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If, in some cataclysm, all of scientific knowledge were to be destroyed, and only one
sentence passed on to the next generation of creatures, what statement would contain
the most information in the fewest words? I believe it is the atomic hypothesis that
all things are made of atoms—little particles that move around in perpetual motion,
attracting each other when they are a little distance apart, but repelling upon being
squeezed into one another. In that one sentence, you will see, there is an enormous
amount of information about the world, if just a little imagination and thinking are
applied.

Richard P. Feynman
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Chapter 1

Introduction

Almost all biochemically relevant processes occur in water. Over the last decades, the
picture has emerged that the solvent itself plays a crucial and active role for key pro-
cesses in living organisms [1]. Biomolecules like proteins are surrounded by hydration
shells, spherical layers of temporary bound water molecules, which are fundamental to
protein dynamics and function [2, 3]. Particularly, the hydration shell dynamics has a
strong impact on a solvated molecule and vice versa [4, 5].

The most important dynamic effect of the solvent is the generation of molecular
friction. It determines the fundamental timescale for all processes in solvent, ranging
from chemical reactions [6] via molecular diffusion [7] to macromolecular conformational
changes [8, 9] and protein folding [10, 11]. In the following, the importance of molecular
friction is illustrated by three examples of such processes.

Molecular diffusion refers to the thermal motion of molecules at finite temperature.
It plays an essential role for the transport of molecules in living cells, even metabolic
pathways rely partly on molecular diffusion [12]. Despite the fact that the long-time
behavior of diffusion in water can be described by relatively simple equations, the
short-time processes, which include the solvent reorganization and thus the breaking
and formation of hydrogen bonds [13–15], are very complex and subject to current
research efforts.

A surprisingly fast molecular transport process is the diffusion of excess protons in
water; a hydrated excess proton is transported as a H3O+ defect, in such a way that
the excess proton continuously changes [16, 17]. In addition to the great importance of
protons for cell function, the capability of water to efficiently conduct protons is used
in various technological applications such as fuel cells and other electrochemical devices
[18–20].

A more complex example of a crucial biophysical reaction is protein folding, where
a protein changes its conformation from an unordered state to a particular, so-called
folded state [21], which typically determines its function in biological systems. How
long will such a process take? Clearly, the rate-limiting step of this reaction is given
by the search of the energetically favored, folded state among an enormous amount of
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1. Introduction

other possible conformations. However, the folding time cannot be estimated based
on these considerations alone, because the speed with which these configurations are
sampled is a priori unknown. Molecular friction is exactly what determines this missing
prefactor. The most straight-forward assumption is that the molecular friction is given
by the diffusion constant, which is proportional to the solvent viscosity. Indeed, the
fact that this timescale will dominate for sufficiently large polymers is known as the
Kuhn theorem [22–24]. However, it was found experimentally that the folding times of
many proteins are not proportional to the solvent viscosity, but they show a significant
independent contribution commonly referred to as internal friction [8, 10, 25–29]. The
molecular origin of this internal friction is not fully understood.

Clearly, these are just some among many examples, which exemplify the importance—
but also the complexity—of molecular friction and dynamics.

With modern experimental techniques, a direct investigation of dynamic molecular
processes is possible. Spectroscopic approaches like nuclear magnetic resonance spec-
troscopy [30, 31] or time-resolved infrared spectroscopy [32, 33] allow to probe timescales
down to sub-picosecond resolution. Atomic force microscopy [34] and single-molecule
Förster resonance energy transfer experiments [35, 36] can be used to study the dynam-
ics of single molecules. Together with the enormous amount of structural information
revealed by X-ray crystallography [37] and of course innumerable other methods, the
extent of information available on the molecular scale is remarkable. However, exper-
imental information is always incomplete, because it is limited to a few setup-specific
observables. Only by the combination of experiments and theoretical models, it has
been possible to form our current detailed understanding of the molecular dynamics
relevant for biological life.

For many biophysical applications, a surprisingly good approximation [38] for the
molecular friction coefficient γ of a particle with effective radius R is given by Stokes’
law γ = 6πηR, which was derived by Stokes already in 1851 from the viscous laminar
flow around a sphere in a liquid with viscosity η [39]. Later in 1905, Einstein recognized
the connection between molecular friction and Brownian motion at a temperature T in
one of his seminal publications, and derived the Stokes-Einstein relationD = kBT/6πηR
[40], where the diffusion constant D is defined by the mean-square displacement D =〈
(x(t)− x(0))2

〉
/6t of a particle trajectory x(t) for sufficiently large t. This fascinating

connection between friction and thermal fluctuations was later generalized as the famous
fluctuation-dissipation theorem [41, 42], which relates the thermal fluctuations of a
system observable to its response to perturbations. For the case of linear response
around equilibrium, exact analytical expressions for transport coefficients in terms of
time correlation functions were derived by Green [43] and Kubo [44].

Whereas the long-time translational motion of a single molecule can be well described
by the above mentioned relations, most biomolecular reactions are tremendously more
complex, as for example is the case for protein folding. Crossing over a barrier in an ef-
fective one-dimensional free energy landscape is a prominent and very successful model
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for such processes [45–53]. These one-dimensional models can be either described by
so-called Langevin equations [54–56], which are stochastic differential equations for indi-
vidual trajectories, or by the equivalent partial differential equations for the probability
distribution, so-called Fokker-Planck equations [55–58].

Langevin introduced his stochastic differential equation for the diffusive dynamics of
a particle with mass m in 1908 [54]. It reads

mẍ(t) = −γẋ(t) + ξ(t), (1.1)

where the stochastic noise term ξ(t) is assumed to be Gaussian distributed, and the
fluctuation-dissipation theorem implies for its ensemble average〈

ξ(t)ξ(t′)
〉

= 2kBTγ δ(t− t′). (1.2)

The Langevin equation is thus an equation that describes many individual, random
trajectories. It is well suited for computer simulations, since one can easily generate an
ensemble of trajectories numerically. Numerous generalizations and applications to a
wide range of systems have been derived [55, 59].

The Langevin equation (1.1) assumes the friction contribution to be instantaneous,
which is mirrored by the δ-correlated noise and the instantaneous friction force −γẋ(t).
For many systems, this is a very good approximation. However, on the molecular scale,
the interactions between molecules will take a finite amount of time. In particular,
for the description of the short-time dynamics of small water-solvated molecules, this
approximation breaks down.

A more rigorous approach to model a larger class of systems is given by the so-called
generalized Langevin equation (GLE) derived by Mori in 1965 [60]. He used an exact
linear projection technique based on the Liouville operator formalism to show that the
phase space dynamics of a Hamiltonian system can always be projected onto a one-
dimensional reaction coordinate, leading to the stochastic integro-differential equation

mẍ(t) = −
∫ t

0
dt′ Γ(t− t′)ẋ(t′) + FR(t), (1.3)

with the noise correlation
〈FR(t)FR(0)〉 = kBTΓ(t). (1.4)

The so-called memory kernel Γ(t) describes the time correlation of the dissipative and
random forces. In his work, Mori gave an exact analytical expression for this function
in the Liouville operator formalism [56, 60, 61].

The derivation of the GLE was a remarkable achievement. On the one hand, it es-
tablishes a direct connection between Hamiltonian dynamics and stochastic differential
equations: Mori’s projection technique proves that the memory kernel exactly reflects
the degrees of freedom orthogonal to reaction coordinate x, which allows a clear in-
terpretation. In particular, the Langevin equation (1.1) can be obtained by setting
Γ(t) = 2γδ(t), and its applicability to molecular systems can thus be well understood
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1. Introduction

based on the GLE. On the other hand, the GLE has proven to be a very successful tool
to model a variety of phenomena [9, 61–72], especially on the molecular scale, where—as
mentioned—the Langevin equation does not necessarily hold. One important reason for
this success is that for the parametrization of a GLE from experimental or simulation
data, no assumptions on a separation of timescales have to be made.

However, these striking advantages come with a price: the memory function Γ(t)
can in principle be very complicated, and it is difficult to determine for most systems.
Several methods for the determination of Γ(t) have been proposed in the literature
[6, 9, 61, 70, 72–76], but none of them is universally applicable [9, 61].

In addition to these difficulties in parametrizing GLEs and similar stochastic models,
a direct determination of the model parameters from experiments is usually not possible
for molecular systems, because the required resolution in time and space cannot be
achieved, despite the astonishing experimental advancement in the recent years.

A very useful and quite universal approach to understand molecular mechanisms
are computer simulations. Since their invention in the 1950s [77, 78], the so-called
molecular dynamics (MD) simulations, which denote numerical N -body simulations of
molecules or atoms, have gained enormous popularity, with applications ranging from
proton transfer in water with quantum precision [16, 17, 79] to millisecond simulations
of protein folding using custom application-specific integrated circuits [80–83].

In MD simulations, the movements of atoms or molecules are numerically calculated
from their interaction potentials. Even for small molecular systems, an exact solution
of the dynamics dictated by the Schrödinger equation is usually by far not possible
due to the prohibitive computational power such a calculation would require. Instead,
various levels of approximation have been introduced.

In the most popular, classical MD simulations, the interactions between atoms are
modeled by effective forces, determined and improved over decades to reproduce experi-
mental observables or quantum mechanical calculations as exactly as possible [84]. Due
to the accessible timescales reaching up to milliseconds, this technique plays nowadays a
central role for our understanding of molecular biophysical processes like protein folding
[85–90], ligand binding [90–93] and transport through membrane proteins [90, 94–97].
Even the simulation of an entire tobacco mosaic virus is possible [98].

In so-called ab initio MD simulations, the forces between the nuclei of a system are
calculated from the electron density, which is computed for a given nuclei configuration
[99–101]. Depending on the simulation method, various approximations are used also
for these techniques. Because of the enhanced computational cost, ab initio simulations
are limited to smaller systems and shorter timescales, but therefore allow the in silico
investigation of processes that are not accessible using classical forcefields, like e.g.
metallo-organic reactions [102] or the self-repair mechanism of DNA [103, 104]. In
particular, ab initio techniques are suitable for the calculation of molecular vibration
spectra [101, 105–107], and they have played for example a key role for the assignment
of infrared spectral features to protonated water clusters in the transmembrane protein
bacteriorhodopsin [108–110], a light-driven proton pump [111–115].
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In the present thesis, we combine the predictive power of stochastic and other ana-
lytical models with the accuracy of modern simulation techniques. Analytic models are
suited to extract key features and to derive general principles from complex all-atom
trajectories, and therefore they often constitute the link between theory and experi-
ment. Indeed, this approach will be shown to constitute significant improvement of
our view on dynamic molecular processes in water on several timescales and in differ-
ent friction regimes: We demonstrate the previously unknown dichroism of the infrared
continuum absorption caused by the fast proton transfer in non-spherical water clusters.
We show for the first time that a confining potential modifies the friction constant of
small molecular solutes in water, and we characterize the mass dependence of molecular
aqueous friction. We settle a long-lasting question by demonstrating that the dynam-
ics of the torsion angle of a water-solvated butane molecule is dominated by internal
friction. Furthermore, we reveal the universal property of barrier-crossing (transition)
paths that their velocity distributions deviate from equilibrium.

We start in Chapter 2 with the computation of infrared spectra for protonated and
unprotonated water clusters with different geometries from ab initio molecular dynam-
ics trajectories. For all protonated systems, we find pronounced continuum bands,
which extend over a broad frequency range. They are shown to exhibit significant po-
larization anisotropy for chains and discs with increased absorption along the direction
of maximal extension. The molecular origin of the continuum band is elucidated by a
local spectral analysis. These findings can be used directly to interpret experimental,
polarization-resolved infrared spectra of bacteriorhodopsin recorded by Mattia Saita
under supervision of Prof. Dr. Joachim Heberle at the Freie Universität Berlin: we
show that the protonated water cluster responsible for the continuum band of bacteri-
orhodopsin is oriented perpendicularly to the proton pumping direction.

In Chapter 3, we investigate basic features of molecular diffusion in liquids based on
simulations of externally confined, water-solvated methane molecules. We extract the
friction constant and the memory kernel by a newly developed method in the framework
of a generalized Langevin model. A new effect going beyond the assumptions of the very
established Stokes’ law is discovered: if a molecule is confined by an external potential,
its friction increases and the water dynamics in the surrounding hydration shell slows
down. These findings are relevant for the interpretation of spectroscopy experiments,
and our scaling analysis suggests that similar effects play a role for macromolecular
solutes in sufficiently viscous solutions.

