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The Gram-positive bacterium Streptococcus pneumoniae causes severe disease globally. Vaccines that prevent S. pneumoniae

infections induce antibodies against epitopes within the bacterial capsular polysaccharide (CPS). A better immunological under-

standing of the epitopes that protect from bacterial infection requires defined oligosaccharides obtained by total synthesis. The key

to the synthesis of the S. pneumoniae serotype 12F CPS hexasaccharide repeating unit that is not contained in currently used glyco-
conjugate vaccines is the assembly of the trisaccharide B-D-GalpNAc-(1—4)-[a-D-Glcp-(1—3)]-B-D-ManpNAcA, in which the
branching points are equipped with orthogonal protecting groups. A linear approach relying on the sequential assembly of mono-

saccharide building blocks proved superior to a convergent [3 + 3] strategy that was not successful due to steric constraints. The

synthetic hexasaccharide is the starting point for further immunological investigations.

Introduction

Streptococcus pneumoniae is a Gram-positive bacterium that
colonizes the upper respiratory tract and causes life-threatening
pulmonary diseases as well as infections of the brain, the
middle ear and the sinuses [1-6]. Twenty-three of the more than
ninety S. pneumoniae serotypes, which differ in the capsular

polysaccharides (CPS) that surround them, are responsible for

about 90% of infections worldwide [7]. The licensed polysac-
charide vaccine Pneumovax 23 contains serotype 12F but is not
efficacious in young children or elderly people, those at highest
risk. The carbohydrate conjugate vaccines Prevanar13™ and
Synflorix™ [8-11] are based on CPS-carrier protein constructs

and contain thirteen or ten S. pneumoniae serotypes, respective-
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ly, but not 12F [12,13]. The S. pneumoniae serotypes 12A [14]
and 12F [15] combined account for more than 4% of pneumo-
coccal disease [16], whereby 12F (Figure 1) dominates with
85% [17]. In order to improve current glycoconjugate vaccines
additional serotypes such as 12F should be included in next-
generation preparations [18].
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Figure 1: Structure of the S. pneumoniae serotype 12F capsular poly-
saccharide repeating unit [15].

Synthetic oligosaccharides are important tools for the identifica-
tion of vaccine epitopes and have been the key to the creation of
monoclonal antibodies that serve as tools for vaccine design
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[19] and for the detection of pathogenic bacteria such as
Bacillus anthracis [20,21]. S. pneumoniae 12F CPS consists of
hexasaccharide repeating units containing the [—4)-a-L-
FucpNAc-(1—3)--D-GalpNAc-(1—4)-B-D-ManpNAcA-(1—]
polysaccharide backbone with a disaccharide branch at C3 of
B-D-ManpNAcA and C3 of a-L-FucpNAc [15]. We established
a total synthesis of the hexasaccharide repeat unit as a first step
toward a detailed immunological analysis of S. pneumoniae
12F.

Results and Discussion

Retrosynthetic analysis. Initially, a convergent [3 + 3] synthe-
sis of the repeating unit hexasaccharide 1 was envisioned. The
union of trisaccharides 2 and 3 (Scheme 1, route A) was identi-
fied as the key step. The outcome of this late-stage block cou-
pling was deemed risky considering the poor nucleophilicity of
the C4 hydroxy group of the B-mannosazide in 3 combined with
steric bulk around the acceptor. Trisaccharides 2 and 3 can be
derived from differentially protected common building blocks
that carry tert-butyldimethylsilyl (TBS), benzoate (Bz) or
acetate (Ac) ester and 2-naphthylmethyl (NAP) protecting
groups that can be removed sequentially to allow for glycosyla-
tion of the liberated hydroxy groups. Formation of the
B-mannosazide glycoside containing a protected Cs amino
linker that serves in the final product as an attachment point for

[3+3]

route A
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Scheme 1: Retrosynthetic analyses of the S. pneumoniae hexasaccharide 1.
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glycan array surfaces or carrier proteins was central to the
assembly of trisaccharide 3. To avoid a challenging and often
unselective B-mannoside formation step we resorted to
glucose—mannose conversion by inversion of the C2 stereo-
center following selective installation of a trans-glucosidic
linkage. Differentially protected thioglucoside 11 [22] is
equipped with a participating C2 levulinyl ester that is replaced

by an axial azido group following -glucoside formation [23].

