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Abstract

We show that every heptagon is a section of a 3-polytope with 6 vertices. This
implies that every n-gon with n > 7 can be obtained as a section of a (2 +

⌊
n
7

⌋
)-

dimensional polytope with at most
⌈
6n
7

⌉
vertices; and provides a geometric proof of

the fact that every nonnegative n ×m matrix of rank 3 has nonnegative rank not

larger than
⌈
6min(n,m)

7

⌉
. This result has been independently proved, algebraically,

by Shitov (J. Combin. Theory Ser. A 122, 2014).

Keywords: polygon; polytope projections and sections; extension complexity; non-
negative rank; nonrealizability; pseudo-line arrangements

1 Introduction

Let P be a (convex) polytope. An extension of P is any polytope Q such that P is the
image of Q under a linear projection; the extension complexity of P , denoted xc(P ), is the
minimal number of facets of an extension of P . This concept is relevant in combinatorial
optimization because if a polytope has low extension complexity, then it is possible to use
an extension with few facets to efficiently optimize a linear functional over it.

A section of a polytope is its intersection with an affine subspace. We will work with
the polar formulation of the problem above, which asks for the minimal number of vertices
of a polytope Q that has P as a section. If we call this quantity the intersection complexity
of P , ic(P ), then by definition it holds that ic(P ) = xc(P ◦), where P ◦ is the polar dual
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of P . However, extension complexity is preserved under polarity (see [4, Proposition 2.8]),
so these four quantities actually coincide:

ic(P ) = xc(P ◦) = xc(P ) = ic(P ◦).

Despite the increasing amount of attention that this topic has received recently (see
[3], [4], [5], [8] and references therein), it is still far from being well understood. For
example, even the possible range of values of the intersection complexity of an n-gon is
still unknown. Obviously, every n-gon has intersection complexity at most n, and for
those with n 6 5 it is indeed exactly n. It is not hard to check that hexagons can have
complexity 5 or 6 (cf. [4, Example 3.4]) and, as we show in Proposition 4, it is easy to
decide which is the exact value.

By proving that a certain pseudo-line arrangement is not stretchable, we show that
every heptagon is a section of a 3-polytope with no more than 6 vertices. This reveals the
geometry behind a result found independently by Shitov in [8], and allows us to settle the
intersection complexity of heptagons.

Theorem 22. Every heptagon has intersection complexity 6.

In general, the minimal intersection complexity of an n-gon is θ(log n), which is at-
tained by regular n-gons [2][3]. On the other hand, there exist n-gons whose intersection
complexity is at least

√
2n [3]. As a consequence of Theorem 22 we automatically get

upper bounds for the complexity of arbitrary n-gons.

Theorem 26. Any n-gon with n > 7 is a section of a (2 +
⌊
n
7

⌋
)-dimensional polytope with

at most
⌈
6n
7

⌉
vertices. In particular, ic(P ) 6

⌈
6n
7

⌉
.

Of course, this is just a first step towards understanding the intersection complexity
of polygons. By counting degrees of freedom, it is conceivable that every n-gon could
be represented as a section of an O(

√
n)-dimensional polytope with O(

√
n) vertices. For

sections of 3-polytopes, our result only shows that every n-gon is a section of a 3-polytope
with not more than n− 1 vertices, whereas we could expect an order of 2

3
n vertices.

There is an alternative formulation of these results. The nonnegative rank of a non-
negative n ×m matrix M , denoted rank+(M), is the minimal number r such that there
exists an n × r nonnegative matrix R and an r × m nonnegative matrix S such that
M = RS. A classical result of Yannakakis [10] states that the intersection complexity of a
polytope coincides with the nonnegative rank of its slack matrix. In this setting, it is not
hard to deduce the following theorem from Theorem 26 (it is easy to deal with matrices
of rank 3 that are not slack matrices).

Theorem 1 ([8, Theorem 3.2]). Let M be a nonnegative n×m matrix of rank 3. Then

rank+(M) 6
⌈
6min(n,m)

7

⌉
.