Similar analysis methods are applied in Chapter 4 to the (previously known) kinetic
isotope effect that different isotopes of small solutes have a slightly mass dependent
diffusion constant in water. The mass range investigated spans over four orders of
magnitude, and it includes the massless and the infinite mass limits to understand the
scaling behavior of this effect. The combination of the results from Chapters 3 and 4
hints at the general principle that a reduced dynamic response of a solute to the solvent
increases the friction constant and slows down the hydration shell dynamics.
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1. Introduction

As a next step, we analyze the more complex isomerization dynamics of water-
solvated butane in Chapter 5. A new method for the parametrization of a generalized
Langevin equation in the presence of a non-linear potential is developed. We compare
the dynamics of a partly frozen butane molecule with no internal degrees of freedom
to a free molecule, and vary the water viscosity by two orders of magnitude. This
systematic approach settles a long-lasting question about the origin of internal friction:
the insensitivity of the dihedral angle isomerization rate to the solvent viscosity, which
was identified earlier as an important source of internal friction in large polymers [116–
124], is itself due to internal friction, in contrast to speculations from the literature.
This result is not only relevant for butane, but also for polymer dynamics and protein
folding.

Finally, in Chapter 6, we study intrinsic properties of so-called transition paths, which
denote paths that reach a target without revisiting the initial position. Transition paths
are a relevant concept in the context of barrier crossing. We show that the ensemble
properties of these paths deviate from equilibrium: the velocity distribution, which
we describe by an effective temperature, is heated up. By a comprehensive analysis
extending over five orders of magnitude, we show how this effect and other properties
of transition paths depend on the ratio between mass and friction.
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Chapter 2

Orientation of Non-Spherical Protonated
Water Clusters Revealed by Infrared Ab-
sorption Dichroism

Bibliographic information: Parts of this chapter and of Appendix A have previously
been published. Reprinted with permission from Ref. [i]. License: CC BY 4.0.

Water is an excellent conductor for protons since the Grotthuss mechanism allows for
transport of protons via the fast motion of a H3O+ defect [16, 17]. Proton transfer events
are key for many essential biological functions, consequently, one finds protein-bound
water molecules and internal water wires in proton-conducting transmembrane proteins
such as cytochrome c oxidase, photosystem II, bacteriorhodospin and channelrhodopsin
[112, 125–127].

Because a proton easily moves from one water molecule to a neighboring one, which is
a consequence of low barriers in the proton energy landscape [128–131], the infrared (IR)
absorption spectrum of an excess proton in water is not characterized by sharp bands,
but rather by very broad, so-called continuum bands. The first IR continuum band was
detected in concentrated acid solutions [132] and later seen in a host of different bulk
systems [128].

A well studied transmembrane protein where protein-bound water molecules play a
crucial role is the light-driven proton pump bacteriorhodopsin (bR) [111–115]. For bR,
light-induced broad IR absorption bands have been observed to rise and decay during
the photocycle [110, 133–135]. The interpretation of these broad bands is subtle due to
several complications: i) Three water clusters exist in bR, so it is a priori not clear which
water cluster gives rise to which spectral feature [110]. ii) The translocation of a proton
from the cytoplasmic to the extra-cellular side involves a number of transient states. iii)
More than one excess proton presumably is present at a time. iv) In the wavenumber
range (2500−3000) cm−1 broad bands have been assigned to strongly hydrogen-bonded
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2. Orientation of Non-Spherical Protonated Water Clusters Revealed by Infrared
Absorption Dichroism

water molecules that do not contain an excess proton [136]. v) The energy dissipated
from the retinal excitation might be absorbed by bulk water molecules, also generating
transient broad bands [134].

The continuum band observed in the (1800− 2200) cm−1 range, devoid of any other
spectral contributions, has been interpreted in terms of protons that are delocalized
over a hydrogen-bonded network of amino acid side chains and water molecules. Yet,
the precise molecular origin of this continuum band is still under debate. One plausible
scenario involves a group of water molecules close to the extracellular protein surface
where the proton is released [108, 109]. Therefore, we will assume from here on that
the continuum band is generated by this protonated cluster of water molecules. An
alternative scenario involves a proton that is shared between glutamate residues [137],
see Ref. [110] for a recent overview.

In this chapter, we compute the infrared spectra for protonated and unprotonated wa-
ter clusters from ab inito molecular dynamics (AIMD) trajectories on the BLYP/TZV2P
level using previously established techniques [138]. We compare the spectra for wa-
ter clusters that are linear, and essentially consist of a single water chain, with two-
dimensional water discs and three-dimensional water droplets. We demonstrate that
the continuum band in non-spherical protonated water clusters is anisotropic and that
such an anisotropy is experimentally detectable in proton-conducting transmembrane
proteins, which allows to draw conclusions on the shape and orientation of the pro-
tonated water cluster within the protein. In the experimental IR spectra recorded by
Mattia Saita under supervision of Prof. Dr. Joachim Heberle at the Freie Universität
Berlin, we resolve the continuum band of bacteriorhodopsin aligned in oriented purple
membranes. We demonstrate its linear dichroism with a preferred orientation in the
plane orthogonal to the membrane normal. This result is consistent with a protonated
water cluster extended perpendicularly to the direction of proton pumping. Based on
our ab initio simulations, we perform a local spectral analysis of the protonated water
chain, which shows that the continuum band arises from polarization fluctuations of the
excess proton, which is predominantly observed in a Zundel complex as it moves axially
along the chain. The electronic polarizability of the chain gives rise to a moderate, but
long-ranged amplification of the polarization fluctuations.

2.1. Results

2.1.1. Anisotropic Spectra from Ab Initio Simulations

In the ab initio simulations, we consider three different water cluster geometries, namely
chains, discs and droplets, consisting of 15, 15 and 26 water molecules, respectively.
The different water cluster geometries are stabilized by harmonic confining potentials
with strengths such as to produce realistic water densities (see Methods). For the chain
geometry we compare a narrow and a wide version, configurational snapshots are shown
in Fig. 2.1. Similar simulations have been previously performed for water chains and
fast proton transport has been observed and characterized [140, 141]. The computed
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Figure 2.1.: Simulated spectra and snapshots. Anisotropic infrared spectra com-
puted from ab initio trajectories for (a) a narrow chain, (b) a wide chain, (c) a disc
and (d) a droplet of water with (solid lines) and without (dashed lines) an excess pro-
ton. Red lines show the spectrum for an E field in the axial z direction, blue lines the
spectrum for an E field in the radial xy directions, radial components are averaged.
For the droplet all directions are averaged. In (d), the experimental bulk water absorp-
tion spectrum at T = 25◦C [139] is included (green dashed line). In each panel, the
intensities of the computed spectra are drawn to scale.
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infrared spectra are shown in Fig. 2.1, where we compare spectra in the presence of an
excess proton (solid lines) to results without an excess proton (dashed lines). For chains
and discs we distinguish between absorption with the E field parallel to z, which is the
rotational symmetry axis (red lines), and absorption with the E field in the xy-plane
(blue lines). Comparison between the absorption along equivalent directions (i.e. x and
y directions for chains and discs) allows us to estimate statistical errors (see Figs. A.1
and A.2 in Appendix A).

In all geometries, we resolve well separated bands that correspond to the OH-stretch
vibration around wavenumbers ν ≈ 3400 cm−1, the H2O bending mode around ν ≈
1645 cm−1, and bands at much lower wavenumbers that are due to hydrogen bond
vibrations and librations [142]. We compare the simulated water droplet spectra in
Fig. 2.1(d) (black lines) with the experimental absorption spectrum of liquid water [139]
(green dashed line). Although our ab initio simulations neglect quantum nuclei motion,
which in principle can be corrected for heuristically [143], the numerical spectrum for
the unprotonated water droplet (black dashed line) reproduces the experimental band
positions and shapes quite nicely.

For all geometries, the presence of an excess proton gives rise to a broad and pro-
nounced continuum band extending over almost the entire wavenumber range (proto-
nated minus unprotonated difference spectra are shown in Fig. A.3 in Appendix A).
Most importantly, the continuum band is almost completely polarized along the direc-
tion of maximal cluster extension, i.e. along the z-axis for chains in Figs. 2.1(a) and (b)
and along the xy-plane for the disc in Fig. 2.1(c). This resonates well with the intuitive
notion that the continuum band is caused by the motion of a delocalized proton, which
due to the confinement occurs along the z-axis for a water chain and in the xy-plane
for the disc. Although the anisotropy of the continuum band is more pronounced for
the narrow chain in Fig. 2.1(a), it is still significant for the wide chain in Fig. 2.1(b),
which demonstrates that the continuum band anisotropy is robust with respect to the
water chain structure.

A closer look at the spectra reveals that the high wavenumber shoulder of the OH
stretch vibration peak, which is ascribed to dangling OH bonds [144, 145], comes from
polarization fluctuations that are perpendicular to the cluster extension, both in the
presence and absence of an excess proton. This nicely confirms the intuitive expectation,
since dangling OH bonds are predominantly oriented radially for chains and axially for
discs. For the bending mode the opposite anisotropy is observed, demonstrating that
the water dipole moment (and thus the predominant absorption in the bending mode)
points along the direction of maximal extension for the non-spherical clusters. This
shows that polarization resolved IR spectroscopy of non-spherical aligned water clusters
allows to obtain detailed information on the water cluster structure and orientation.

We conclude that an excess proton gives rise to a pronounced continuum band, re-
gardless of the water cluster geometry. This in turn means that the mere presence of a
continuum band in an IR spectrum conveys little information on the proton-solvating
water cluster geometry. However, and as we will show now by comparison with the
experimental results for bR, the pronounced polarization anisotropy of the continuum
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Figure 2.2.: Experimental polarization-resolved spectra. (a) In the experimental
setup, the purple membranes are oriented in the xy-plane and the proton pumping
direction is along z. The black arrow indicates the direction of the probing IR light,
which is polarized parallel or perpendicular with respect to the plane of incidence.
The inset shows a zoom-in of the crystal structure of bacteriorhodopsin [146], with
three water molecules highlighted in blue, which presumably cause the continuum band
[109, 110]. (b) Experimental IR light-minus-dark difference spectra calculated along the
xy and z directions over the whole measured range between 1000 cm−1 and 3800 cm−1.
In the inset, the enlarged difference absorption spectra in the relevant wavenumber
range (1700− 2200) cm−1 are shown together with the (positive) band at 1761 cm−1 of
the C=O stretching vibration of D85.

band can be used to reveal whether the protonated water cluster is non-spherical and
if so what its orientation is.

2.1.2. Polarization-Resolved Experimental Infrared Spectra

Fourier-transform infrared (FTIR) difference spectroscopic experiments on purple mem-
brane films using the attenuated total reflection (ATR) method [147] were performed
by Mattia Saita under supervision of Prof. Dr. Joachim Heberle at the Freie Universität
Berlin. The purple membranes spontaneously form parallel stacks of membrane sheets
with the membrane normal along the z direction upon drying on the ATR silicon sur-
face [148], as schematically shown in Fig. 2.2(a). The sample was kept in a controlled
semi-dry state (see Ref. [i] for experimental details), which reduces the amount of bulk
water molecules [149] and slows down the bR photocycle [150], but preserves the in-
ternal water molecules. As a control, a more hydrated sample was prepared, which
resulted in almost indistinguishable IR difference spectra, although of smaller intensity
(see Ref. [i]). Light absorption by the chromophore triggers a sequence of transitions
that have been well characterized by experimental and theoretical means [151]. Accord-
ing to the generally accepted view, in the dark state, an excess proton resides in a water
cluster close to the exit site at the extracellular side of the protein, as schematically
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indicated in the inset of Fig. 2.2(a). Continuous illumination leads to the accumulation
of the intermediate M state under the experimental conditions (with only minor contri-
butions from the subsequent N state) [152, 153], where the excess proton is not present
in the proton release group, but has just been transferred to the extracellular medium.
Thus, the light-induced difference spectrum of bR under continuous illumination con-
tains differential information about the proton release group.

IR light with polarization parallel and perpendicular to the plane of incidence [154]
was employed, see Fig. 2.2(a) for a schematic illustration of the geometry. The light-
minus-dark difference spectrum measured with perpendicularly polarized IR radiation
provides the difference spectrum in the xy-plane of bR, denoted as ∆Axy, while parallel
IR light gives rise to a linear combination of the difference spectra in the xy-plane
and along the z direction (the latter being denoted as ∆Az) [155]. The difference
spectrum ∆Az is calculated according to a published formalism [154, 156]. Both spectra
∆Axy and ∆Az are presented in Fig. 2.2(b). The continuum band in the frequency
range (1700 − 2200) cm−1 is enlarged in the inset. We restrict our analysis to this
range, because it is of diagnostic value for the presence of a protonated hydrogen-
bonded network of water molecules. In contrast, the dichroism of the broad band
above 2500 cm−1 presumably arises from a neutral cluster of strongly hydrogen-bonded
water molecules located at the cytoplasmic side of the protein [135]. Note that the
sharp band at 1761 cm−1 at the lower end of the continuum band arises from the C=O
stretching vibration of the aspartic acid D85, which is the proton acceptor of the retinal
Schiff base [157].

