the biological soundness of the model presented in
Sect. 4.
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the Arc-Preserving Subsequence Problem Hard?, T. Comp. Sys. Biology 2 (2005), 1–36.

10. Guillaume Blin and Hélène Touzet, How to compare arc-annotated sequences: The
alignment hierarchy., SPIRE, 2006, pp. 291–303.

11. A. Caprara and G. Lancia, Structural Alignment of Large-Size Proteins via Lagrangian
Relaxation, Proc. of RECOMB’02, ACM Press, 2002, pp. 100–108.



24 MARKUS BAUER, GUNNAR W. KLAU, AND KNUT REINERT

12. Alberto Caprara, David Pisinger, and Paolo Toth, Exact solution of the quadratic
knapsack problem, INFORMS J. on Computing 11 (1999), no. 2, 125–137.

13. P. Carraresi and F. Malucelli, A reformulation scheme and new lower bounds for the
quadratic assignment problem, Quadratic Assignment and Related Topics, DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, pp. 147–160.

14. Deniz Dalli, Andreas Wilm, Indra Mainz, and Gerhard Steger, STRAL: progressive
alignment of non-coding RNA using base pairing probability vectors in quadratic time,
Bioinformatics 22 (2006), no. 13, 1593–1599.

15. Eugene Davydov and Serafim Batzoglou, A computational model for RNA multiple
structural alignment, Theor. Comput. Sci. 368 (2006), no. 3, 205–216.

16. Robin Dowell and Sean Eddy, Efficient pairwise RNA structure prediction and align-
ment using sequence alignment constraints, BMC Bioinformatics 7 (2006), no. 1, 400.

17. Isaac Elias, Settling the intractability of multiple alignment., J Comput Biol 13 (2006),
no. 7, 1323–1339.

18. P. Evans, Finding common subsequences with arcs and pseudoknots, Proc. of CPM’99,
LNCS, no. 1645, Springer, 1999, pp. 270–280.

19. P. Gardner, A. Wilm, and S. Washietl, A benchmark of multiple sequence alignment
programs upon structural RNAs, Nucl. Acids Res. 33 (2005), no. 8, 2433–2439.

20. Deborah Goldman, Sorin Istrail, and Christos H. Papadimitriou, Algorithmic aspects
of protein structure similarity., FOCS, 1999, pp. 512–522.

21. Harvey J. Greenberg, William E. Hart, and Giuseppe Lancia, Opportunities for combi-
natorial optimization in computational biology, INFORMS J. on Computing 16 (2004),
no. 3, 211–231.

22. M. Held and R.M. Karp, The traveling-salesman problem and minimum spanning
trees: Part II, Mathematical Programming 1 (1971), 6–25.

23. I. L. Hofacker, S. H. F. Bernhart, and P. F. Stadler, Alignment of RNA base pairing
probability matrices, Bioinformatics 20 (2004), 2222–2227.

24. I. Holmes, Accelerated probabilistic inference of RNA structure evolution, BMC Bioin-
formatics 5 (2004), 73.

25. J. Hull Havgaard, R. Lyngsø, G. Stormo, and J. Gorodkin, Pairwise local structural
alignment of RNA sequences with sequence similarity less than 40%, Bioinformatics
21 (2005), 1815–1824.

26. T. Jiang, G.-H. Lin, B. Ma, and K. Zhang, A general edit distance between RNA
structures, J. of Computational Biology 9 (2002), 371–388.

27. T. Jiang, J. Wang, and K. Zhang, Alignment of trees — an alternative to tree edit,
Theor. Comput. Sci. 143 (1995), 137–148.

28. J. Kececioglu, The maximum weight trace problem in multiple sequence alignment,
Proc. CPM’93, LNCS, vol. 684, 1993, pp. 106–119.

29. Gunnar W. Klau, Sven Rahmann, Alexander Schliep, Martin Vingron, and Knut
Reinert, Optimal robust non-unique probe selection using Integer Linear Programming,
ISMB/ECCB (Supplement of Bioinformatics), 2004, pp. 186–193.