This disproved a conjecture of Beasley and Laffey (originally stated in [1, Conjec-
ture 3.2] in a more general setting), who asked if for any n > 3 there is an n×n nonnegative
matrix M of rank 3 with rank+(M) = n. While this paper was under review, Shitov im-
proved Theorem 26 and provided a sublinear upper bound for the intersection/extension
complexity of n-gons [9].
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1.1 Notation

We assume throughout that the vertices {pi | i ∈ Z/nZ} of every n-gon P are cyclically
clockwise labeled, i.e., the edges of P are conv{pi, pi+1} for i ∈ Z/nZ and the triangles
(pi+2, pi+1, pi) are positively oriented for i ∈ Z/nZ.

We regard the pi as points of the Euclidean plane E2, embedded in the real projective
plane P2 as E2 = {(x, y, 1)> | x, y ∈ R}. For any pair of points p, q ∈ E2, we denote by
`p,q = p ∧ q the line joining them. It is well known that `p,q can be identified with the
point `p,q = p× q in the dual space (P2)∗, where

p× q =

(∣∣∣∣p2 p3
q2 q3

∣∣∣∣ , − ∣∣∣∣p1 p3
q1 q3

∣∣∣∣ , ∣∣∣∣p1 p2
q1 q2

∣∣∣∣)>
denotes the cross-product in Euclidean 3-space. Similarly, the meet `1 ∨ `2 of two lines
`1, `2 ∈ (P2)∗ is their intersection point in P2, which has coordinates `1 × `2.

2 The intersection complexity of hexagons

As an introduction for the techniques that we use later with heptagons, we study the
intersection complexity of hexagons. Hexagons can have intersection complexity either 5
or 6 [4, Example 3.4]. In this section we provide a geometric condition to decide among
the two values. This section is mostly independent from the next two, and the reader can
safely skip it.

First, we introduce a lower bound for the 3-dimensional intersection complexity of
n-gons that we will use later.

Proposition 2. No n-gon can be obtained as a section of a 3-polytope with less than⌈
n+4
2

⌉
vertices.

Proof. Let Q be a 3-polytope with m vertices such that its intersection with the plane H
coincides with P , and let k be the number of vertices of Q that lie on H.

By Euler’s formula, the number of edges of Q is at most 3m− 6, of which at least 3k
have an endpoint on H. Moreover, the subgraphs G+ and G− consisting of edges of Q lying
in the open halfspaces H+ and H− are both connected. Indeed, if H = {x | 〈a, x〉 = b},
then the linear function 〈a, x〉 induces an acyclic partial orientation on G+ and G− by
setting v → w when 〈a, v〉 < 〈a, w〉. Following this orientation we can connect each vertex
of G+ to the face of Q that maximizes 〈a, x〉, and following the reverse orientation, each
vertex of G− to the face that minimizes 〈a, x〉 (compare [11, Theorem 3.14]).

Hence, there are at least m − k − 2 edges in G+ ∪ G−. These are edges of Q that
do not intersect H. There are also at least 3k edges that have an endpoint on H. Now,
observe that every vertex of P is either a vertex of Q in H or is the intersection with H
of an edge of Q that has an endpoint at each side of H. Hence,

n− k 6 (3m− 6)− (3k)− (m− k − 2) = 2m− 4− 2k, (1)

and since k > 0, we get the desired bound.
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The lower bound of Proposition 2 is optimal: for every m > 2 there are 2m-gons
appearing as sections of 3-polytopes with m+ 2 vertices (Figure 1).

Figure 1: For m > 2, the join of an m-path with an edge is the graph of a stacked 3-
polytope with 2m+ 2 vertices that has a 2m-gon as a section (by a plane that truncates
the edge).

Corollary 3. The intersection complexity of a hexagon is either 5 or 6.

Proposition 4. The intersection complexity of a hexagon is 5 if and only if the lines
`p0,p5, `p1,p4 and `p2,p3 intersect in a common point of the projective plane for some cyclic
labeling of its vertices {pi | i ∈ Z/6Z}.