The continuum band is clearly evident in the lateral difference spectrum ∆Axy with a
near-constant negative intensity, but almost completely absent in the normal difference
spectrum ∆Az (Fig. 2.2(b), inset). As expected, the continuum band in the light-minus-
dark spectrum ∆Axy is negative, since the corresponding water cluster is protonated in
the dark state and deprotonated in the M intermediate state (which dominates under
illumination). The recorded FTIR spectra are thus not consistent with a protonated
water wire along the z direction, in which case ∆Az should be negative, nor with
a protonated isotropic water cluster, in which case both ∆Az and ∆Axy should be
negative. Rather, this experimental result suggests a delocalized proton in the dark
state of bR that is delocalized in the xy-plane perpendicular to the pumping direction.
This delocalization could in principle originate from a water wire perpendicular to the
z-axis or from a disc oriented in the xy-plane. We also cannot exclude a contribution
from a delocalized proton that moves laterally at the surface of the protein [158] or
at the surface of the purple membrane, although amino acid exchange studies of the
protein [159] invalidate this hypothesis. It is known that protons exhibit enhanced
residence times at the surface of lipid membranes [158, 160, 161], but we expect the
surface concentrations of protons in the light and dark state to be rather similar due to
the excess of buffer molecules present as well as due to the buffering effect of the protein
surface itself. Therefore, we suggest that the contribution of delocalized protons on the
membrane surface to the difference spectrum is negligible.
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2.1.3. Microscopic Characterization of the Continuum Band

To learn more about the origin of the continuum band in protonated water clusters, we
compare in Fig. 2.3 the simulated axial spectrum of a narrow protonated water chain
including contributions from vibrations of the nuclei and electron polarization fluctu-
ations (denoted as n+e and already shown in Fig. 2.1(a), red line) with the spectrum
obtained from the nuclear motion alone (denoted by n, broken line); for the latter we
assign effective charges qH = +e and qO = −2 e to protons and oxygens. This choice
overestimates the water dipole moment and thus exaggerates the water vibration bands,
but gives the excess proton the correct charge (see Appendix A for details). All spectra
are plotted to scale and thus can be compared with each other. Fig. 2.3 shows that
in the wavenumber range ν ≈ (2000 − 3000) cm−1, the amplitude of the continuum
band in the full n+e spectrum is doubled compared to the n spectrum, indicating a
sizable electronic contribution to the continuum band. We also compute the spectral
contribution of the excess proton together with its two neighboring water molecules,
which together make up the Zundel complex O2H+

5 (see Appendix A for details on
the projection formalism [138, 162]). Note that the Zundel complex is the dominant
solvation state of the excess proton in water chains [140], in contrast to discs and bulk
water, where the Eigen state dominates (see Appendix A for a comparison of Zundel
occupation probabilities in the different water cluster geometries). In Fig. 2.3 the con-
tribution of the Zundel complex to the axial spectrum is shown including contributions
from nuclear motion and electronic polarization (denoted n+e, violet line) and nuclear
motion alone (denoted n, yellow line). Interestingly, the nuclear motion spectrum of
the Zundel complex (yellow line) is sufficient to describe the nuclear motion spectrum
of the entire chain (dashed black line) in the range between ν ≈ (2000 − 3000) cm−1.
At the same time, the difference between the Zundel spectrum including only nuclear
motion (yellow line) and the Zundel spectrum including also the electronic contribution
(violet line) is minimal in this frequency range. This means that the nuclear contri-
bution to the continuum band comes from a very localized region around the excess
proton, while the electrons in the Zundel complex contribute little to the spectrum. We
conclude that the axial continuum band in protonated water chains is caused by local
nuclear polarization fluctuations in the immediate vicinity of the excess proton, which
predominantly corresponds to a Zundel complex. The nuclear polarization fluctuations
are amplified by the rather long-ranged electronic polarizability which extends further
out to next-nearest neighboring water molecules.

2.2. Discussion

We have computed the infrared spectra for protonated and unprotonated water clusters
with different geometries from AIMD trajectories, namely water clusters that are linear
and essentially consist of a single water chain with two-dimensional water discs and
three-dimensional water droplets. The IR spectra of all protonated water clusters, but
not the neutral ones, exhibit pronounced and broad continuum bands, irrespective of
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Figure 2.3.: Spectral decomposition for a protonated chain. Comparison of
the simulated infrared spectrum of the protonated narrow chain in the axial direction
including electronic degrees of freedom (n+e, red line) to the spectrum obtained from
nuclei only by assigning effective charges qH = −qO/2 = 1 e (n, broken line), the
spectrum of the projected Zundel ensemble including electronic degrees of freedom
(violet line) and the spectrum calculated from the Zundel ensemble using nuclei only
(yellow line).
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the shape. Therefore, the mere existence of a continuum band contains no information
about the shape of the protonated water cluster. However, the IR continuum band
exhibits strong dichroism for chains and discs, i.e., the absorption is maximal for IR
light that is polarized axially for the water chain and in a radial direction for the water
disc. For spherical water droplets, the continuum band is isotropic, as expected. This
means that the continuum band appears for IR radiation that is polarized along the
direction of proton motion.

This anisotropy of the continuum band is not only interesting per se, but also aids
in the interpretation of the continuum band of bR: different water clusters that exist in
bR and which play a role at different stages of the proton transfer reaction, presumably
have different shapes and orientations. Therefore, measurements of the IR absorption
dichroism allow to exclude certain proton transfer scenarios. In fact, the experimental
polarization-resolved IR absorption difference spectra of oriented bR molecules in native
purple membranes show a pronounced continuum band with a polarization perpendic-
ular to the membrane normal, suggesting that the protonated water cluster responsible
for the signal is predominantly oriented perpendicularly to the membrane normal. To
be more specific, while at the cytoplasmic side of bR, where protons enter, water forms
a linear water chain that is parallel to the proton transfer direction, the water cluster
close to the extracellular release site was indeed speculated to be more likely oriented
perpendicularly to the proton transfer direction, i.e. parallel to the membrane [110].

The continuum band has previously been intensely studied by time-resolved FTIR
spectroscopy using unpolarized [113, 133, 134, 153, 159, 163] and to less extend polarized
[164] IR radiation. Here, we resolve its polarization dependence under equilibrium
continuous illumination conditions, which excludes spectral artifacts by laser-induced
heat transfer from the protein to the aqueous solution [134].

Our decomposition of the numerically calculated spectra into the separate contri-
butions stemming from nuclear dynamics (i.e. actual vibrations) and from electronic
polarization effects shows that the continuum band is mostly caused by nuclear motion,
which are amplified by slaved electronic polarization effects. A further projection onto
the immediate vicinity of the excess proton suggests that indeed the continuum band
is caused by the moving excess proton, in agreement with previous results [128, 162].

We note that our simulations neglect the coupling to flanking amino acid side chains,
which has been demonstrated to be important [137], and instead represent the chemical
confinement by a smooth and structureless external potential. More detailed simula-
tions are planned, but we do not expect the basic qualitative features concerning the
anisotropy of the continuum band to be dependent on the detailed description of the
chemical environment.

The described experimental approach is general and can be used to study the orien-
tation of protonated water clusters also in other membrane proteins, particularly those
that involve proton translocation, like e.g. photosystem II [165], photosynthetic reaction
center [166, 167], archaerhodopsin-3 [168], and cytochrome c oxidase [169]. Apart from
proteins, we expect similar effects also in other systems that contain water clusters, for
example in inverted hexagonal lipid phases, where water forms hexagonally ordered par-
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allel cylinders, or in lipid lamellar phases, where water forms thin slabs [170]. Such lipid
systems are known to orient on surfaces [171], which enables IR dichroism studies with
similar techniques as used by us. A different system that contains thin water chains are
sub-nanometer diameter carbon nanotubes, that can be embedded and thereby oriented
in lipid membranes [172].

2.3. Methods

2.3.1. Ab Initio Simulations

The AIMD simulations are carried out with the CP2K 2.5 software package [173], using
a TZV2P basis set [174] and the BLYP exchange correlation functional [175]. Box sizes
are determined from the extension of typical snapshots of the systems so that each
atom is at at least 0.8 nm away from the nearest boundary. For all systems we use
non-periodic boundary conditions based on the Martyna-Tuckerman method [176]. For
the production runs, we first generate 15 ps trajectories using a massive Nosé-Hoover
chain thermostat [177, 178] (chain length of 3) to generate an equilibrium ensemble at
T = 300 K. From multiple snapshots of this trajectory we start NVE runs of about 5 ps
each to obtain a total NVE simulation time of 130 ps per system.

2.3.2. Calculation of Infrared Spectra

For the calculation of the molecular dipole moments, localized Wannier centers for all
electron pairs are computed and saved in each simulation step. Infrared spectra are
computed from the trajectories via

A(ω) ∝
∫
〈µ̇(0)µ̇(t)〉 e−iωtdt, (2.1)

where µ denotes the dipole moment computed from the nuclei and Wannier center
positions. For visualization, the spectra are smoothed by a Gaussian kernel with a
width of σν = 50 cm−1.

2.3.3. Simulation System Setup

The oxygen atoms of the water chains are radially constrained by a harmonic potential
U chain
xy (x, y) = Kxy(x

2 + y2)/2, with Kxy = 2000 kJ mol−1 nm−2 for the narrow chain
and Kxy = 20 kJ mol−1 nm−2 for the wide chain. Note that the oriented water molecules
in the chain weakly localize the excess proton in the chain center [179].

The disc system is axially constrained by the potential Udisc
z (z) = Kzz

2/2, with Kz =
2000 kJ mol−1 nm−2 and laterally by a soft potential of the form Udisc

xy (x, y) = Kxy(x
2 +

y2)/2 with Kxy = 30 kJ mol−1 nm−2. The number of water molecules and the force
constant Kxy are determined from the radial distribution function of a periodic two-
dimensional water slab simulated using classical force fields, as explained in Appendix A.
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The droplet system is constrained by a soft isotropic potential Udrop(x, y, z) =
Kr(x

2 + y2 + z2)/2 with Kr = 40 kJ mol−1 nm−2, see Appendix A.
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Chapter 3

External Potential Modifies Friction of
Molecular Solutes in Water

Bibliographic information: Parts of this chapter and of Appendix B have previously
been published. Reprinted with permission from Ref. [ii]. License: CC BY 4.0.

Friction sets the fundamental timescale for all processes that occur in a solvent. For
a sphere with radius R in a continuous solvent with viscosity η the no-slip friction
coefficient γ follows Stokes’ law γ = 6πηR, so that the friction force Ff is for small
enough velocity v given by Ff = γv. Modifications of Stokes’ law on the molecular scale
due to water discreteness and water-solute interactions have been amply discussed [7,
180]. In this chapter we discuss a different modification of Stokes’ law, demonstrated by
MD simulations of a single methane in water that is subject to a harmonic confinement
potential of strength K. In fact, we find γ to depend sensitively on K in the range
102 kJ/(mol nm2) < K < 104 kJ/(mol nm2) so that γ for larger K is increased by about
60% compared to the value of γ for small (or vanishing) K. This dramatic slowing
down of the methane diffusivity in confinement is mirrored by an increase of the escape
time from the first to the second hydration shell from τesc1 ≈ 8 ps for small K to
τesc1 ≈ 18 ps for large K. The intimate coupling of solute and hydration shell dynamics
had been suggested based on NMR studies that showed a solute to increase the viscosity
in its hydration layer, which in turn slows down the solute diffusion, an effect that has
been called secondary dynamic solvent effect [181]. Our results demonstrate a direct
consequence of this coupling between solute and hydration shell dynamics: By a detailed
analysis of the solute friction memory function, which we extract from our simulation
trajectories using a novel method, we show that solute diffusivity and hydration shell
kinetics are coupled and both influenced by the inherent timescale of solute motion, in
our simulation model set by the external potential strength K.

There are various consequences of our findings: In simulation studies, it is common
practice to constrain the position of a solute in order to determine spatially dependent
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solvation properties in inhomogeneous systems, for example in hydrated lipid bilayer
systems [182]. While this is unproblematic for static properties such as free energy
profiles, our results show that this procedure potentially perturbs kinetic properties such
as the diffusivity profile. In fact, there are various alternative techniques that allow to
extract free energy and diffusivity profiles from simulation trajectories of unconstrained
solutes [183, 184] and which therefore do not suffer from this potential complication.