Alternatively, a linear synthetic strategy in which the sterically
hindered C4 hydroxy group would be glycosylated first, fol-
lowed by the C3 hydroxy group of f-mannosazide building
block 4, was designed in case the convergent approach proved

unsuccessful (Scheme 1, route B).

Building block synthesis. The accessibility of differentially
protected monosaccharide building blocks is a prerequisite for
the successful total synthesis of any complex glycan. The syn-
thesis of the mannosazide building block was the first chal-
lenge to be addressed. Installation of a C2-participating
levulinyl ester protecting group ensured selective formation of
the trans-glycoside upon activation of 11 by NIS/TfOH in the

Beilstein J. Org. Chem. 2017, 13, 164—173.

presence of the Cs linker to produce glucoside 12 in 70% yield
[24]. Cleavage of the C2 levulinyl ester of 12 by treatment with
hydrazine acetate furnished 13, which was to be carried forward
into the C2 inversion step. Conversion of 13 to the correspond-
ing C2 triflate upon treatment with triflic anhydride in pyridine
was not successful. Even model thioglycoside 10 failed to react
to the corresponding glycosyl triflate under similar conditions
(Scheme 2).

The problems associated with the lengthy and low yielding syn-
thetic sequence prompted us to explore a different approach to
obtain the key mannosazide building block (Scheme 3).
Partially protected mannosazide thioglycoside 16 was prepared
in seven steps from a-O-methylglucose following a published
procedure [25]. Silylation of the C3 hydroxy group furnished
thioglycoside 17. Glycosylation of the Cs linker by activation of
17 using NIS/TfOH as the promoter at —20 °C produced mainly
B-mannoside 15 (4:1 B:a) [26]. The identity of the B-isomer was
confirmed by NMR analysis (Jcp p = 159.0 Hz, see Support-
ing Information File 1). Cleavage of the silyl ether by
TBAF treatment of 15 afforded the B-mannosazide building
block 18.
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Scheme 2: Attempted synthesis of mannosazide building block 15. Reagents and conditions: (a) levulinic acid, DCC, DMAP, CH,Cl,, 82%; (b) NIS,
TfOH, HO(CH3)sNBnCbz, CH,Cly, =20 °C, 70%; (c) NoH4, AcOH, pyridine, CH,Cly, 70%; (d) Tf,0, pyridine, CH2Cly, 0 °C to rt.
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Scheme 3: Synthesis of mannosazide building block 18. Reagents and conditions: (a) TBSCI, imidazole, DCM, 0 °C to rt, 85%; (b) NIS, TfOH,
HO(CH3)sNBnCbz, CH,Cly, =20 °C, 61%; (c) TBAF, THF, 0 °C, 80%.
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Convergent [3 + 3] synthesis. Synthesis of the reducing-end
trisaccharide 3 (Scheme 1) commenced with the assembly of
the a-1—2 linked diglucoside 19 by union of the monosaccha-
ride building blocks 10 and 7 [27] in a dichloromethane—ether
(enables alpha selectivity) mixture in 56% yield (Scheme 4).
Removal of the silyl ether and benzylidene groups of 19 yielded
triol 20 before benzylation afforded disaccharide thioglycoside
building block 21. Activation of disaccharide 21 resulted in the
glycosylation of mannosazide acceptor 18 (Scheme 3) to form
the corresponding a-linked trisaccharide, which, subsequent to
removal of the 4,6-benzylidene group under acidic conditions,
provided diol 22 that was in turn converted into reducing-end
trisaccharide 3 by selective placement of a TBS ether [28] on
the primary alcohol (Scheme 4).

With reducing-end trisaccharide 3 in hand, we turned our atten-
tion to the synthesis of trisaccharide 2, which required the avail-
ability of three differentially protected monosaccharide build-
ing blocks: 8, 9 and 26 (Scheme 5). Protected building block 26
was obtained in four steps from known galactosylazide selenide
23 [29]. Acetylation of the C3 hydroxy group of 23 furnished
fully differentially protected selenoglycoside 24 in 82% yield.
Hydrolysis of the selenoglycoside using NIS in aqueous THF
produced hemiacetal 25 that was silylated prior to selective
saponification of the C3 O-acetate to yield building block 26
(Scheme 5).