Proof. The only 4-polytope with 5 vertices is the simplex, which only has 5 facets; thus,
none of its 2-dimensional sections is a hexagon. Therefore, if P is a hexagon, then ic(P ) =
5 if and only if it is the intersection of a 2-plane H with a 3-polytope Q with 5 vertices.

There are only two combinatorial types of 3-polytopes with 5 vertices: the quadran-
gular pyramid and the triangular bipyramid. By (1), H does not contain any vertex
of Q. Hence, H induces a cut of the graph of Q into two (nonempty) disjoint connected
components. A small case-by-case analysis (cf. Figure 2) tells us that the only possibility

(a) Non-hexagonal cuts. (b) The only hexagonal cut.

Figure 2: All cuts of the quadrangular pyramid and the triangular bipyramid into two
connected components, up to symmetry.

is that Q is the bipyramid and H cuts its graph as shown in Figure 2b. However, in every
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geometric realization of such a cut (with the same labeling), the lines `p0,p5 , `p1,p4 and
`p2,p3 intersect in a common (projective) point: the point of intersection of `q0,q1 with H
(compare Figure 3).

Figure 3: A hexagon as a section of a triangular bipyramid.

For the converse, we prove only the case when the point of intersection is finite (the
case with parallel lines is analogous). Then we can apply an affine transformation and
assume that the coordinates of the hexagon are

p0 = (0, α), p1 = (βx, βy), p2 = (γ, 0)

p3 = (1, 0), p4 = (x, y), p5 = (0, 1);

for some x, y > 0 and α, β, γ > 1.
Now, let K > max(α, β, γ) and consider the polytope Q with vertices

q0 = (0, 0,−K), q1 = (0, 0,−1), q2 =

(
(K − 1)γ, 0, K(γ − 1)

)
K − γ

,

q3 =

(
x(K − 1)β, y(K − 1)β,K(β − 1)

)
K − β

, q4 =

(
0, (K − 1)α,K(α− 1)

)
K − α

.

If H denotes the plane of vanishing third coordinate, then q0 and q1 lie below H, while q2,
q3 and q4 lie above. The intersections `qi,qj∩H for i ∈ {0, 1} and j ∈ {2, 3, 4} coincide with
the vertices of P ×{0}. This proves that P ×{0} = Q∩H, and hence that ic(P ) = 5.

Remark 5. Let P be a regular hexagon, and let Q be a polytope with 5 vertices such that
Q∩H = P for some plane H. By the proof of Proposition 4, Q is a triangular bipyramid
and one of the two halfspaces defined by H contains only two vertices of Q: q0 and q1.
Even more, since P is regular, the line `q0,q1 must be parallel to one of the edge directions
of P because, as we saw in the previous proof, the projective point `q0,q1∩H must coincide
with the intersection of two opposite edges of P (at infinity in this case). This means

the electronic journal of combinatorics 22(1) (2015), #P1.24 5



that there are three different choices for the direction of the line `q0,q1 ; and shows that the
set of minimal extensions of P (which can be parametrized by the vertex coordinates) is
not connected, even if we consider its quotient space obtained after identifying extensions
related by an admissible projective transformation that fixes P and those related by a
relabeling of the vertices of Q. A similar behavior was already observed in [6] for the
space of nonnegative factorizations of nonnegative matrices of rank 3 and nonnegative
rank 3.

Remark 6. Consider the set of all hexagons with 5 fixed vertices. The position of the last
vertex determines its intersection/extension complexity. This is depicted in Figure 4. The
hexagon fulfills the condition of Proposition 4 if and only if the last point lies on any of
the three dark lines. Hence, ic(P ) = 5 if the last point lies on a dark line and ic(P ) = 6
otherwise. Actually, an analogous picture appears for any choice for the position of the
initial 5 points (the dark lines are always concurrent because of Pappus’s Theorem). In
addition, the dark lines depend continuously on the coordinates of the first 5 points. This
implies that, if we take two realizations that have the last point in two different ic(P ) = 6
regions in Figure 4, then we cannot continuously transform one into the other. Said
otherwise, the realization space of the hexagon (as considered by Richter-Gebert in [7])
restricted to those that have intersection complexity 6 is disconnected.