The direct experimental test of our predictions is principally possible with optical
traps, which are used to confine micron-sized plastic or metal beads in water [67]. Re-
cent technological advances allow for the laser trapping of gold nanoparticles with a
radius as small as 9 nm [185], which however is still much larger than the radius of
a methane molecule employed in our simulations. Anti-Brownian electrokinetic trap-
ping techniques have been demonstrated to efficiently trap single molecules with sub-
nanometer hydrodynamic radii [186], but the achievable confinement potential strengths
are rather weak. The potential-induced friction enhancement we observe for methane
in water is expected to disappear for large solutes for which the inertial timescale
τm ≡ m/γ (where m denotes the solute mass) is larger than the longest solvent relax-
ation time. Based on time scaling arguments, we argue in the Discussion section that
the confinement-potential induced modification of the solute friction coefficient should
be observable experimentally also for larger solutes, if the solvent relaxation time is
suitably increased by using high-viscosity solvents.

A less direct but nevertheless relevant experimental consequence concerns the cou-
pling between the dynamics of molecular probes and the surrounding hydration shell
dynamics, which is studied by various experimental techniques. It is known that the
hydration shell dynamics slows down considerably upon transferring a molecular probe
from bulk water to the surface of a macromolecule, in line with our results. While in the
experimental system the anchoring of a molecular probe not only confines the molecular
probe but also changes its environment due to the presence of a linker group and an
anchoring scaffold, it is clear that the confinement-induced mechanism we demonstrate
in this chapter contributes also in these more complex experimental scenarios, as we
will explain in the Discussion section.

3.1. Friction Constant in Harmonic Potential

For an unconfined solute the diffusion constant and the friction coefficient follow from
the long-time limit of the mean-square displacement. Obviously, for a solute that is
confined by an external potential this standard protocol is not applicable. Instead,
we have to use a more indirect route and extract the friction coefficient γ from the
symmetric memory function Γ(t) = Γ(−t), defined by the generalized Langevin equation
(GLE) [60, 73]

mẍ(t) = −
∫ ∞

0
dt′ Γ(t′)ẋ(t− t′)−∇U(x(t)) + FR(t), (3.1)
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Figure 3.1.: Simulation setup. (a) A single methane is solvated in water and confined in
an external harmonic potential of strength K. (b) Radial distribution functions (RDF)
of the separation between methane and water oxygens for box size L = 4.5 nm and
different K including the frozen limit K = ∞, all curves perfectly superimpose. The
positions of the first two maxima, used to calculate the mean escape time τesc1, and the
positions used to calculate the mean escape time τesc2, are indicated by vertical dashed
lines. (c) Methane position x(t) and total force F (t) trajectories for two different K
values.

where U(x) = 1
2Kx

2 is a harmonic potential, and FR(t) denotes the random force, which
obeys 〈FR(0)FR(t)〉 = kBTΓ(t) according to the fluctuation-dissipation theorem. We
include the inertial term proportional to the solute mass m in order to correctly account
for the short-time behavior where the solute dynamics is ballistic instead of diffusive.
In some publications the upper integration boundary of the memory term in Eq. (3.1)
is t instead of ∞. The two formulations are for positive time t > 0 related by a shift
of the random force by ∆FR(t) =

∫∞
0 dt′ Γ(t + t′)ẋ(−t′). Our formulation simplifies

the Fourier analysis and does not require to specify initial conditions, for a detailed
discussion we refer to Ref. [61]. Our novel method to extract the memory function Γ(t)
from simulation trajectories, which can also be used for experimental trajectories, is
based on the solvent force experienced by the particle,

Fsol(t) = mẍ(t) +∇U(x(t)). (3.2)

The autocorrelation function

Csol
FF (t) = 〈Fsol(0)Fsol(t)〉 (3.3)

is after Fourier transformation C̃sol
FF (ω) =

∫∞
−∞ dt e

−iωtCsol
FF (t) given by

C̃sol
FF (ω) =

kBT Γ̃(ω)∣∣∣1− iωΓ̃+(ω)/(mω2 −K)
∣∣∣2 , (3.4)

where we introduced the single-sided memory function Γ+(t) ≡ Γ(t) for t ≥ 0 and
Γ+(t) ≡ 0 for t < 0 (see Appendix B for the full derivation). Since the friction coefficient
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γ is given by γ ≡
∫∞

0 dtΓ(t), we see from Eq. (3.4) that for K 6= 0

γ ≡ Γ̃(0)

2
=
C̃sol
FF (0)

2kBT
=

1

kBT

∫ ∞
0

dtCsol
FF (t). (3.5)

Note that in the limit K = 0 the integral over the force autocorrelation function Csol
FF (t)

vanishes and therefore cannot be used to extract γ, as amply discussed in the literature
[187, 188].

3.2. Simulation Setup

We perform MD simulations of a single water-solvated methane modeled as a Lennard-
Jones particle in a harmonic potential of strength K, see Fig. 3.1(a) for a schematic
simulation setup. We use the GROMACS 5.1 [189, 190] simulation package. The
Lennard-Jones parameters corresponding to methane are taken from the GROMOS
53a6 [191] force field, for water we use SPC/E [192] parameters. We perform NVT
simulations with a time step of 2 fs at a temperature of T = 300 K, controlled by the
velocity rescaling [193] thermostat coupled with a time constant of 0.5 ps to water only,
for three different cubic box sizes L = 3 nm (894 H2O), L = 4.5 nm (3008 H2O) and
L = 6 nm (7159 H2O). In the Appendix B we compare these results to simulations
in the NVE ensemble and thereby demonstrate that the ensemble and the thermostat
have no significant influence. We use simulation lengths of roughly 500 ns per parameter
combination. Before the production runs, all systems are equilibrated for 5 ns in the
NpT ensemble with p = 1 bar using a Berendsen [194] barostat to determine the box
size. The solvent force Fsol(t) acting on the methane is calculated from the difference
of the total force, which is due to interactions with all water molecules, and the force
generated by the harmonic potential; in the case K = ∞ the methane is frozen at the
potential minimum and the solvent force equals the total force. Position, velocity and
total force acting on the methane are saved at every time step. Fast Fourier transforms
are used for the calculation of autocorrelation functions and integrals over the solvent
force autocorrelation function are computed by trapezoidal integration.

3.3. Results

Typical trajectories of the 1D methane position x(t) and the conjugated total force
F (t) = mẍ(t) for two different values of K are shown in Fig. 3.1(c). As expected, the
methane oscillates in the confining potential, with frequency and amplitude depending
on the force constant K. In Fig. 3.1(b) radial distribution functions (RDF) of the
methane-water oxygen separation are depicted for different K, including the frozen limit
K =∞. All RDFs superimpose perfectly, reflecting that the equilibrium properties of
the methane hydration shell do not depend on K.
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Figure 3.2.: Simulated solvent force autocorrelations for box size L = 4.5 nm. (a) Au-
tocorrelation functions Csol

FF (t) defined in Eq. (3.3) and (b) integrals Isol
FF (t) defined in

Eq. (3.6) for different confinement potential strengths K. Colored lines denote sim-
ulation results, dotted lines are analytic predictions according to Eq. (3.4) using the
best-fit memory function Γ(t).
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3. External Potential Modifies Friction of Molecular Solutes in Water

We show simulated solvent force autocorrelation functions Csol
FF (t) for different K as

colored lines in Fig. 3.2(a), mild oscillatory behavior is seen, particularly for interme-
diate K. Note that position, velocity and force autocorrelation functions show more
pronounced oscillations, as discussed in Appendix B.4. In Fig. 3.2(b) we show running
integrals over the autocorrelations, defined by

Isol
FF (t) =

∫ t

0
dt′Csol

FF (t′), (3.6)

as colored lines. According to Eq. (3.5), Isol
FF (t→∞)/(kBT ) = γ and thus the plateau

values observed in Fig. 3.2(b) for large t reflect the friction coefficient γ. Most impor-
tantly, we see that the simulation prediction for γ significantly depends on K, which is
somewhat unexpected, since the hydration structure around methane is independent of
K, as witnessed by the RDF in Fig. 3.1(b).

3.3.1. Memory Function

To gain insight into this puzzling finding, we extract the memory function from simu-
lation data. For this we introduce a variant of existing methods [6, 70, 73, 74, 76] that
gives robust and reliable results for kernels and friction coefficients over a wide range
of confinement potential strengths. We first observe that in the frozen limit, K = ∞,
Eq. (3.4) predicts that Csol

FF (t) = kBTΓ(t), i.e., in this limit, the solvent force autocor-
relation function equals the memory function. We fit Csol

FF (t) in Fig. 3.2(a) for K =∞
by a sum of stretched exponentials

Γ(t) =

n∑
i=1

Ai exp

(
−
∣∣∣∣ tτi
∣∣∣∣αi
)

(3.7)

with n = 2, shown as a black dotted line. To extract Γ(t) also for K 6=∞, we calculate
Csol
FF (t) and Isol

FF (t) numerically based on Eqs. (3.4) and (3.6) using the functional form
Eq. (3.7) and extract the parameters by simultaneous fits (black broken lines) to the
simulation data (colored lines) in Fig. 3.2(a) and (b); the agreement between fits and
data is perfect.

The resultant memory kernels are presented in Fig. 3.3(a). They show a fast decay
at 50 fs and a long-time tail extending to about 5 ps. In between, a pronounced and
quite abrupt shoulder at a decay time of about 100 fs is present for intermediate K
values, qualitatively similar to previous results for the diatomic kernel spectrum in
Lennard-Jones fluids [74]. The fitted decay times τi are shown in Fig. 3.3(b), note
that for intermediate K values we use n = 3 stretched exponentials for the fit (see
Appendix B for details on the fit procedure, analysis of the robustness of the fit results,
and a comparison with alternative methods). The shortest decay time τ1 reflects water-
methane repulsive interactions: from a fit to the short-distance part of the RDFs in
Fig. 3.1(b) we estimate the fastest relaxation time as τ1 = 58 fs for K = 0 and τ1 = 85 fs
for K = ∞ (see Appendix B.1 for details), in good agreement with the τ1 data and
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3.3. Results

indicated in Fig. 3.3(b) by red arrows. The intermediate K-dependent decay time τ2

agrees quantitatively with the harmonic oscillation period τ0 = 2π
√
m/K, shown as

a broken line. The longest decay time τ3 is rather independent of K and similar to
the hydrogen-bond breakage time τHB ≈ 1.4 ps [195], we thus associate this time with
an intrinsic water relaxation time. We see in Fig. 3.3(a) that the memory kernel Γ(t)
changes with K only in the finite K range for which τ1 < τ2 ≈ τ0 < τ3, i.e., when
the harmonic oscillation period is between the shortest and longest memory relaxation
times. The friction kernel thus results from the dynamic interplay of the methane
harmonic oscillations, characterized by the relaxation time τ2 and governed by the
external potential strength K, with the solvent relaxation modes in the relaxation time
window between τ1 and τ3. Based on this insight we develop a dynamic scaling argument
for the behavior of large solutes in generic viscous solvents, see Discussion section.

While the fitted exponents α1 and α3 are not too different from unity and thus can be
thought of as representing single-exponential relaxation modes, the exponent α2 is of the
order of 10, which indicates strongly non-linear relaxation (see Appendix B for details).
It is this high value of α2 which leads to the abrupt drop of the memory function at the
timescale τ2 visible in Fig. 3.3(a). Note that the hydrodynamic power-law tail predicted
from continuum hydrodynamics [196], recently observed in optical trap experiments
[67] and MD simulations of a supercritical Lennard-Jones fluid [71], makes a negligible
contribution to Γ(t) in the friction-relevant ps timescale, see Appendix B.

3.3.2. Friction Coefficient

The results for γ, obtained by the integral over the fitted Γ(t), are presented in Fig. 3.4
for the three simulation box sizes considered and agree nicely with the limiting re-
sults for K = ∞ (obtained from simulations of a completely frozen methane), and
K = 0 (obtained from mean-square displacements for a freely diffusing methane), as
indicated by colored bars. The deviation of the K = 0 value from the experimental
result γ = 2.2 · 10−12 kg/s [197] reflects that the SPC/E water viscosity is smaller than
the experimental value. From the close agreement between the data for L = 4.5 nm
and L = 6.0 nm we conclude that hydrodynamic finite size effects [198] are negligible
for L & 4.5 nm. Fig. 3.4 demonstrates that γ significantly depends on K and reaches at
strong confinement (K →∞) a value about 1.6 times the free-diffusion limit (K = 0).
These results are in qualitative agreement with previous simulations that demonstrated
the friction of frozen ions to be larger than their free-diffusion values [199]. Note however
that earlier simulation studies suggested frozen ions to be characterized by a smaller
friction coefficient compared to free ions, a disagreement that was never discussed or
settled [200, 201]. Together with our simulation results for a hydrated water molecule
in an external potential, which are shown in Appendix B.2 and exhibit similar effects
as for methane, we conclude that friction modification in confinement is thus a gen-
eral phenomenon that applies to ions, non-polar as well as polar uncharged molecules.
It transpires that simulations of frozen or confined molecules cannot be used to esti-
mate the friction coefficient or the memory function of free molecules, since—as we
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Figure 3.3.: Memory kernels. (a) Best-fit memory functions Γ(t) according to the
parametrization Eq. (3.7) for box size L = 4.5 nm and different K. The result for
the frozen case K = ∞ is shown as a red line. The harmonic oscillation periods
τ0 = 2π

√
m/K are indicated by vertical lines. (b) Fitted decay times τi (data points)

from Eq. (3.7) as a function of K. Statistical errors are smaller than the symbol size.
The two timescales for the frozen limit K =∞ are denoted by horizontal colored lines
on the right. The harmonic oscillation period τ0 = 2π

√
m/K is shown as a dashed line,

the relaxation times in the K = 0 and K = ∞ limits estimated from methane-water
repulsive interactions are denoted by red arrows.
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show here—the memory function depends crucially on the precise strength of the con-
finement potential. The increase of γ with K, at first sight surprising in light of the
decrease of τ2 with K in Fig. 3.3(b), is solely caused by the prefactor A3 of the slowest
kernel contribution, as shown in Appendix B.3. Together with our interpretation that
the slowest timescale τ3 is related to an intrinsic water relaxation time that reflects the
hydrogen-bond breakage dynamics, this means that the external confinement potential
mostly modifies the hydration-shell contribution to the total friction.

