
EuroCG 2014, Ein-Gedi, Israel, March 3–5, 2014

λ > 4

Gill Barequet∗ Günter Rote† Mira Shalah∗

Abstract

A polyomino (or “animal”) is an edge-connected set
of squares on the regular square lattice. Enumer-
ation of polyominoes is an extremely hard problem
in enumerative combinatorics, with important appli-
cations in statistical physics. We investigate one of
the fundamental problems related to polyominoes,
namely, computing their asymptotic growth rate λ =

lim
n→∞

A(n+1)
A(n) , where A(n) is the number of polyomi-

noes of size n. λ is also known as “Klarner’s con-
stant.” The best lower and upper bounds on λ so
far were roughly 3.98 and 4.65, respectively, meaning
that not even a single decimal digit of λ was known.
Our goal was to settle a long-standing problem: prov-
ing that λ > 4. To this aim we developed a com-
puter program which required extremely high com-
puting resources in terms of both running time and
main memory. Our program showed rigorously that
λ > 4.00253.

1 Introduction

λ is a universal constant appearing in the study of
three problems studied in seemingly unrelated fields.

Enumerative Combinatorics
Counting polyominoes is a fascinating problem in

combinatorics. A polyomino of size n is an edge-
connected set of n squares on the regular square lat-
tice. Fixed polyominoes are considered distinct if they
differ in their shapes or orientations. Figure 1 shows
all existing polyominoes, up to translations, rotations,
and flips, of size 5. In the mathematical literature,
the number of polyominoes of size n is usually de-
noted by A(n). No formula is known for A(n), and
researchers [11, 17] have suggested efficient algorithms
for computing A(n) for a given value of n. To-date,
the sequence A(n) is known up to n = 56 [11].

Percolation Processes
Computing the mean cluster density in percolation

processes, in particular those of fluid flow in ran-
dom media [9], is an important problem in statistical
physics. In 1957, Broadbent and Hammersley [5] in-

∗Dept. of Computer Science, The Technion, Haifa 32000,
Israel. E-mail: {barequet,mshalah}@cs.technion.ac.il
†Institut für Informatik, Freie Universität Berlin,

Takustraße 9, 14195 Berlin, Germany. E-mail:
rote@inf.fu-berlin.de

Figure 1: The 12 pentominoes (polyominoes of size 5)

vestigated solute diffusing through solvent, molecules
penetrating a porous solid, and similar processes, es-
sentially representing space as a lattice with two dis-
tinct types of cells. In the physics literature, fixed
polyominoes are usually called “(strongly-embedded)
lattice animals.”

Collapse of Branched Polymers
Another important issue in statistical physics is the

existence of a collapse transition of branched poly-
mers in dilute solution at a high temperature [16].
Flesia et al. [8] noted first the relation between the
free energy in the process to percolation theory. Der-
rida and Herrmann [7] investigated two-dimensional
branched polymers by looking at lattice animals on
the square lattice. They performed exact calculations
of the energy of the animal, showing the experimen-
tally known phenomenon of the collapse of branched
polymers. Madras et al. [15] also studied branched
polymers and their free energy by modeling them as
lattice animals.

1.1 The History of λ

Determining the exact value of λ (or even setting good
bounds on it) is an extremely hard problem in enu-
merative combinatorics. In 1967, Klarner [12] showed
that the limit λ := limn→∞

n
√
A(n) exists, and since

then λ has been called “Klarner’s constant.” Only
in 1999 it was proven by Madras [14] that the real

asymptotic growth rate, the limit lim
n→∞

A(n+1)
A(n) , exists,

and hence it is equal to λ.
By using interpolation methods, Sykes and

Glen [18] estimated in 1976 that λ = 4.06 ± 0.02,
an estimate which was improved by Guttmann [10] in
1982 to 4.0626±0.0002, by Conway and Guttmann [6]

This is an extended abstract of a presentation given at EuroCG 2014. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Repository of the Freie Universität Berlin

https://core.ac.uk/display/199422675?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

30th European Workshop on Computational Geometry, 2014

Figure 2: A twisted cylinder of perimeter
(width) W = 5

in 1995 to 4.06265 ± 0.00005, and by Jensen [11] in
2003 to 4.0625696± 0.0000005.

Before carrying out this project, the best proven
bounds on λ were roughly 3.9801 [3] from below
and 4.6496 [13] from above. Thus, λ has always been
an elusive constant, of which not even a single sig-
nificant digit was (rigorously) known. Our goal was
to up the lower bound on λ over the mythical barrier
of 4, revealing the identity of its first decimal digit.

2 Twisted Cylinders

A “twisted cylinder” is a half-infinite wrap-around
spiral-like square lattice, as is shown in Figure 2.