Figure 4: The intersection complexity of P according to the position of the last vertex.

3 The complexity of heptagons

In this section we prove our main result, Theorem 22, in two steps. The easier part
consists of showing that a special family of heptagons, which we call standard heptagons,
always have intersection complexity less than or equal to 6 (Proposition 8). The remainder
of the section is devoted to proving the second step, Proposition 17: every heptagon is
projectively equivalent to a standard heptagon.

3.1 A standard heptagon

Here, and throughout this section, P denotes a heptagon and {pi | i ∈ Z/7Z} is its set of
vertices, cyclically clockwise labeled.
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Definition 7. We say that P is a standard heptagon if p0 = (0, 0), p3 = (0, 1) and
p−3 = (1, 0); and the lines `p1,p2 and `p−1,p−2 are respectively parallel to the lines `p0,p3 and
`p0,p−3 (see Figure 5a).

We can easily prove that standard heptagons have intersection complexity at most 6.

(a) Coordinates of a standard heptagon. (b) The setup of Proposition 8.

Figure 5: Standard heptagons.

Proposition 8. Every standard heptagon P is a section of a 3-polytope Q with 6 vertices.
In particular ic(P ) 6 6.

Proof. For any standard heptagon P , there are real numbers b, c < 0 < a, d, λ, µ such
that the coordinates of the vertices of P are

p0 = (0, 0), p1 = (c, d), p2 = (c, d+ µ), p3 = (0, 1),

p−1 = (a, b), p−2 = (a+ λ, b), p−3 = (1, 0).

Fix some K > max(λ− 1, µ− 1) and consider the points

q0 := (0, 0, 1), q1 := (0, 0,−K), q2 := (1 +K, 0,−K), q3 := (0, 1 +K,−K),

q4 :=

(
a(1 +K), b(1 +K), λK

)
(1 +K)− λ

, q5 :=

(
(1 +K)c, (1 +K)d, µK

)
(1 +K)− µ

.

We claim that P is the intersection of the 3-polytope Q := conv{q0, q1, . . . , q5} with the
plane H := {(x, y, z) ∈ R3 | z = 0}:

Q ∩H = P × {0}.

Observe that every vertex of Q∩H corresponds to the intersection of H with an edge
of Q that has one endpoint on each side of the plane. Since q0, q4 and q5 lie above H
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and q1, q2 and q3 lie below, the intersections of the relevant lines `qi,qj with H are (see
Figure 5b):

`q0,q1 ∩H = (0, 0, 0), `q0,q2 ∩H = (1, 0, 0), `q0,q3 ∩H = (0, 1, 0),

`q4,q1 ∩H = (a, b, 0), `q4,q2 ∩H = (a+ λ, b, 0), `q4,q3 ∩H = (a, b+ λ, 0),

`q5,q1 ∩H = (c, d, 0), `q5,q2 ∩H = (c+ µ, d, 0), `q5,q3 ∩H = (c, d+ µ, 0).

These are the vertices of P ×{0} together with (a, b+λ, 0), (c+µ, d, 0), which proves
that Q∩H ⊇ P ×{0}. To prove that indeed Q∩H = P ×{0}, we need to see that both
(a, b+ λ) and (c+ µ, d) belong to P .

The convexity of P implies the following conditions on the coordinates of its vertices
by comparing, respectively, p−1 with the lines `p0,p3 and `p0,p−3 , p−1 with p−2, and p−2
with the line `p3,p−3 :

a > 0, −b > 0, λ > 0, 1− a− b− λ > 0.