We include typical values of K for van der Waals (vdW), hydrogen, ion and covalent
bonds (estimated in the Appendix B) at the top of Fig. 3.4, and we see that the most
drastic change of γ occurs in the range K ≈ (102 − 104) kJ/(mol nm2), which matches
the strength of typical non-covalent bonds. We also include in Fig. 3.4 an empiric fit

γ = γ∞ − (γ∞ − γ0) exp (− (K/K0)c) (3.8)

with the four fit parameters γ∞ = 2.67 · 10−12 kg/s, γ0 = 1.73 · 10−12 kg/s, K0 =
1, 234 kJ/(mol nm2) and c = 2/3 for the system with L = 4.5 nm. This simple function
will be useful for comparison with other simulations and experimental data. The pa-
rameters K0 and c correspond to the midpoint and the width of the potential strength
range over which the friction changes with K. The small value of the exponent c = 2/3
reflects a rather broad range over which γ changes with K. Interestingly, the value K0

corresponds to a methane mean-square displacement
√

∆x2 =
√
kBT/K0 ≈ 0.05 nm,

comparable to the width of the first hydration shell in Fig. 3.1(b).
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3. External Potential Modifies Friction of Molecular Solutes in Water

3.3.3. Hydration Shell Dynamics

As mentioned in the introduction of this chapter, based on NMR experiments [180, 181]
the friction coefficient of molecular solutes and the hydration shell dynamics have been
shown to be coupled. In this section we explore the influence of an external potential
acting on a solute on the hydration shell dynamics and in particular check whether the
change of the friction coefficient with K is paralleled by a change of the hydration water
relaxation dynamics. In Fig. 3.5(a) we plot the water escape time τesc1 [202], defined
as the mean first-passage time to reach the second hydration shell at water-methane
separation r = 0.65 nm starting from the first hydration shell at r = 0.37 nm (see
Fig. 3.1(b) for a graphical definition) as a function of K. The averages are calculated
from typically 50,000 escape events per parameter combination, from which we estimate
the relative error to be less than 1%. τesc1 has the limiting values τesc1 = 8 ps for K = 0
and τesc1 = 18 ps for K → ∞, showing that the increase of γ with K in Fig. 3.4 is
paralleled by a slow-down of the escape dynamics of water molecules from the first
hydration shell.

Water mean escape times and water translational relaxation times around molecu-
lar probes can experimentally be probed by Overhauser dynamic nuclear polarization
techniques [203, 204]. Obviously, the increase of τesc1 with K has a trivial contribution
due to the fact that the relative distance coordinate relevant for the escape dynamics is
governed by the sum of the methane and water translational diffusion constants [203].
To see this, we neglect for a moment that the methane position and the methane-water
separation are dynamically coupled, and approximate the relative diffusion constant
by the sum of the bulk translational diffusion constants Dtrans

rel = Dtrans
CH4

+ Dtrans
H2O . In

the completely confined case, corresponding to K =∞, the methane diffusion constant
Dtrans

CH4
is obviously zero and thus Dtrans

rel = Dtrans
H2O . Approximating the relative diffusion

constant to be independent of the methane-water separation (which we know from sim-
ulation studies on the relative motion of two water molecules not to be entirely true
[205]), the reciprocal relationship between reaction times and diffusion constant, τesc1 ∼
1/Dtrans

rel , leads to the prediction τesc1(K =∞)/τesc1(K = 0) = (Dtrans
CH4

+Dtrans
H2O )/Dtrans

H2O .
From the simulation values Dtrans

CH4
= (2.38 ± 0.01) · 10−5cm2/s (see Appendix B) and

Dtrans
H2O = (2.70± 0.02) · 10−5cm2/s (calculated from the mean-square displacement of a

single water molecule, taken from a 250 ns long simulation of pure water in a L = 4.5 nm
box) we thus obtain the estimate τesc1(K = ∞)/τesc1(K = 0) = 1.88, which is consid-
erably smaller than the ratio τesc1(K =∞)/τesc1(K = 0) = 18 ps/8 ps = 2.25 extracted
from the simulation data in Fig. 3.5(a). Is the deviation of the simulated escape time
ratio in Fig. 3.5(a) from the simple estimate associated with a change of the hydration
water viscosity (and thus a change of Dtrans

H2O ) in the first hydration shell with rising
confinement potential strength K?

To look into this, we show in Fig. 3.5(b) the mean escape time τesc2 for water molecules
starting from the first hydration shell at r = 0.37 nm and reaching the much higher
distance r = 1.37 nm, for which we obtain values from τesc2 = 60 ps for K = 0 to τesc2 =
110 ps for K →∞. The mean escape times are higher by about an order of magnitude
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3.3. Results

compared to the results for τesc1 in Fig. 3.5(a) and the change of τesc2 with K is shifted
to considerably lower values of K. The ratio of escape times from the completely
immobilized and the free methane is now τesc2(K = ∞)/τesc2(K = 0) = 1.83 and thus
considerably smaller than the ratio obtained in the first hydration shell and quite close
to our estimate based on the bulk diffusion constants (Dtrans

CH4
+Dtrans

H2O )/Dtrans
H2O = 1.88, as

expected: the methane confinement does not seem to significantly influence the water
dynamics beyond the first solvation shell. We conclude that while the main contribution
to the translational slow-down of water in the first hydration shell around a methane
with rising K comes from the trivial shift of the relative diffusion constant, a significant
contribution to this slow-down comes from the modification of the water viscosity in the
first hydration shell that accompanies the increase of the methane friction coefficient
with rising K. This relates well with our finding that the change of γ with increasing
K is predominantly caused by a variation of the long-time contribution to the memory
function, as shown in Appendix B.3, which in turn is related to the intrinsic water
dynamics.

The influence of the confinement potential on the hydration shell dynamics is more
directly reflected by the water orientational dynamics around methane, since here we
do not need to consider a relative coordinate. In Fig. 3.6(a), we show the orientation
correlation function

Crot(t) = 〈P2(u(0) · u(t))〉 (3.9)

of water molecules with an initial separation below 0.4 nm around a free and a frozen
methane molecule. Following previous studies [206], u(t) denotes the normalized vector
along the OH bond of a water molecule and P2(x) =

(
3x2 − 1

)
/2 is the second Legendre

polynomial. We include exponential fits Crot(t) ∝ exp(−t/τ rot
CH4

) for t > 2 ps as dashed
lines. The orientational relaxation times are τ rot

CH4
(K = 0) = 3.1 ps and τ rot

CH4
(K =∞) =

3.6 ps for free and frozen methane and thus differ by a factor of τ rot
CH4

(K =∞)/τ rot
CH4

(K =
0) = 1.16. The orientational relaxation time is inversely related to the rotational
diffusion constant, τ rot

CH4
∼ 1/Drot, in the overdamped limit. We thus conclude that

the rotational diffusion of water in the first solvation shell around a methane molecule
slows down considerably as the translational methane motion is progressively inhibited
by the increasing confinement potential.

In Fig. 3.6(b) we show orientation correlation functions of water molecules in the
first hydration shell around a free and a frozen water molecule (note that in the frozen
case both position and orientation of the central water molecule are fixed). The fitted
relaxation times are τ rot

H2O(K = 0) = 2.5 ps (in agreement with literature values [206])
and τ rot

H2O(K = ∞) = 3.8 ps and thus differ by a factor τ rot
H2O(K = ∞)/τ rot

H2O(K =
0) = 1.5. Not surprisingly, due to the formation of directional hydrogen bonds, a frozen
water molecule slows down the orientational hydration water dynamics much more than
a frozen methane molecule.
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Figure 3.5.: Mean escape times of water from the first hydration shell around methane.
(a) Results for τesc1, defined as the mean first-passage time from r = 0.37 nm to a target
distance of r = 0.65 nm (indicated by dashed vertical lines in the RDF in Fig. 3.1(b)),
are shown as a function of K. Results in the limits K = 0 and K =∞ are denoted by
horizontal lines. (b) The mean escape time τesc2 from r = 0.37 nm to a target distance
of r = 1.37 nm as a function of K.
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3. External Potential Modifies Friction of Molecular Solutes in Water

3.4. Discussion and Conclusion

In conclusion, the friction coefficient γ of a methane molecule is shown to significantly
depend on the confinement potential strength K, which constitutes a generic and unex-
pected modification of Stokes’ law γ = 6πηR. This reflects on the one hand that friction
coefficients of fixed solutes differ from free solutes, as suggested previously [207], on the
other hand it means that free-solution friction coefficients and memory functions cannot
be obtained from confined or frozen simulations, contrary to common practice. More
generally, our results demonstrate that friction and diffusion on the molecular scale
result from the intricate dynamic coupling of solute and hydration degrees of freedom.

Interestingly, the maximal variation of the friction coefficient γ with K we find is
similar to the change in γ of a sphere as one goes from a slip (characterized by γ = 4πηR)
to a stick situation (in which case one recovers the standard result γ = 6πηR). Clearly,
the similarity of this variation of γ to our results is purely coincidental.

For more complicated potentials involving multiple local minima and barriers, for ex-
ample for proteins in a suitably defined folding landscape, we speculate that in analogy
to our results obtained for methane in a harmonic potential, a local free energy mini-
mum would produce a local increase in the conjugate friction landscape and, conversely,
a free energy barrier would tend to reduce the local friction. Indeed, this might explain
certain universal features seen in diffusivity landscapes extracted from water-explicit
simulation trajectories of simple proteins [183]. Along the same lines, the diffusivity
profile of a water molecule as a function of the distance from a planar wall indicates a
reduced diffusion at local minima of the free energy profile [208].

The limit of an infinitely strong confinement potentialK →∞ is equivalent to a solute
with an infinite mass m→∞, which directly follows from the fact that the solute is at
rest in both cases. By analogy with our results for the friction coefficient γ in Fig. 3.4,
where a continuous increase with rising K is observed, we would expect that γ also goes
up continuously asm increases. This is indeed confirmed by experimental measurements
of the diffusion coefficient of different isotopes of molecules (such as 13CO2/

12CO2) and
atoms (such as 3He /4He) in water [209], and will be studied extensively in the next
chapter of this thesis.

The methane molecule is in our simulations represented as a simple Lennard-Jones
sphere, so the friction increase and the hydration shell dynamics slowdown with rising
K presumably is a rather universal effect that should hold for other molecular solutes as
well. Indeed, the effect has been seen for ions in previous simulations [199–201] and in
Appendix B.2 is demonstrated for a hydrated water molecule in an external potential,
which serves as a simple model for a confined polar molecule.

Our simulation setup closely resembles optical trap experiments, where particles that
are dispersed in aqueous solution are confined in laser-light-induced harmonic potentials
[67]. The lower size limit of the trapped particles has reached the 10 nm scale [185],
which is still substantially larger than the size of a methane molecule used in our
simulations. Anti-Brownian electrokinetic trapping techniques allow to trap nanometer
sized molecules [186], but the confinement potential strengths are rather weak. So the
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legitimate question is whether the effects we predict survive for larger particles, for
which a timescale discussion is needed.