Fucosazide building block 8 was derived from diacetyl fucal 27
that in turn was prepared in two steps from L-fucose [30].

Beilstein J. Org. Chem. 2017, 13, 164—173.

Azido-selenation of 27 and hydrolysis of the seleno fucosazide
with NIS in aqueos THF [31] provided hemiacetal 28, which
was subsequently converted to the fucosyl trichloroacetimidate
building block 8 (Scheme 5). Galactosyl thioglycoside 9 was
prepared from D-galactose following published procedures
[32]. Reductive opening of the benzylidene acetal of known
galactosyl thioglycoside 29 [33] with triethylsilane [34] in TFA/
CH,Cl, liberated the C4 hydroxy group of 30, which was
subsequently benzoylated to ensure remote participation
in 9 for the preferential formation of cis-glycosides (Scheme 5)
[35].

With the three building blocks 8, 9 and 26 in hand, the assembly
of the non-reducing end trisaccharide 2 commenced. The union
of 8 and 26 produced the a-linked disaccharide 31 in 74% yield
and excellent a-selectivity due to remote participation of the C2
and C3 acetate esters present in the fucosazide donor
(Scheme 6). Preparation of the site for the downstream glyco-
sylation, the C3 hydroxy group in the fucosazide moiety, to
obtain 35, required several protecting group manipulation steps:
cleavage of the two acetate esters of 31 to produce diol 32 was
followed by the reaction with trimethyl orthoacetate to provide
the ortho-ester 33, which was regioselectively opened under
acidic conditions to afford disaccharide acceptor 34 containing
a C3 hydroxy group [28]. Glycosylation of disaccharide 34
using galactose building block 9, activated by NIS/triflic acid,
produced trisaccharide 35 with high a-selectivity by virtue of
the C4-participating benzoyl ester protecting group of 9 [36].
Trisaccharide 35 was transformed into a glycosylating agent by

Scheme 4: Synthesis of the reducing-end trisaccharide 3. Reagents and conditions: (a) TMSOTf, (CH3CH3),O/CH>Cl; (4:1), =20 °C, o/f = 4:1, 70%;
(b) p-TsOH, CH30H/CHCl (1:1), rt, 70%; (c) NaH, benzyl bromide, THF/DMF (1:1), 0 °C to rt, 90%; (d) 18, NIS, TfOH, (CH3zCH3),0/CHCly, (4:1),
-20 °C, 61%; (e) p-TsOH, CH3OH, rt, 90%; (f) TBSCI, imidazole, CHCly, rt, 93%.
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Scheme 5: Synthesis of monosaccharide building blocks 8, 9 and 26. Reagents and conditions: (a) acetic anhydride, pyridine, CH,Cl, rt, 18 h, 82%;
(b) NIS, THF/H20 (1:1), rt; (c) 1) TBDPSCI, imidazole, DMF, rt; 2) NaOMe, MOH, rt, 68% over two steps; (d) (PhSe),, BAIB, NaN3, CH,Cly, rt, 24 h;
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pyridine, rt, 18 h, 80% over two steps.
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Scheme 6: Synthesis of the non-reducing end trisaccharide 2. Reagents and conditions: (a) TMSOTf, CH,Cly, =30 °C, 74%; (b) NaOMe (0.5 M in
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-10 °C, 54%; (f) HF-pyridine, THF, 0 °C; (g) CCI3CN, DBU, CH,Cl,, 0 °C, 57% over two steps.

removal of the anomeric TBDPS silyl ether using HF-pyridine =~ With trisaccharide fragments 2 and 3 in hand, the convergent
and subsequent treatment with trichloroacetonitrile in the pres-  [3 + 3] approach (Scheme 1, route A) to the synthesis of the
ence of catalytic amounts of DBU to afford glycosyl trichloro-  repeating unit hexasaccharide 36 (Scheme 7) was attempted.
acetimidate trisaccharide 2 (Scheme 1). The union of trisaccharides 2 and 3 using TMSOTT in aceto-
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nitrile as the activator did not yield the desired hexasaccharide
36. Instead, trisaccharide acceptor 3 missing its C6 silyl ether
protecting group 38 was recovered. The undesired outcome of
this coupling step likely resulted from the poor nucleophilicity
of 3 rather than a lack of reactivity of trisaccharide glycosy-
lating agent 2, as demonstrated by an experiment in which
model monosaccharide 37 [29] also failed to react with trisac-

charide acceptor 3 and recovered 38 (Scheme 7).