We denote the perimeter (sometimes called “width”
in the literature) of the twisted cylinder by the sym-
bol W . Like in the plane, one can count polyominoes
on a twisted cylinder of width W , and ask what their
asymptotic growth constant, λW , is. It was proven [3]
that the sequence (λW)∞W=1 is monotone increasing,
and that λW ≤ λ for any value of W . Thus, ap-
plying an elementary calculus theorem, this sequence
converges. It was later proven [1] that the limit of
this sequence is indeed λ. Thus, the bigger W is,
the better (higher) the lower bound on λ is. It is
easier to analyze the growth rate of polyominoes on
a twisted cylinder than to analyze their growth rate
in the plane. Polyominoes on a twisted cylinder can
be built by considering one square at a time in a uni-
form way; therefore, the incremental build-up of poly-
ominoes can be modeled very conveniently. Imagine
that we walk along the spiral order of squares, and
at each square decide whether or not to add it to
the polyomino. Naturally, the size of a polyomino
is the number of positive decisions we make on the
way. The crucial observation is that no matter how
big polyominoes are, they can be characterized in a
finite number of ways. This is because all we need
to remember is the structure of the last W squares
of the twisted cylinder (the “boundaries” of the poly-
ominoes), and how they are inter-connected before the
boundary. This provides enough information for the
continuation of the process: whenever a new square c
is considered, and a decision is taken about whether
or not to add c to the polyomino, the boundary is

updated accordingly. This implies that we can model
the growth of polyominoes on a twisted cylinder by
a finite-state automaton whose states are all possible
boundaries. Every state in this automaton has two
outgoing edges that correspond to whether or not the
next square is added to the polyomino.

The number of states is extreme [2, 3]: it is equal to
MW+1, the (W+1)st Motzkin number. MW increases
roughly by a factor of 3 when W is increased by 1.
In 2004 we were able to obtain good approximations
of λW up toW = 22. The program that computed λW
required extremely high computing resources by the
standards of that time, both in terms of running time
and main memory. For computing λ22 ≈ 3.9801, the
computation time was about 6 hours on a machine
with 32 GB of main memory (RAM). (As of today,
the same program runs in 20 minutes on a worksta-
tion.) Based on methods from numerical analysis, we
extrapolated the first 22 known values of the sequence
(λW) and estimated already then that only when we
reach W = 27 we would be able to break the mythi-
cal 4.0 barrier. However, with the exponential growth
of both memory consumption and running time, this
goal seemed at that time to be out of reach.

3 Method

In 2004, Ms. Ares Ribó (a Ph.D. student of G. Rote
at that time) developed a serial program that com-
putes λW for any perimeter. The program computes
and saves the identities of the edges outgoing from
any state of the automaton in two long arrays succ0
and succ1, that corresponded to adding an empty or
an occupied cell to the polyomino. Both arrays are of
length M = MW+1. Two arrays of floating point
numbers, called yold and ynew, store the two suc-
cessive iteration vectors (that contain the number of
polyominoes corresponding to each boundary), also of
length M . After initializing yold := (1, 1, 1, . . .), each
iteration computes the new version of y by performing
the following simple loop.

ynew[0] := 0;
for s := 1, . . . ,M − 1:

(∗) ynew[s] := ynew[succ0[s]] + yold[succ1[s]];

The vectors are indexed from 0 to M − 1. As ex-
plained in the previous section, each entry represents
a state. The states are encoded by so-called Motzkin
paths, and these paths can be bijectively mapped to
numbers between 0 and M − 1.

After each iteration, the contents of ynew is moved
to yold. The latter vector is normalized after every few
iterations in order to prevent overflow of its entries.

Denote by ymin (resp., ymax) the minimum (resp.,
maximum) ratio between corresponding entries in
ynew and yold, that is, ymin := mins y

new[s]/yold[s]
and ymax := maxs y

new[s]/yold[s]. It was proven [3]

EuroCG 2014, Ein-Gedi, Israel, March 3–5, 2014

that after every iteration we have ymin ≤ λW ≤ ymax,
and that in the course of this proceudre ymin (resp.,
ymax) is monotone increasing (resp., decreasing), con-
verging (by Perron-Frobenius theorem) to λW . There-
fore, after every some nominal number of iterations,
the program checks whether ymin and ymax are close
enough. In case this test is successful, the program
declares convergence.

4 Computing λ27

4.1 Environment

The computation was performed on a Hewlett
Packard DL980 G7 computer which consisted of 8
Intel Xeon X7560 nodes (Intel64 architecture), each
having eight physical 2.26 GHz processors (16 virtual
cores), for a total of 64 processors (128 virtual cores).
Each node was equipped with 256 GB of RAM (and
24 MB of cache memory), for a total of 2.048 TB
of RAM. It is important to note that simultaneous
access by all processors to the shared main mem-
ory was crucial to the success of the project. Dis-
tributed memory would not work well due to a severe
penalty in running time. Hyperthreading was used
to allow processes to run on the physical cores of a
node while sharing certain resources. Moreover, we
had access to a fast disk connected directly to the
supercomputer, whose capacity was 3.7 TB (DDR).1

The Ubuntu Gnu/Linux operating system was run on
both computers. Compilation was done using the gcc
C compiler with OpenMP 3.0 compiler directives for
parallel processing.