Hence, the real numbers 1−a−b−λ
1−b , a

1−b and λ
1−b are all greater than 0. Since they add

up to 1, we can exhibit (a, b+ λ) as a convex combination of p−1, p−2 and p3:

1− a− b− λ
1− b

p−1 +
a

1− b
p−2 +

λ

1− b
p3 = (a, b+ λ).

This proves that (a, b+ λ) ∈ P . That (c+ µ, d) ∈ P is proved analogously.

3.2 Standardization lines of heptagons

Our next goal is to show that every heptagon is projectively equivalent to a standard
heptagon. For this, the key concept is that of a standardization line.

Definition 9. Consider a heptagon P , embedded in the projective space P2, whose ver-
tices are cyclically labeled {pi | i ∈ Z/7Z}. For i ∈ Z/7Z, and abbreviating `i,j := `pi,pj ,
construct

p+i := `i+1,i+2 ∨ `i,i+3, p−i := `i−1,i−2 ∨ `i,i−3, `i := p+i ∧ p−i .

We call the line `i the ith standardization line of P . If `i ∩P = ∅, it is a non-crossing
standardization line.

Figure 6 shows a heptagon and its standardization lines `0 and `−3. Observe that `0 is
a non-crossing standardization line, while `−3 is not.

Lemma 10. A heptagon P is projectively equivalent to a standard heptagon if and only
if it has at least one non-crossing standardization line.

Proof. The line at infinity of a standard heptagon must be one of its standardization
lines, which is obviously non-crossing. Conversely, the projective transformation that
sends a non-crossing standardization line of P to infinity, followed by a suitable affine
transformation, maps P onto a standard heptagon.
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Figure 6: The standardization lines `0 and `−3.

Hence, having a non-crossing standardization line characterizes standard heptagons
up to projective equivalence. Our next step is to show that every heptagon has a non-
crossing standardization line (Proposition 17). But to prove this, we still need to introduce
a couple of concepts.

Observe that `i cannot cross any of the lines `pi+1,pi+2
, `pi+0,pi+3

, `pi−1,pi−2
and `pi+0,pi−3

in
the interior of P , since by construction their intersection point is p±i , which lies outside P
(compare Figure 6). In particular, if `i intersects P , either it separates pi+1 and pi+2 from
the remaining vertices of P , or it separates pi−1 and pi−2.

Definition 11. If the standardization line `i separates pi+1 and pi+2 from the remaining
vertices of P , we say that it is +-crossing ; if it separates pi−1 and pi−2 it is −-crossing.
In the example of Figure 6, `−3 is −-crossing.

Definition 12. The lines `pi,pi+3
and `pi+1,pi+2

partition the projective plane P2 into two
disjoint angular sectors (cf. Figure 7a). One of them contains the points pi−1, pi−2 and
pi−3, while the interior of the other is empty of vertices of P . We denote this empty
sector S+

i . Similarly, S−i is the sector formed by `pi,pi−3
and `pi−1,pi−2

that contains no
vertices of P .

These sectors allow us to characterize ±-crossing standardization lines.

Lemma 13. The standardization line `i is +-crossing if and only if p−i ∈ S+
i . Analogously,

`i is −-crossing if and only if p+i ∈ S−i .

Proof. The line `i is +-crossing when it separates pi and pi+1 from the rest of P ; this
happens if and only if `i ⊂ S+

i . Since `pi−1,pi−2
∩ `i = p−i , this is equivalent to p−i ∈ S+

i .
The case of −-crossing follows analogously.
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(a) The sector S+
0 (shaded). The point p−0

lies in S+
0 if and only if `0 is +-crossing.

(b) The point p−0 cannot lie in both shaded
sectors simultaneously.

Figure 7: The relevant angular sectors.

With this characterization, we can easily prove the following compatibility condition.

Lemma 14. If `i is +-crossing, then `i−3 cannot be −-crossing. Analogously, if `i is
−-crossing, then `i+3 cannot be +-crossing.

Proof. Both statements are equivalent by symmetry. We assume that `i is +-crossing and
`i−3 is −-crossing to reach a contradiction.