In order to better understand the formation of the key disaccha-
ride GaINAc—ManNAcA, a model glycosylation involving
mannosazide 4 (Scheme 7, prepared in four steps from 16, see
Supporting Information File 1) was explored. Differentially pro-
tected mannosazide 4 was successfully glycosylated using
building blocks 5 or 37 to yield the corresponding disaccharide
in 21% and 37% yield, respectively. The failure of the [3 + 3]
coupling to produce hexasaccharide 36 was apparently a result

Beilstein J. Org. Chem. 2017, 13, 164—173.

of the poor nucleophilicity of the C4 hydroxy group in 3 rather
than of problems associated with the glycosylating agents. The
presence of a disaccharide appendage at the C3 position as well
as a bulky TBS silyl ether at C6 may block the C4 hydroxy
group.

The B-selectivity of glycosylations using glycosylating agents 5
and 37 even in acetonitrile was rather poor. Apparently, the
“nitrile effect” [37,38] is partially overruled by the partici-
pating nature of the C3 ester protecting groups Ac/Bz that leads
to a preference for the cis-glycosidic a-linked product.

Linear total synthesis of 12F repeating unit hexasaccharide
1. The failure of the convergent [3 + 3] total synthesis approach
prompted us to retreat to the linear avenue (Scheme 1, route B)
towards the target oligosaccharide in order to avoid the steri-
cally demanding late-stage glycosylation. Differentially pro-
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Scheme 7: Attempted synthesis of hexasaccharide repeating unit 36 via a convergent [3 + 3] glycosylation strategy and exploratory control experi-
ments. A) Failed [3 + 3] glycosylation; B) failed model [1 + 3] glycosylation; C) low yielding model coupling of two monosaccharides.
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tected mannosazide 4 served as the starting point for stepwise
assembly from the reducing to the non-reducing end
(Scheme 8). Union of 4 and 5 (Scheme 7) produced disaccha-
ride 41 as the key intermediate, the naphthyl protecting group of
which was cleaved in 70% yield using DDQ [37] to afford 42.
Thioglycoside 43 failed to react with disaccharide 42 to furnish
the desired trisaccharide 44. Considering a potential
“mismatch” [38] between the thioglycoside glycosylating agent
and the acceptor [39,40] we explored whether the glucosyl tri-

Beilstein J. Org. Chem. 2017, 13, 164—173.

chloroacetimidate donor 6 (Scheme 1) would be more suitable.
Indeed, glycosylation of disaccharide 42 with building block 6
using TMSOTY as the activator proceeded to produce trisaccha-
ride 44 in 65% yield.

Removal of the C2 naphthyl ether using DDQ provided
acceptor 45, which in turn was reacted with glucosyl thioglyco-
side 7 in the presence of NIS and TfOH to produce a-linked
tetrasaccharide 46 in 62% yield (Scheme 8). At this stage, the
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Scheme 8: Linear assembly of fully protected hexasaccharide 51. Reagents and conditions: (a) DDQ, CH2Clo/MeOH (9:1), rt, 70%; (b) 43, NIS,
TfOH, CHCly, =20 °C (no reaction) or 6, TMSOTf, EtoO/CH,Cl3 (4:1), =20 °C (65%); (c) DDQ, CH,Clo/MeOH (9:1), rt, 55%; (d) 7, TMSOTf, Et,O/
CHCl; (4:1), =20 °C, 62%; (e) NaOMe (0.5 M in MeOH), THF/MeOH (1:1), rt, 90%; (f) i. TEMPO, BAIB, CH,Clo/H20 (4:1), rt; ii. Mel, K,CO3, DMF, rt,
35% over two steps; (g) 8, TMSOTf, CH,Cly, =20 °C, 77%; (h) i. NaOMe (0.5 M in MeOH), THF/MeOH (1:1); ii. trimethyl orthoacetate, p-TsOH, tolu-
ene; iii. 80% AcOH, rt, 27% over three steps; (i) 9, NIS, TMSOTf, dioxane/toluene (3:1), =10 °C to 0 °C, 54%.
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2-azidomannose moiety of 46 was converted to the correspond-
ing mannosaminuronic acid by cleaving the C6 benzoate ester
using sodium methoxide in methanol and selective oxidation of
the primary alcohol of 47 using BAIB/TEMPO. Tetrasaccha-
ride acceptor 48 was obtained by esterification of the carboxylic
acid under basic conditions using methyl iodide in 32% yield
over three steps [41]. Next, TMSOTT activation of fucosyl tri-
chloroacetimidate 8 (Scheme 1) catalyzed the glycosylation of
methyl uronate 48 to afford pentasaccharide 49 exclusively as
the a-isomer by virtue of remote participation of the 3-O-acetate
group. In anticipation of the final glycosylation, the fucosazide
moiety of 49 was converted into acceptor 50. The desired hexa-
saccharide 51 was obtained as the a-anomer in 54% yield by
coupling galactose building block 9 (Scheme 1) to pentasaccha-
ride 50 using NIS/TfOH in a mixture of toluene/dioxane. Again,
the C4 benzoate ester of 9 ensured high selectivity for the
desired cis-glycosidic linkage.