The timescale above which a particle in a viscous solvent starts to feel frictional effects
is on the scaling level given by the inertial timescale τm ≡ m/γ (where m denotes the
solute mass), at which the particle behavior crosses over from ballistic to diffusive [56].
Using the particle density ρ, particle radius R and the Stokes friction γ = 6πηR we
obtain τm ∼ ρR2/η, from which we see that the inertial timescale increases strongly
with particle radius R. An external harmonic potential of large strength K gives rise
to an oscillation time τ0 ' 2π

√
m/K, for small K, in the overdamped regime, the

timescale is rather τγ ' 2πγ/K. The crossover between the oscillatory inertial and
the overdamped regimes occurs at a critical potential strength K∗ ' γ2/m ∼ η2/ρR
where one has τ0 ∼ τγ ∼ τm. Using the notation we introduced when discussing our
simulation results, we assume that the memory function is characterized by the longest
and shortest relaxation times τ3 and τ1, respectively; in between these times there could
in principle be a whole spectrum of intermediate relaxation modes. For water-solvated
methane, we have argued that τ3 is an intrinsic relaxation time of the solvent and thus
independent of solute properties (in principle, τ3 could also depend on internal solute
relaxation modes for more complex, large solutes, which however does not change our
argumentation and thus is not explicitly considered). The timescale τ1 stems from the
fast relaxation of solute-solvent interactions, i.e. the Lennard-Jones repulsion. Besides
a trivial dependence via the relative mass of a solute-water pair (see Appendix B.1 for
details), also τ1 will be rather insensitive to the solute size. In Fig. 3.7(a) we show
the potential timescales τ0 and τγ as a function of K for a large particle, for which
the inertial timescale τm is larger than the longest solvent relaxation time τ3. In this
case the particle oscillates in an inertial, friction-less fashion over the entire solvent
relaxation time range τ1 < t < τ3 and we do not expect any dynamic coupling between
the particle and the solvent for any value of K, in other words, an external potential
does not influence the particle friction and all the effects we discuss in this chapter are
absent.

In Fig. 3.7(b) we show the opposite situation where the inertial timescale τm is smaller
than the longest solvent relaxation time τ3. In the example shown in Fig. 3.7(b) the
particle dynamics changes from inertial to diffusive within the solvent relaxation time
range and in this case we do expect the particle friction γ to depend on the potential
strength K. This is the situation we encountered in our simulations of methane in
water and for which the memory kernel relaxation times are depicted in Fig. 3.3(b).
Note that we draw the potential timescale in Fig. 3.7(b) in the time range τm < t < τ3

as a dotted line, since it is not clear whether in this time range it follows the oscillatory
or the overdamped prediction; in fact, the simulation results in Fig. 3.3(b) seem to
follow the oscillatory prediction τ0 ' 2π

√
m/K in the entire range τ1 < t < τ3. To

put in explicit numbers, with the methane mass mCH4 = 16u = 2.7 · 10−26 kg and the
methane diffusion constant Dtrans

CH4
= 2.38·10−5cm2/s we obtain for the inertial timescale

τm = mCH4D
trans
CH4

/kBT = 15 fs, which is even smaller than the fastest water relaxation
time τ1 = 58 fs for K = 0 or τ1 = 85 fs for K =∞.
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Figure 3.7.: Dynamic scaling diagrams for (a) a large solute particle and for (b) a small
particle. In (a) the inertial timescale τm lies above the longest water relaxation time τ3

and the particle relaxation time in the potential (shown as a solid line) changes from
the harmonic oscillator prediction τ0 ' 2π

√
m/K (for K > K∗) to the overdamped

prediction τγ ' 2πγ/K (for K < K∗) above τ3. In (b) τm is smaller than τ3 and the
potential relaxation time becomes overdamped within the relaxation time range. In
this case we expect the external potential of strength K to modify the particle friction.

It transpires that the coupling scenario depicted in Fig. 3.7(b) can also for a large
particle be obtained if the longest solvent relaxation time τ3 is increased accordingly.
This can be achieved by the use of highly viscous solvents, such as glycerol or polymer
solutions. For entangled polymer solutions, the longest relaxation time scales as a
power law with the polymer length and can thus be increased straightforwardly [24].
In essence, in order to be able to observe the K-dependent friction effects we describe
in this chapter also with large particles, which can be easily confined in optical traps,
one has to sufficiently increase the solvent viscosity which will lift the upper solvent
relaxation time τ3 and at the same time bring down the inertial timescale τm ≡ m/γ.

A fundamentally different experimental consequence of our results concerns the hy-
dration shell dynamics around probe molecules, which is measured by a number of
different experimental methods such as combined 2H–17O nuclear relaxation [180, 181],
nuclear Overhauser effect [210], dynamic Stokes shift [211], Overhauser dynamic nu-
clear polarization [203], fluorescence [212], 2D infrared spectroscopy [213], quasi-elastic
neutron scattering [214] and THz absorption [215, 216]. The water hydration dynamics
around methane slows down significantly above potential strength values that corre-
spond to covalent bonds, this is seen for the translational water motion in Fig. 3.5,
although here the trivial shift of the effective relative diffusivity contributes (as dis-
cussed in Section 3.3.3), as well as for the orientational water dynamics in Fig. 3.6.
These results thus suggest that hydration water relaxation times not only depend on
the type of probe molecule, i.e. polar versus non-polar [217], but also on how tightly
the probe molecule is confined or bound to a macromolecule.

The translational diffusion of hydration water relative to probes attached to proteins
or lipid assemblies is experimentally observed to be about 3.5 to 5 times slower than
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around probes that freely diffuse in bulk water [203, 214, 218], for probes attached
to DNA segments a slowdown by only a factor of about 2 was reported [204], which
seems to be the lower bound for these type of measurements. A similar slowdown of
the orientational correlation time of hydration water at the protein water interface by
a factor of about 2 compared to bulk was reported based on experiments [219] and
simulations [206]. Clearly, when a probe molecule is anchored at a larger molecule,
not only is its motion confined by an effective potential whose stiffness depends on the
elasticity of the anchoring group, also the environment around the probe molecule is
modified due to the presence of the linker groups and the scaffold to which the probe is
attached, which for typical systems has been shown to be the main factor determining
the hydration water dynamics around the probe [206, 220, 221]. Nevertheless, we argue
that the confinement-induced friction modification we demonstrate in this chapter will
certainly contribute to the water hydration slowdown—among other factors—and thus
is a noteworthy mechanism.

In fact, in two experiments the flexibility of the scaffold onto which a probe molecule
was anchored was varied without a drastic change in the environment of the probe.
In a site-specific femtosecond-resolved fluorescence study using 16 tryptophan labeled
myoglobin mutants, the water relaxation time was shown to be correlated with the local
protein structural rigidity [212]. Based on THz absorption studies, the hydration shell
relaxation dynamics was argued to become faster with increasing protein flexibility; in
these experiments, the protein flexibility was modified by suitably chosen mutations
[215]. The range over which a protein perturbs the hydration shell dynamics according
to the analysis of THz experiments extends to several hydration layers, whereas in our
analysis of translational water motion we only see an effect of the confining potential
in the first hydration layer. Nevertheless, we conclude that these two experimental
studies suggest that water hydration dynamics is coupled to the local rigidity of the
probe molecule, even when the probe molecule is attached to a large protein. This
is fully confirmed by simulations that show a significant slowdown of hydration shell
dynamics around a frozen protein compared to a flexible protein of the same structure
[222].
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Chapter 4

Mass-Dependent Solvent Friction of a Hy-
drophobic Molecule

Bibliographic information: The content of this chapter and of Appendix C is in prepa-
ration to be submitted to a peer-reviewed journal (Ref. [iii]).

For many biophysical applications, the diffusivity of a particle is assumed to depend
on solvent properties such as the viscosity η and particle-solvent interaction details but
not on the particle mass. A prominent estimate for the no-slip friction coefficient γ of a
particle with radius R is given by the Stokes relation γ = 6πηR, which has been shown
to work down to molecular scales [38].

On the other hand, for geochemical applications, the fractionations of isotope ratios
of noble gases in natural water bodies are an important indicator to understand various
environmental processes [223–228]. Mass-dependent diffusion in water was therefore
subject to analytical [229], simulational [230–233] and experimental [209, 234] efforts.

In this context, empiric power-law relations for the diffusion constant D ∝ m−β with
0 < β ≤ 0.5 were found to hold over broad ranges of solute masses m [232], but their
origin is understood poorly.

Based on molecular simulations of a hydrophobic particle of the size of a methane
molecule in water (see Fig. 4.1(a)), we demonstrate in this chapter how the friction
coefficient increases, when the particle mass is varied over 4 orders of magnitude, and
that it saturates at a value roughly 1.6 times as large as for the physical methane
mass m = 16 u in the infinite mass limit, i.e., for a methane molecule fixed in space.
Note that this limit is equivalent to the infinite confinement limit from the previous
chapter. By extrapolation, we show that also in the massless limit m → 0, which can
be regarded as a model for a stable vacuum bubble, the friction constant as a function
of mass saturates at about 0.9 times the physical methane friction. This saturation
in the limit m → 0 clearly indicates that the aforementioned power-law relations are
purely empirical.
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Figure 4.1.: (a) Visualization of a water-solvated methane molecule with its first hy-
dration shell. (b)–(d) Typical simulated trajectories for the position x(t) (red line) and
the force Fx(t) (black line) for different solute masses m.

Analytic predictions for the force autocorrelation function and the particle mean-
square displacement based on the generalized Langevin equation (GLE) allow to extract
the mass dependence of the solvent memory friction kernel for a hydrophobic particle in
explicit water. Using the best-fit friction memory kernels, we show that these analytic
predictions perfectly agree with simulation results.

To give a microscopic interpretation of the mass dependence of the friction constant,
we calculate the mean escape times of water molecules from the first hydration shell
of the methane molecule, and demonstrate that the hydration shell dynamics is signif-
icantly slowed down by an increased mass of the diffusing particle, with escape times
being three times as long for a heavy than for a light particle. These results are in
agreement with previous findings for ions [235], but the magnitude of this effect for a
hydrophobic particle is surprising.

Our analysis allows a direct prediction of the diffusion constants for (similarly sized)
methane isotopes. By a scaling analysis, we show that mass-dependent friction is ex-
pected also for larger particles, in particular in highly viscous solvents. Together with
our finding from Chapter 3 that the friction of an externally confined methane molecule
increases with confinement strength, the results from this chapter allow to speculate
that the friction increase and the slowing down of the hydration shell dynamics due to
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a reduced dynamic response of a solute to the solvent, is a quite universal phenomenon,
which might be widely underestimated.

4.1. Simulation Details

The simulation setup closely resembles the setup from the previous chapter. We perform
NVT molecular dynamics simulations of a Lennard-Jones particle in SPC/E water [192]
at T = 300 K using the GROMACS [189] simulation package version 4.6. As Lennard-
Jones parameters for the particle we use the united atom parameters for a methane
molecule from the GROMOS 53a6 [191] force field. The temperature is controlled by
a velocity rescaling [193] thermostat, which is coupled exclusively to the solvent with
a time constant of 1 ps. Before production runs, each system is equilibrated for 5 ns in
the NPT ensemble using a Berendsen [194] barostat with P = 1 bar to adjust the box
size. The simulations for solute masses m ≥ 1.6 u are carried out with a timestep of
2 fs. For the lightest mass m = 0.16 u, we use a timestep of 0.5 fs.

Mean-square displacements (MSDs) are for m ≥ 1.6 u calculated from trajectories
with a total simulation time of 1µs each for the systems with l = 3.0 nm (894 H2O) and
l = 4.5 nm (3008 H2O), and from 500 ns for the system with l = 6.0 nm (7159 H2O).
For m = 0.16 u, we simulate trajectories of length 400 ns for l = 3.0 nm and l = 4.5 nm,
200 ns for l = 6.0 nm. Mean-square displacements are calculated relative to the solvent
center of mass, see Appendix C for a detailed discussion.

Force autocorrelation functions are obtained from 500 ns trajectories in the infinite
mass limit, and from 100 ns trajectories for all other scenarios. The infinite mass limit
(frozen) is realized by fixing the particle at the origin. Radial distribution functions
and escape times are computed based on 50 ns trajectories with a time resolution of
50 fs.

4.2. Analytical Treatment

To investigate the interplay between the diffusing particle and the solvent, we compare
the simulated systems to one-dimensional generalized Langevin dynamics. Diffusion
in the presence of a friction memory kernel Γ(t) = Γ(−t) can be described by the
generalized Langevin equation (GLE) [56, 60]

mẍ(t) = −
∫ ∞

0
dt′ Γ(t′)ẋ(t− t′) + FR(t), (4.1)

where x(t) denotes the particle position and FR(t) refers to the random force, which
obeys 〈FR(t)FR(t′)〉 = kBT Γ (t− t′) due to the fluctuation-dissipation theorem. The
GLE can be rigorously derived by a linear projection technique [56, 60]. The derivation
shows that the memory kernel represents the orthogonal degrees of freedom, which
correspond to the solvent degrees of freedom in the present case. The generalized
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Langevin equation implies that the friction constant γ defined via the diffusion constant
D = kBT/γ is equal to the integrated memory kernel, i.e.