Observe that p−i = p+i−3 by definition. By Lemma 13, p−i must lie both in the sector
formed by `pi,pi+3

and `pi+1,pi+2
and in the sector formed by `pi−3,pi+1

and `pi+3,pi+2
. However,

the intersection of these two sectors lies in the interior of the polygon (cf. Figure 7b),
while p−i lies outside.

Corollary 15. If all the standardization lines `i intersect P , they are either all +-crossing
or all −-crossing.

3.3 Every heptagon has a non-crossing standardization line

We are finally ready to present and prove Proposition 17. In essence, we prove that
the combinatorics of the pseudo-line arrangement in Figure 8 are not realizable by an
arrangement of straight lines in the projective plane. Here the “combinatorics” refers to
the order of the intersection points in each projective pseudo-line. However, any heptagon
that had only +-crossing standardization lines would provide such a realization (compare
the characterization of Lemma 13).

For the proof, we will need the formula

(a× b)×(c× d) = [a, b, d] c− [a, b, c] d, (2)

where [a, b, c] = det(a, b, c) is the 3 × 3-determinant formed by the homogeneous coor-
dinates of the corresponding points. That is, [px, py, pz] = ±2 Vol (conv{px, py, pz}).
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Figure 8: A non-stretchable pseudo-line arrangement.

Observe that, since the vertices of the heptagon are labeled clockwise and are in convex
position, [px, py, pz] > 0 whenever z lies in the interval (x, y). To simplify the notation,
in what follows we abbreviate [pi+x, pi+y, pi+z] as [x, y, z]i, for any x, y, z, i ∈ Z/7Z.

Lemma 16. With the notation from above, the standardization line `i is +-crossing if
and only if

[pi+2, pi+1, p
−
i ] = [−1,−2,−3]i[2, 1, 0]i − [−1,−2, 0]i[2, 1,−3]i > 0; (3)

and is −-crossing if and only if

[pi−2, pi−1, p
+
i ] = [1, 2, 3]i[−2,−1, 0]i − [1, 2, 0]i[−2,−1, 3]i > 0. (4)

Proof. Using (2), the coordinates of the standardization point p−i are given by

p−i = (pi−1 ∧ pi−2) ∨ (pi ∧ pi−3) = (pi−1 × pi−2)× (pi × pi−3)
(2)
= [−1,−2,−3]i pi − [−1,−2, 0]i pi−3.

Observe that [pi+3, pi, p
−
i ] < 0 since

[pi+3, pi, p
−
i ] = [−1,−2,−3]i[3, 0, 0]i − [−1,−2, 0]i[3, 0,−3]i

= − [−1,−2, 0]i[3, 0,−3]i < 0,

because [3, 0, 0]i = 0 and [−1,−2, 0]i > 0, [3, 0,−3]i > 0 by convexity.
Therefore, in view of Lemma 13, requiring `i to be +-crossing reduces to the equation

[pi+2, pi+1, p
−
i ] > 0, since otherwise p−i would not lie in the desired sector. This expression

can be reformulated as (3). The proof of (4) is analogous.
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Proposition 17. Every heptagon has at least one non-crossing standardization line.

Proof. We want to prove that P has at least one non-crossing standardization line. By
Corollary 15 (and symmetry), it is enough to prove that it is impossible for all `i to be
+-crossing. We will assume this to be the case and reach a contradiction.

If `i is +-crossing for all 0 6 i 6 6, then by Lemma 16, the coordinates of the vertices
of P fulfill (3) for all i ∈ Z/7Z. Moreover, if `i is +-crossing then it cannot be −-crossing.
Therefore, again by Lemma 16, one can see that the coordinates of the vertices of P fulfill

[2, 1, 0]i[−1,−2, 3]i − [2, 1, 3]i[−1,−2, 0]i > 0, (5)

for all i ∈ Z/7Z.
Therefore, if all the `i are +-crossing, the addition of the left hand sides of (3) and