30. G. Lancia, R. Carr, B. Walenz, and S. Istrail, 101 optimal PDB structure alignments:
a branch-and-cut algorithm for the maximum contact map overlap problem, Proc. of
the Fifth Annual International Conference on Computational Biology, ACM Press,
2001, pp. 193–202.

31. Claude Lemarechal, Computational combinatorial optimization, optimal or provably
near-optimal solutions, ch. Lagrangian Relaxation, pp. 112–156, Springer Berlin, 2001.

32. H.-P. Lenhof, K. Reinert, and M. Vingron, A polyhedral approach to RNA sequence
structure alignment, Journal of Comp. Biology 5 (1998), no. 3, 517–530.

33. J. S. Mattick, The functional genomics of noncoding RNA, Science 309 (2005),
no. 5740, 1527–1528.

34. John S. McCaskill, The Equilibrium Partition Function and Base Pair Binding Prob-
abilities for RNA Secondary Structure, Biopolymers 29 (1990), 1105–1119.



EXACT MULTIPLE RNA SEQUENCE-STRUCTURE ALIGNMENT 25

35. S.B. Needleman and C.D. Wunsch, A general method applicable to the search for
similarities in the amino-acid sequence of two proteins, Journal of Molecular Biology
48 (1970), 443–453.

36. C. Notredame, D. G. Higgins, and J. Heringa, T-Coffee: A novel method for fast and
accurate multiple sequence alignment, Journal of Molecular Biology (2000).

37. B.T. Poljak, A general method of solving extremum problems, Soviet Mathematics
Doklady 8 (1967), 593–597.

38. K. Reinert, H.-P. Lenhof, P. Mutzel, K. Mehlhorn, and J. D. Kececioglu, A branch-
and-cut algorithm for multiple sequence alignment., RECOMB, 1997, pp. 241–250.

39. D. Sankoff, Simultaneous solution of the RNA folding, alignment, and protosequence
problems, SIAM J. Appl. Math. 45 (1985), 810–825.

40. Altschul S.F., Gish W., Myers E.W., and Lipman D.J., Basic local alignment search
tool, Journal of Molecular Biology 215 (1990), no. 3, 403–410.

41. S. Siebert and R. Backofen, MARNA: Multiple alignment and consensus structure
prediction of RNAs based on sequence structure comparisons, Bioinformatics (2005),
In press.

42. Temple F. Smith and Michael S. Waterman, Identification of Common Molecular
Subsequences, Journal of Molecular Biology 147 (1981), 195–197.

43. Elfar Torarinsson, Jakob H. Havgaard, and Jan Gorodkin, Multiple structural align-
ment and clustering of RNA sequences, Bioinformatics (2007), to appear.

44. J. Craig Venter and et al., The Sequence of the Human Genome, Science 291 (2001),
no. 5507, 1304–1351.

45. L. Wang and T. Jiang, On the complexity of multiple sequence alignment., J Comput
Biol 1 (1994), no. 4, 337–348.

46. Andreas Wilm, Indra Mainz, and Gerhard Steger, An enhanced RNA alignment bench-
mark for sequence alignment programs, Algorithms for Molecular Biology 1 (2006),
no. 1, 19.

47. K. Zhang and D. Shasha, Simple fast algorithms for the editing distance between trees
and related problems, SIAM J. Comput. 18 (1989), no. 6, 1245–1262.

Markus Bauer, International Max Planck Research School & Free Uni-
versity Berlin, Dept. of Mathematics and Computer Science, Arnimallee 3,
14195 Berlin, Germany

E-mail address: mbauer@inf.fu-berlin.de

Gunnar W. Klau, DFG Research Center Matheon & Free University Berlin,
Dept. of Mathematics and Computer Science, Arnimallee 3, 14195 Berlin,
Germany

E-mail address: gunnar@math.fu-berlin.de

Knut Reinert, Free University Berlin, Dept. of Mathematics and Computer
Science, Arnimallee 3, 14195 Berlin, Germany

E-mail address: reinert@inf.fu-berlin.de