Global deprotection commenced with the conversion of the
three azide groups present in compound 51 into NHAc groups
in a single step using thioacetic acid in pyridine [42] afforded
triacetamide 52 in 65% yield; it is important to note that
Zn-mediated reduction of 51 led to decomposition of the sub-
strate. Ester saponification of 52 employing sodium methoxide

NHAc
BnO o é& Me O
5 \/(CH2)4 o
H
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in methanol yielded none of the desired product 53 but rather
the tentatively assigned B-elimination products 54 and 55.
Furthermore, an attempt at employing a more nucleophilic and
less basic reagent such as a lithium hydroxide/hydrogen
peroxide mixture did not provide relief from the problem, but
instead also produced a mixture of undesired products. Adjust-
ments in the sequence of deprotection steps by first carrying out
hydrogenolysis using Pd/C in a mixture of AcOH/H,O/-BuOH
prior to ester hydrolysis using LIOH/H,0, enabled the hexasac-
charide 1 to be obtained in 37% yield (Scheme 9).

Conclusion

The first total synthesis of the S. pneumoniae serotype 12F
capsular polysaccharide repeating unit hexasaccharide 1 was
achieved by means of a linear approach. A convergent [3 + 3]
total synthesis strategy failed, most likely due to steric crowding
around the trisaccharide acceptor. The synthesis of 1 is an illus-
trative example of the challenges associated with state-of-the-art
oligosaccharide assembly including steric, conformational,
remote participation groups and solvent effects. It lends further
credence to the linear assembly concept in which one monosac-
charide unit at a time is incorporated, and which serves as the
basis for automated glycan assembly [43]. With the synthetical-
ly sourced hexasaccharide repeating unit in hand detailed
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Scheme 9: Global deprotection to furnish S. pneumonia serotype 12F repeating unit hexasaccharide 1. Reagents and conditions: (a) thioacetic acid,
pyridine, rt, 65%; (b) Zn, AcOH/Ac,O/THF, Cu,SO4 (aq, decomposed); saponification conditions that lead to B-elimination (c) i. NaOMe (0.5 M in
MeOH) in MeOH, ii. NaOH (4 M, 2 M, 1 M, 0.5 M, 0.1 M) solution in THF, iii. HO5 LiOH, THF, H,0; successful sequence (d) Pd/C, AcOH, H,0,

t-BuOH (e) HxOy, LiOH, THF, H20, 37% over two steps.
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immunological analysis of S. pneumoniae serotype 12F can be
undertaken, and future work will address the expanded inclu-

sion of this antigen in next-generation glycoconjugate vaccines.

Abbreviations

Ac: acetate ester; BAIB: bis(acetoxy)iodobenzene; Bz: benzoyl;
CPS: capsular polysaccharide; DMF: N, N-dimethylformamide;
EtOAc: ethyl acetate; GlcA: glucouronic acid; HPLC: high-
performance liquid chromatography; Lev: levulinoyl;
MALDI-TOF MS: matrix-assisted laser desorption/
ionization—time of flight mass spectrometry; NAP: 2-naphthyl-
methyl; TBS: tert-butyldimethylsilyl; THF: tetrahydrofuran;
TMSOTT: trimethylsilyl trifluoromethanesulfonate.
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