(5) for all i ∈ Z/7Z should be positive.
With the abbreviations

Ai := [−1,−2,−3]i, Bi := [2, 1, 0]i, Ci := [−1,−2, 0]i,

Di := [2, 1,−3]i, Ei := [2, 1, 0]i, Fi := [−1,−2, 3]i,

Gi := [2, 1, 3]i, Hi := [−1,−2, 0]i;

this can be expressed as ∑
i∈Z/7Z

AiBi − CiDi + EiFi −GiHi > 0. (6)

However, it turns out that for every heptagon the equation∑
i∈Z/7Z

AiBi − CiDi + EiFi −GiHi = 0 (7)

holds by the upcoming Lemma 18. This contradiction concludes the proof that every
heptagon has at least one standardization line.

Lemma 18. Let A be a configuration of 7 points in E2 ⊂ P2 labeled {ai | i ∈ Z/7Z}.
Denote the determinant [ai+x, ai+y, ai+z] as [x, y, z]i, for any x, y, z, i ∈ Z/7Z. Finally,
let

Ai := [−1,−2,−3]i, Bi := [2, 1, 0]i, Ci := [−1,−2, 0]i,

Di := [2, 1,−3]i, Ei := [2, 1, 0]i, Fi := [−1,−2, 3]i,

Gi := [2, 1, 3]i, Hi := [−1,−2, 0]i;

Then, ∑
i∈Z/7Z

AiBi − CiDi + EiFi −GiHi = 0. (7)
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A0 B0 C0 D0

E0 F0 G0 H0

Figure 9: The determinants involved in Lemma 18.

Proof. Although (7) can be checked purely algebraically, we provide a geometric interpre-
tation. Observe that [x, y, z]i = ±2 Vol(ai+x, ai+y, ai+z), which implies that the identity
in (7) can be proved in terms of (signed) areas of certain triangles spanned by A. Figure 9
depicts some of these triangles when the points are in convex position.

To see (7), we show the stronger result that both∑
i∈Z/7Z

AiBi =
∑
i∈Z/7Z

GiHi and (8)

∑
i∈Z/7Z

EiFi =
∑
i∈Z/7Z

CiDi. (9)

Indeed, the identity (8) is easy, because AiBi = Gi+3Hi+3 for all i ∈ Z/7Z since
Ai = Gi+3 and Bi = Hi+3.

Moreover, it is straightforward to check that

Ci = Ei−2, (10)

and it is also not hard to see that

Di + Ci−3 = Fi−2 + E(i+3)−2. (11)

Finally, we subtract the right-hand side of (9) from the left hand side:∑
i∈Z/7Z

EiFi −
∑
i∈Z/7Z

CiDi =
∑
i∈Z/7Z

Ei−2Fi−2 −
∑
i∈Z/7Z

CiDi

=
∑
i∈Z/7Z

Ei−2(Fi−2 + Ei+1 − Ei+1)−
∑
i∈Z/7Z

Ci(Di + Ci−3 − Ci−3)

(10)
=

∑
i∈Z/7Z

Ci
(
Fi−2 + Ei+1 −Di − Ci−3

)︸ ︷︷ ︸
=0 by (11)

−
∑
i∈Z/7Z

Ei−2Ei+1 +
∑
i∈Z/7Z

CiCi−3

(10)
= −

∑
i∈Z/7Z

CiCi+3 +
∑
i∈Z/7Z

CiCi−3 = 0,
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and this concludes our proof of (9).

Observation 19. In contrast to Proposition 17, there exist heptagons with 6 crossing
standardization lines. For example, the convex hull of

p0 = (7
5
, 1
2
), p1 = (6

5
, 1
10

), p2 = (1, 0), p3 = (0, 0),

p−3 = (0, 1), p−2 = (1, 1), p−1 = (6
5
, 9
10

)

has 6 crossing standardization lines (Figure 10). Notice that the symmetry about the
x-axis makes `2 and `−2 coincide.

Figure 10: A heptagon with 6 crossing standardization lines.

3.4 The intersection complexity of heptagons

Using projective transformations to standardize heptagons is the last step towards The-
orem 22.