4.2 Programming Tricks and Improvements

Since for W = 27 the finite automaton has roughly
M28 = 2.1 ·1011 states, our initial estimation was that
we would need memory for two 8-byte arrays of length
M28 (for storing succ0 and succ1) and two 4-byte ar-
rays of the same length (for storing yold and ynew),
for a total of 24 · 2.1 · 1011 ≈ 5 TB of RAM, which
was certainly out of reach, even with the available su-
percomputer. We detail below the various ways we
improved our program in order to achieve our goal.

4.2.1 Parallelization

The set of states G of the automaton can be parti-
tioned into groups G1, G2 . . . , GW , such that succ0[s]
for an element s ∈ Gi belongs to Gi+1. (More pre-
cisely, the set Gi contains all the states in which the
ist cell is the first occupied cell along the boundary.)

1This was an important tool since we were allocated “win-
dows” of computation time on the supercomputer, by the end
of which we needed to write to disk the intermediate results
of the program (i.e., the last contents of y), from which the
program could resume in the next running window.

This means that the groups GW , . . . , G2, G1 have to
be processed sequentially (in this order), but all ele-
ments in one group can be computed in parallel.

We also parallelized the preprocessing phase (com-
puting the succ arrays) and various house-keeping
tasks.

4.2.2 Elimination of unreachable states

A considerable portion of the states of the automaton
(about 11% asymptotically) are unreachable, that is,
there is no binary string leading to these states. This
happens because not all seemingly legal states can be
realized by a valid boundary.

4.2.3 Bit-streaming of the succ0/1 arrays

Instead of storing each entry of the succ0/1 arrays in a
full word (8 bytes, once the number of states exceeded
232), we allocated to each entry exactly the number
of required bits and stored all entries consecutively in
a packed manner. Since the succ0/1 entries were ac-
cessed sequentially, there was only a small overhead in
running time for unpacking the resulting bit sequence.

In addition, since we knew a priori to which group
Gi each pointer (value in the entry) belonged, we
needed only dlog2 |Gi|e bits per pointer, for all en-
tries in Gi (plus a negligible amount of bits required
to delimit between the different sets Gi).

On top of that, the succ0-pointer is often illegal
because the choice of not adding the next cell to the
polyomino caused a connected component of the poly-
omino to lose contact with the boundary. By spending
one extra indicator bit per pointer, we eliminated al-
together these illegal pointers, which comprised about
11% of all succ0 entries.

4.2.4 Storing higher groups only once

If a state s is not in the group G1, then yold[s] is not
needed in the recursion. Thus, we did not need to
keep in memory all the entries of the groups Gi, for
i > 1.

4.2.5 Recomputing succ0

Instead of storing the succ0 array, we computed its
entries on-the-fly whenever they were needed, and
thus saved completely the array needed to store these
pointers. This resulted, naturally, by additional run-
ning time for recomputing these pointers whenever
they were needed. However, just testing whether
succ0[s] exists for a given state s could be performed
very quickly. Streamlined computation of the point-
ers accelerated the successor computation (see below).
This variation has also benefited from parallelization
since each processor can do the pointer computations
independently.

30th European Workshop on Computational Geometry, 2014

4.2.6 Streamlining the conversion between
Motzkin paths and integers

Originally, the Motzkin paths were represented by a
sequence of W+1 integer numbers taking values from
{−1, 0,+1}. However, we compressed the representa-
tion into a sequence of (W+1) 2-bit items, each one
encoding one step of the path, which we could store
in one 8-byte word (since we had W ≤ 31). These
precomputed data were stored in look-up tables.

This compact storage opened up the possibility of
word-level operations. For converting Motzkin paths
to numbers, we could process a certain number of
steps at a time. Conversely, for converting numbers
to Motzkin paths, compressing a certain number of
layers (in the path) meant to locate the number in
one of at most 3k intervals of k steps. For each inter-
val we stored the resulting level and the intermediate
path. This could be sped up by a table look-up of
the leading bits. Using this approach, we obtained a
speed-up of 1/3 in the successor computations.

4.3 Execution

On Sunday, May 19, 2013, at 8:25pm Germany time,
after performing 120 iterations, the program an-
nounced the lower bound 4.00059 on λ27, thus, break-
ing the 4 barrier. In May 23, after a total of about 36
hours and 290 iterations, the program reached the
stable situation (observed in a few successive tens of
iterations) 4.002537727 ≤ λ27 ≤ 4.002542973, estab-
lishing the new record λ > 4.00253.