γ =

∫ ∞
0

dt′ Γ(t′). (4.2)

We solve the GLE Eq. (4.1) by Fourier transform. For the calculation, we introduce
Γ+(t) ≡ Θ(t)Γ(t), so that the dissipative integral can be extended over the full time
axis. Θ(t) denotes the Heaviside step function defined by Θ(t) = 0 for t < 0 and
Θ(t) = 1 for t ≥ 0. Solving the Fourier transformed GLE for x̃(ω) =

∫∞
−∞ dt e

−iωtx(t)
then yields

x̃(ω) =
F̃R(ω)

−mω2 + iωΓ̃+(ω)
. (4.3)

From the solution, one can calculate the autocorrelation function CFF (t) = 〈Fx(0)Fx(t)〉
of the one-dimensional force Fx(t) = mẍ(t)

C̃FF (ω) =
m2ω4kBT Γ̃(ω)∣∣∣mω2 − iωΓ̃+(ω)

∣∣∣2 , (4.4)

as well as the mean-square displacement〈
(x(t)− x(0))2

〉
= 2C(0)− 2C(t), (4.5)

where C(t) = 〈x(0)x(t)〉 obeys

C̃(ω) =
kBT Γ̃(ω)∣∣∣mω2 − iωΓ̃+(ω)

∣∣∣2 , (4.6)

with Γ̃(ω) = 2 Re Γ̃+(ω). Note that the expression Eq. (4.4) is equivalent to Eq. (3.4)
from the previous chapter with K = 0.

4.3. Results

4.3.1. Mean-Square Displacements

Typical trajectories of the one-dimensional particle position x(t) as well as of the one-
dimensional force Fx(t) obtained from the molecular dynamics simulations are depicted
in Fig. 4.1(b)–(d) for the masses m = 1.6 u, m = 16 u (physical methane) and m =
160 u. As a first step, we calculate the mean-square displacements (MSDs)

〈
∆r2(t)

〉
=〈

(r(t)− r(0))2
〉

for all solute masses. For the system with l = 4.5 nm they are shown
in Fig. 4.2(a) and (b). As expected, the transition from the ballistic

〈
∆r2(t)

〉
∝ t2

to the diffusive regime
〈
∆r2(t)

〉
∝ t shifts to larger times for higher methane masses.
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Figure 4.2.: (a) and (b) The simulated mean-square displacements (MSDs) of Lennard-
Jones particles with different masses m in the system with l = 4.5 nm (solid lines)
compared to the analytic predictions for the MSDs based on the GLE Eq. (4.1) (dashed
lines). In (a), the inertial timescale τm = m/γ is indicated by vertical lines. (c) The
friction coefficients γ obtained from linear fits to the MSDs as a function of the particle
mass m for all system sizes considered (data points). Estimated errors are smaller
than the symbols. The friction coefficients from the integrated force autocorrelation
functions of the frozen systems are represented by horizontal lines. For l = 4.5 nm, an
empiric fit according to Eq. (4.7) is included as a solid line and a power-law fit γ ∝ mβ

to the masses 0.16 u ≤ m ≤ 160 u is shown as a dashed line.

We calculate the diffusion constants from linear fits to the diffusive regime between
50 ps < t < 1 ns.

The friction constants γ = kBT/D are shown as a function of solute mass in
Fig. 4.2(c). They decrease with increasing system size due to hydrodynamic self-
interaction [198]. However, the comparison of the curves for l = 4.5 nm and l = 6.0 nm
shows that finite-size effects are already reasonably small for l = 4.5 nm. We find a
monotonic dependence of the friction constant γ on the particle mass m with an in-
crease of a factor of almost 1.7 between the lightest mass and the frozen system. To
interpolate the data, we fit the empiric function

γ = γinf − (γinf − γ0) exp

[
−
(
m

m0

)c]
(4.7)

to the friction constants of the l = 4.5 nm system (solid line in Fig. 4.2(c)). Using the
friction coefficient γinf = 2.68 × 10−12 kg/s computed from the integrated force auto-
correlation function of a frozen methane (see Section 4.3.3), we obtain the parameters
γ0 = 1.51 × 10−12 kg/s, m0 = 1461 u and c = 0.39. Thus, the simulation data extrap-
olates to a finite value γ0 = 1.51 × 10−12 kg/s for the friction constant of a massless
Lennard-Jones sphere, which can be seen as a simple model for a stable vacuum bubble.
In addition, we fit a power law γ ∝ mβ to the masses 1.6 ≤ m ≤ 160 u for the l = 4.5 nm
system (dashed line in Fig. 4.2 (c)) and obtain an exponent of β = 0.04. Our result
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for β is a bit smaller than the exponents obtained earlier by MD simulation of isotopes
of the noble gases He (0.17), Ne (0.15), Ag (0.08) and Xe (0.06) [232]. Note that this
power-law fit is not consistent with the data points for m = 0.16 u and m = 1600 u nor
with the massless or infinite mass limits.

4.3.2. Force Autocorrelation Functions

From the simulated trajectories, we calculate the autocorrelation functions CFF (t) =
1
3 〈F (0)F (t)〉 = 〈Fx(0)Fx(t)〉 of the force F (t) experienced by the particle for the differ-
ent masses as well as for a frozen particle corresponding to m→∞. The results for the
system with l = 4.5 nm are collected in Fig. 4.3(a) (colored solid lines). All curves show
a fast initial decay with a mass-dependent decay length. For finite mass, the initial
decay is followed by a negative regime. Whereas the autocorrelation function of the
lightest particle (m = 0.16 u) is equal to zero for t & 0.1 ps, we observe significantly
non-zero correlation for t . 5 ps for m = 1600 u and in the frozen case.

In Fig. 4.3(b), the integrated force autocorrelation functions

IFF (t) =

∫ t

0
dt′CFF (t′) (4.8)

calculated from the MD trajectories are depicted. In all cases with finite mass, IFF (t)
decays to zero, as one would expect [187], and as one can directly see from Eq. (4.4)
since Γ̃+(0) = γ is finite. Note that thus, the friction constant cannot be obtained from
this integral.

4.3.3. Frozen Fit

In the frozen case the free GLE Eq. (4.1) simplifies to mẍ(t) = FR(t) since the particle
is at rest, and the total force Fx(t) = mẍ(t) is given by the random force FR(t). Thus,
the fluctuation-dissipation theorem implies Γ∞(t) = CFF (t)/kBT . This approximation
is referred to as the rigid bond approximation [74] and allows a direct calculation of the
memory kernel Γ∞(t) experienced by the frozen particle. We parametrize the kernel by
a 3-exponential fit

Γ(t) =

3∑
i=1

Ai exp (−|t|/τi) (4.9)

with the additional constraint dΓ(t)
dt

∣∣
t=0

= 0, which follows from Γ(t) = Γ(−t) if one
assumes that the memory kernel is analytic. The fit is included in Fig. 4.3(a) as a
dotted line, the fit parameters are given in Table C.1 in Appendix C.

We calculate the friction constant at infinite mass from Eq. (4.2) by evaluating the
running integral IFF (t) shown in Fig. 4.3(b) at t = 10 ps, where the force autocorrelation
has decayed to zero. We estimate the error to be less than 5% from the deviations be-
tween the numerical running integral and the integral over the fit according to Eq. (4.9)
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Figure 4.3.: (a) The simulated force autocorrelation functions CFF (t) for l = 4.5 nm
(solid lines) with the corresponding theoretical curves based on Eq. (4.4) using the
memory kernels obtained by fits to the force autocorrelation function (dashed lines). In
addition, the fit to the force autocorrelation function of the frozen particle according to
Eq. (4.9) is included (dotted line). (b) The simulated integrated force autocorrelation
functions IFF (t) (solid lines) with the analytical predictions based on Eqs. (4.4) and
(4.8) (dashed lines), as well as the integrated fit for the frozen case (dotted line). (c)
CFF (t) for l = 4.5 nm (solid lines) with the theoretical curves based on Eq. (4.4) using
Γ∞(t) (dashed lines) for m = 1.6 u and m = 16 u.

to the autocorrelation function of the frozen particle (included in Fig. 4.3(b) as a dot-
ted line). The results for different simulation box sizes are included as horizontal lines
in Fig. 4.2(c). For the system with l = 4.5 nm, the estimate for γ at infinite mass is
about 1.6 times as large as for the methane mass m = 16 u. Clearly, the rigid bond
approximation overestimates the friction dramatically, which agrees with the findings
recently presented in Ref. [72] for several systems including HOD in H2O.

4.3.4. Dynamic Fits

The mass dependence of the friction coefficient γ implies via Eq. (4.2) that the friction
memory kernels Γ(t) must differ as a function of particle mass. The parametrization
Eq. (4.9), allows to evaluate Eq. (4.4) analytically with

Γ̃+(ω) =
3∑
i=1

Aiτi
1− iωτi

. (4.10)

Using the result, we fit the coefficients of the parametrization Eq. (4.9) by matching
the analytic predictions Eq. (4.4) for the force autocorrelation function in the time
domain to the simulation results. According to Eq. (4.2), we additionally constrain the
integral over the kernel to be equal to the friction constant obtained from MSDs to
correctly recover the long-time dynamics. The force autocorrelation functions are fitted
successively with decreasing mass, where we use the results from the previous fit as a
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Figure 4.4.: The memory kernels Γ(t) extracted from the simulation data for the sys-
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(dashed lines). In the inset, the friction constants calculated from the integrated mem-
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starting point. Note that this method is similar to the method we applied in Chapter 3
to extract the memory kernels of harmonically confined methane. The analytically
predicted autocorrelation functions are included in Fig. 4.3(a) and (b) as dashed lines.
Clearly they show very good agreement. In Fig. 4.3(c), it is shown that the memory
function Γ∞(t) from the rigid bond approximation results into significant disagreement
between the predicted force autocorrelation functions CFF (t) (dashed lines) and the
simulation results (solid lines) for smaller masses.

The resulting memory kernels for l = 4.5 nm are depicted in Fig. 4.4 as solid lines,
their parameters are given in Table C.1 in the Appendix C. For larger masses m ≥ 16 u,
the amplitude of the long-time tail increases significantly with the solute mass and the
kernels approach the result from the frozen methane (red solid line). For m ≤ 16 u, the
short-time decay time τ1 is significantly faster than for larger masses. The amplitude
of the long-time tail increases with lighter masses in this case, but the associated decay
time τ2 goes down at the same time. A plot of the timescales τ1 and τ2 as a function of
solute mass is shown in Appendix C. Since the memory kernels represent the projected
degrees of freedom, i.e., the coordinates and velocities of the solvent molecules, we
conclude that the dynamic solvent properties significantly change as a function of the
diffusing particles mass.

Additionally, we calculate the MSDs from Eqs. (4.5) and (4.6), which are sensitive
to short and long-time dynamics. The analytical results are included as dashed lines in
Fig. 4.2(a) and (b). Also they show perfect agreement (up to small deviations around
0.1 ps for the lightest mass m = 0.16 u).

4.3.5. Alternative Methods

The method for the computation of the memory kernels employed here is based on the
parametrization Eq. (4.9). There are several methods for the computation of memory
kernels from atomistic trajectories which do not rely on a parametrization of the memory
kernel [61, 70, 72, 74, 236]. However, the excellent agreement between simulations and
analytical predictions (Fig. 4.2(a),(b) and Fig. 4.3(a),(b)) clearly indicates that we
extracted the relevant features of the memory kernels. As an additional cross check, we
compute the memory kernels by iteratively solving the relation [236]

m
dCvv(t)

dt
= −

∫ t

0
dt′ Γ(t− t′)Cvv(t′), (4.11)

after discretizing the integral as a sum. Here, Cvv(t) = 〈ẋ(t)ẋ(0)〉 denotes the velocity
autocorrelation function. We remark that a similar method was used to study the mass
dependence of friction memory kernels for ions in Ref. [233]. For the lightest mass
m = 0.16 u this method results in a kernel which does not decay to zero (not shown).
The memory kernels for the other masses are included as dashed lines into Fig. 4.4,
and they qualitatively agree well with our results. The most pronounced disagreement
is observed for m = 1.6 u. However, the long-time contributions obtained by solving
Eq. (4.11) are significantly underestimated for m = 1.6 u, since the integral over the
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Figure 4.5.: The mean escape time τesc of water molecules from the first hydration shell,
defined as the mean first-passage time from the first to the second maximum (indicated
by dashed lines) of the radial distribution function of the oxygen atoms around the
particle (shown in the inset) as a function of mass m (circles). For comparison, the
effective memory time τΓ is included (note the different axes).

respective kernel shown in the inset of Fig. 4.4 as a function of mass (plus symbols)
is 40% to small. For the memory kernels obtained by fits to the force autocorrelation
function, the integral is equal to the friction constant by construction.