Lemma 20. Projective equivalence preserves intersection complexity.

Proof. Let σ : P1 → P2 be a projective transformation between k-dimensional polytopes.
Let Q1 ⊂ Rd be a polytope with ic(P1) many vertices and let H be an affine k-flat such
that Q1∩H = P1. Finally, let τ be a projective transformation of Rd that leaves invariant
both H and its orthogonal complement, and such that τ |H = σ. Then τ(Q1) ∩ H =
σ(P1) = P2.

Lemma 21. Any heptagon P is a section of a 3-polytope with no more than 6 vertices.

Proof. Let P be a heptagon. By Proposition 17 it has a non-crossing standardization line,
which implies that P is projectively equivalent to a standard heptagon by Lemma 10. Our
claim follows by combining Lemma 20 with Proposition 8.

The combination of this lemma with the lower bound of Proposition 2 finally yields
our claimed result.

Theorem 22. Every heptagon has intersection complexity 6.
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4 The intersection complexity of n-gons

We can use Lemma 21 to derive bounds for the complexity of arbitrary polygons. We
begin with a trivial bound that presents n-gons as sections of 3-polytopes.

Theorem 23. Any n-gon P with n > 7 is a section of a 3-polytope with at most n − 1
vertices.

Proof. The proof is by induction. The case n = 7 is Lemma 21. For n > 8, let x = (a, b)
be a vertex of P , and consider the (n − 1)-gon P ′ obtained by taking the convex hull
of the remaining vertices of P . By induction there is a 3-polytope Q′ with at most
n − 2 vertices such that Q′ ∩ H0 = P ′ × {0}, where H0 = {(x, y, z) ∈ R3 | z = 0}. Then
Q = conv

(
Q′ ∪ (a, b, 0)

)
satisfies Q ∩H0 = P × {0}, and has n− 1 vertices.

Question 24. Which is the smallest f(n) such that any n-gon is a section of a 3-polytope
with at most f(n) vertices? Is f(n) ∼ 2

3
n?

We can derive more interesting bounds when we allow ourselves to increase the di-
mension. We only need the following result (compare [4, Proposition 2.8]).

Lemma 25. Let P1 and P2 be polytopes in Rd, and let P = conv(P1 ∪ P2). If Pi is a
section of a di-polytope with ni vertices for i = 1, 2, then P is a section of a (d1 + d2− d)
polytope with not more than n1 + n2 vertices. In particular, ic(P ) 6 ic(P1) + ic(P2).

Proof. For i = 1, 2, let Qi be a polytope in Rdi with ni vertices and such that Qi∩Hi = Pi,
where Hi =

{
x ∈ Rd

∣∣xj = 0 for di − d < j 6 d
}

is the d-flat that contains the points with
vanishing last di − d coordinates. Now consider the following embeddings of Q1 and Q2

in Rd1+d2−d:

• for q ∈ Q1 let f1(q) = (q1, . . . , qd, qd+1, . . . , qd1 , 0, . . . , 0), and

• for q ∈ Q2 let f2(q) = (q1, . . . , qd, 0, . . . , 0, qd+1, . . . , qd2).

Finally, consider the polytope Q := conv
(
f1(Q1) ∪ f2(Q2)

)
, which has at most n1 + n2

vertices, and the d-flat H :=
{
x ∈ Rd1+d2−d

∣∣xj = 0 for d < j 6 d1 + d2 − d
}

; then P =
Q ∩H.

Theorem 26. Any n-gon with n > 7 is a section of a (2 +
⌊
n
7

⌋
)-dimensional polytope

with at most
⌈
6n
7

⌉
vertices. In particular, ic(P ) 6

⌈
6n
7

⌉
.

Proof. This is a direct consequence of Lemmas 21 and 25.

Question 27. Which is the smallest f(n) such that any n-gon is a section of a g(n)-
dimensional polytope with at most f(n) vertices? Are f(n) = O(

√
n) and g(n) = O(

√
n)?
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