5 Validity and Certification of the Result

The fact that we performed the computations with
32-digit floating-point numbers does not imply that
numerical errors can be too large so as to nullify our
result. Our computed number is an eigenvalue of a
huge integer matrix. The amount and length of the
computations are irrelevant to the fact that eventu-
ally we have a witness array of floating-point num-
bers (the “proof”), about 450 GB in size, which is a
good approximation of the eigenvector corresponding
to λ27. This array proves rigorous bounds on the true
eigenvalue with numerical errors whose magnitude is
comparable with the accuracy of floating-point num-
bers, much smaller than the gap we opened above 4.

We wrote two independent programs for checking
this “proof” based on programs for the successor com-
putation written by different people. These programs
worked purely sequentially and took about 20 hours
each to run. They simply carried out one iteration (∗).
The result is calculated from the data by at most 26
additions of positive numbers plus one division, all
in a single-precision float. Since no denormalized
numbers occurred, we could estimate the relative er-

ror caused by the floating-point operations. We ob-
tained 4.00253176 as a certified lower bound on λ.

Acknowledgment

This project has been carried out on the DL980 G7
supercomputer at HPI (Hasso Plattner Institut) Fu-
ture SOC Lab in Potsdam, Germany.

References

[1] G. Aleksandrowicz, A. Asinowski, G. Barequet, and
R. Barequet, Formulae for polyominoes on twisted cylin-
ders, LATA, Madrid, Spain, March 2014.

[2] G. Barequet and M. Moffie, On the complexity of
Jensen’s algorithm for counting fixed polyominoes, J. of
Discrete Algorithms, 5 (2007), 348–355.

[3] G. Barequet, M. Moffie, A. Ribó, and G. Rote,
Counting polyominoes on twisted cylinders, INTEGERS:
Elec. J. of Comb. Number Theory, 6 (2006), #A22, 37 pp.

[4] G. Barequet and M. Shalah, Polyominoes on twisted
cylinders, Video Review at the 29th Ann. ACM Symp. on
Computational Geometry, 339–340, June 2013.

[5] S.R. Broadbent and J.M. Hammersley, Percolation
processes: I. Crystals and mazes, Proc. Cambridge Philo-
sophical Society, 53 (1957), 629–641.

[6] A.R. Conway and A.J. Guttmann, On two-dimensional
percolation, J. Physics, A: Mathematical and General,
28 (1995), 891–904.

[7] B. Derrida and H.J. Herrmann, Collapse of branched
polymers, J. Physique, 44 (1983), 1365–1376.

[8] S. Flesia, D.S. Gaunt, C.E. Soteros, and S.G.
Whittington, Statistics of collapsing lattice animals, J.
Physics, A: Math. and General, 27 (1994), 5831–5846.

[9] D.S. Gaunt, M.F. Sykes, and H. Ruskin, Percolation
processes in d-dimensions, J. of Physics A: Mathematical
and General, 9 (1976), 1899–1911.

[10] A.J. Guttmann, On the number of lattice animals embed-
dable in the square lattice, J. Physics, A: Mathematical
and General, 15 (1982), 1987–1990.

[11] I. Jensen, Counting polyominoes: A parallel implemen-
tation for cluster computing, Proc. Int. Conf. on Com-
putational Science, part III, Melbourne, Australia and
St. Petersburg, Russia, Lecture Notes in Computer Sci-
ence, 2659, Springer, 203–212, June 2003.

[12] D.A. Klarner, Cell growth problems, Canadian J. of
Mathematics, 19 (1967), 851–863.

[13] D.A. Klarner and R.L. Rivest, A procedure for im-
proving the upper bound for the number of n-ominoes,
Canadian J. of Mathematics, 25 (1973), 585–602.

[14] N. Madras, A pattern theorem for lattice clusters, Annals
of Combinatorics, 3 (1999), 357–384.

[15] N. Madras, C.E. Soteros, S.G. Whittington, J.L.
Martin, M.F. Sykes, S. Flesia, and D.S. Gaunt, The
free energy of a collapsing branched polymer, J. Physics,
A: Mathematical and General, 23 (1990), 5327–5350.

[16] P.J. Peard and D.S. Gaunt, 1/d-expansions for the
free energy of lattice animal models of a self-interacting
branched polymer, J. Physics, A: Mathematical and Gen-
eral, 28 (1995), 6109–6124.

[17] D.H. Redelmeier, Counting polyominoes: Yet another
attack, Discrete Mathematics, 36 (1981), 191–203.

[18] M.F. Sykes and M. Glen, Percolation processes in two
dimensions: I. Low-density series expansions, J. Physics,
A: Mathematical and General, 9 (1976), 87–95.