4.3.6. Mean Escape Times

To elucidate the molecular origin of the mass-dependent friction, we compute the mean
escape time τesc of a water molecule from the first hydration shell of the solvated particle,
defined as a mean first-passage time from r = 0.37 nm to r = 0.65 nm, where r denotes
the distance between the particle and the water molecule of interest. This definition is
illustrated in the inset of Fig. 4.5; the two radii are indicated by vertical dashed lines.
The escape time τesc is shown as a function of mass in Fig. 4.5, and it significantly
depends on the mass of the solute; it increases by a factor of three over the mass range
considered. Hence, the dynamics of the first hydration shell around heavier particles is
significantly slower than around lighter particles.

Additionally, the effective memory time defined by

τΓ =
γ

Γ(0)
=

1

Γ(0)

∫ ∞
0

dtΓ(t) (4.12)
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is included in Fig. 4.5 for the memory kernels shown in Fig. 4.4. Clearly, the two
observables obey the same qualitative trend, i.e. slower solvent relaxation around more
massive particles.

4.4. Conclusions and Discussion

In summary, we have shown that the friction constant of a methane molecule increases
significantly with the solute mass, with finite limits for zero and infinite mass. We
have modeled the diffusion process in terms of a generalized Langevin equation and we
have shown that the long and short-time contributions of the memory kernel depend
on the solute mass. These findings go clearly beyond predictions from hydrodynamics.
We have elucidated the origin of the friction increase by showing that the mean escape
times of water molecules from the first hydration shell of the methane molecule increase
monotonically by up to a factor of three with increasing solute mass.

From the fit γ ∝ mβ around the physical methane mass included in Fig. 4.2(c),
the friction constant of 14CH4 (m = 18 u) in H2O is estimated to be about 0.46%
larger than for 12CH4 (m = 16 u) in H2O. For 13CH4 (m = 17 u) we estimate the
friction constant to be about 0.23% larger than for 12CH4. These differences can be
resolved experimentally [234, 237], and particularly the result for 13CH4 might be a
small correction to better understand bacterial methane isotope fractionation [238–
240]. Furthermore, hydrogen-deuterium isotopes of methane will also show a mass
dependence of the diffusion constant, but in these cases, also the molecule size will
depend more strongly on the type of isotope due to the mass dependence of the ground
state energy of the bond vibration, which should be taken into account.

Since the massless limit can be regarded as a simple model for a stable vacuum
bubble, one might conclude that it is a general principle that vacuum bubbles on the
molecular scale diffuse faster than similarly sized massive objects. However, since actual
vacuum bubbles can deform and since the rigid Lennard-Jones particle introduces a
spurious interaction between non-neighboring water molecules this conclusion remains
speculative.

The timescale at which frictional effects become relevant is given by the inertial
timescale τm = m/γ (indicated by horizontal lines in Fig. 4.2(a)), which reflects the
crossover from ballistic to diffusive behavior [56]. For the heaviest particle considered,
where the friction is about 10% smaller than for frozen methane (see Fig. 4.2(c)), we
have τm = 1.2 ps. The latter timescale is in the order of magnitude of the decay time
τ2 of the long-time tail of the memory kernels shown in Fig. 4.4. Hence, we expect
mass-dependent friction to be relevant for τm . τ2. This observation allows us to
carry out a similar scaling analysis than presented in Chapter 3, in order to answer
the question in how far mass-dependent friction is relevant for larger solutes. As an
estimate for the friction, we use the Stokes formula γ = 6πηR with an effective radius
R. The mass of the solute will then depend on the radius according to m ∼ ρR3,
where ρ denotes the particle density. Thus, we can estimate the inertial timescale
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Figure 4.6.: The friction constant of physical methane in water with different water
molecule masses as a function of viscosity η/η0, where η0 denotes the normal SPC/E
water viscosity. The rescaled empiric fit Eq. (4.7) is included as a gray solid line, a
linear fit according to Eq. (4.14) is included as a red dashed line. In the inset, the
low-viscosity region is enlarged.

τm ∼ ρR2/η, and we conclude that mass-dependent friction will occur for ρR2/η . τ2.
Since the longest timescale of the memory kernel τ2 increases with viscosity, whereas
τm decreases, we expect mass-dependent friction to be relevant even for nanometer
sized objects in highly viscous solvents like polymer solutions. Clearly, objects of this
size vary significantly in mass depending on the material composition. For physical
methane, we have τm = 16 fs � τ2. Thus, also in water, we expect mass-dependent
friction for (sufficiently rigid) solutes that are larger than methane.

Our results show that power-law relations of the form D ∝ m−β do not hold over the
complete range of solute/solvent mass ratios. In particular the finite friction constant
observed for m→ 0 is in contradiction to such a relation. The power law is motivated
by kinetic gas theory, where one has D ∝ µ−0.5, with µ = mm0/(m + m0) denoting
the reduced mass of the tracer particle and a gas molecule with masses m and m0

respectively. Applying the power-law relation over the whole mass range considered
here would thus require to introduce an effective hydration shell mass, which could
indeed be consistent with saturation of the friction constant at infinite mass, but it
would clearly be inconsistent with the observed saturation at m→ 0.
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By a rescaling of the simulation time ∝
√
m/mCH4 , our simulations are equivalent

to simulations of physical methane in water with a rescaled water molecule mass

mw = (mCH4/m)mH2O, (4.13)

where mCH4 = 16 u and mH2O = 18 u denote the physical methane and water masses,
andm is the simulated methane mass. Since the viscosity η scales according to η ∝ √mw

[241], we can plot the (rescaled) methane friction as a function of water viscosity in
Fig. 4.6. The rescaled empiric fit Eq. (4.7) is included as a gray solid line. The solute-
mass dependence of the friction constant discussed so far translates then into a deviation
from a linear viscosity dependence of the friction constant. We fit a linear function

γ = γa + γb(η/η0) (4.14)

to the data points (dashed red line in Fig. 4.6), where we obtain γa = 0.12× 10−12 kg/s
and γb = 1.53 × 10−12 kg/s. The non-zero offset γa, which corresponds to 7% of the
methane friction in normal SPC/E water, could be interpreted as apparent internal
friction. Note, however, that this expression is misleading because the Lennard-Jones
particle used for this work has no internal degrees of freedom.

The mean residence time of water molecules in the first hydration shell, i.e., the
mean time a water molecule stays in the first hydration shell, has been linked to the
mass of diffusing ions and (hypothetical) ion isotopes previously [231, 233, 235]. The
mean escape time is related, but it has the advantage to be less sensitive to (oscilla-
tory) short-time movements of the particle itself, which is relevant for small particle
masses. Compared to an ion, a hydrophobic particle is expected to interact less with
the solvent molecules. Thus, the magnitude of the hydration shell dynamics slow-down
demonstrated here is quite surprising, and we speculate that this effect is universal and
of (possibly underestimated) importance for the interpretation of dynamical properties
of a broad class of systems.

Since equilibrium properties are independent of the particle mass, the mass-dependent
friction can only be explained by the cooperative dynamics of the water molecules and
the particle. A heavy or frozen particle will show little immediate reaction to the water
dynamics, whereas a lighter particle will more cooperatively diffuse with the water
molecules. I.e., the reduced response to the water molecules itself must slow down the
hydration shell dynamics. Hence, it goes along with longer residence times of the water
molecules near the surface.

In Chapter 3, we have shown that a water-solvated methane molecule confined by
an external potential is subject to increased friction with increasing potential strength.
We conclude that molecular friction is naturally influenced by the coupling of hydration
and particle dynamics. As a general principle, a reduced response of a solute to the
solvent appears to be accompanied by increased friction.
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Chapter 5

Butane Dihedral Angle Dynamics in Wa-
ter is Dominated by Internal Friction

Bibliographic information: Parts of this chapter and of Appendix D have previously
been published. Reprinted with permission from Ref. [iv]. License: CC BY-NC-ND 4.0.

For the understanding of conformational and biochemical reactions, a low-dimensional
stochastic description in suitable reaction coordinates is a powerful approach. In par-
ticular in the context of protein folding, diffusion in a one-dimensional free-energy
landscape is a prominent model to come to terms with the high-dimensional phase-
space dynamics of proteins [45, 46, 48]. By projection onto a one-dimensional reaction
coordinate, orthogonal degrees of freedom produce effective friction and random force
contributions [56, 60]. These byproducts of projection cannot be neglected, since fric-
tion decisively influences reaction rates [242].

Obviously, the friction that characterizes a protein folding coordinate contains contri-
butions from the surrounding solvent as well as from internal protein degrees of freedom
[10], but it is less clear how to separately measure these two contributions (experimen-
tally or in simulations). Typically, the prime object in protein studies concerned with
friction effects is the folding time τfold. In the overdamped limit, when inertia and mem-
ory effects are neglected, τfold scales with the effective friction coefficient γ as τfold ∼ γ
[242]. By the addition of viscogenic agents the solvent viscosity η increases relative to
the pure water value; assuming that solvent and internal friction are additive according
to γ = γsol + γint and furthermore that Stokes’ law holds for the solvent friction contri-
bution, γsol ∼ η, the internal contribution γint can be obtained by linear extrapolation
of τfold ∼ γsol + γint down to vanishing solvent viscosity [10]. Via this procedure, in-
ternal friction has been demonstrated for various proteins [8, 10, 25–29, 52, 243, 244].
In fact, deviations from a linear dependence γsol ∼ η have been experimentally ob-
served for some proteins [25], while for other proteins no internal friction was detected
at all [11]. Even in simulations, where—in contrast to experiments—the water friction
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can be reduced and a modification of the folding free energy landscape with changing
viscosity can be excluded, the extrapolation down to vanishing solvent friction is not
trivial [119–122, 241].

The above definition of internal friction hinges on a few critical assumptions which
are not necessarily satisfied in real systems: i) It was pointed out that inertia effects lead
to deviations from the simple law τfold ∼ γ and ultimately to Kramers turnover, which
can be misinterpreted as internal friction [117, 245, 246]. While one would intuitively
think that the effective mass of a protein reaction coordinate is small, the balance of
effective inertial and friction parameters of reaction coordinates that describe complex
reactions is not really settled. ii) Friction will in general not be constant along a
reaction coordinate [241, 244], so the linear additivity assumption γ = γsol + γint not
necessarily holds when averaged over the reaction coordinate and needs to be checked
directly. iii) Most serious are memory effects, which decisively influence barrier crossing
dynamics [120]. Recently it was shown that memory effects can, depending on the value
of the memory time, slow down or even accelerate barrier crossing [vi], which starkly
invalidates the overdamped Kramers scaling τfold ∼ γ.

Previous theoretical approaches to internal friction are based on reaction times, they
suffer from the indirect connection between transition times and friction and necessarily
rely on various model assumptions [119–122, 241] (not so different from the experimental
situation). Direly needed are models which allow to check for the presence of internal
friction independently of any theoretical assumptions that relate friction to reaction
times, as well as methods to extract friction and memory functions directly from sim-
ulations instead of inferring friction effects indirectly from measured reaction times.

In this chapter we introduce methods to meet both challenges. We consider butane,
since it is the simplest molecule that shows a non-trivial conformational transition
in a solvent and since it has been a testing ground for theoretical and experimental
developments [247–251]. In fact, dihedral isomerization rates are known to be quite
insensitive to the solvent viscosity [116–124] which was argued to be due to inertial
and memory effects [120, 252, 253]. In our work, we first simulate a single butane
molecule in water and compare two scenarios, the free scenario, where all four carbons
can freely move, subject to bond length and bond angle constraints, and the constrained
scenario, where three carbons are fixed in space and only one terminal carbon can move.
While the free energy landscape for the dihedral is the same in both scenarios, the
transition times differ for high water viscosities (which we modify in our simulations
by changing the water mass) by a factor of ten. This unequivocally demonstrates
that the additional butane degrees of freedom (which are orthogonal to the dihedral
angle) in the free scenario significantly change the effective friction along the reaction
coordinate. Secondly, we introduce a method to extract the friction memory kernel
that couples to the reaction coordinate, in our case the dihedral angle, from simulation
trajectories. A memory kernel accounts for the fact that friction on the molecular scale
is not instantaneous but rather depends on the system’s history in a non-Markovian
manner. Our calculated memory kernels reveal that indeed the friction substantially
differs between the constrained and free butane scenarios. The friction coefficients,
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Figure 5.1.: Schematic illustration of (a) a free butane molecule where all four carbons
can move and (b) a constrained butane where three carbons are fixed in space and
only one terminal carbon can move. (c) Comparison of the free energy U as a function
of the dihedral angle x for the free and constrained butane solvated in SPC/E water,
extracted from simulation trajectories. The starting and target angles xs and xt for
the calculation of the cis-to-trans dihedral barrier crossing time are indicated by dotted
vertical lines. (d) Typical dihedral angle simulation trajectories for free and constrained
butane for elevated water viscosity η =

√
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which follow by an integral over the memory kernels, are used to predict the transition
times of the free and constrained butane scenarios in quantitative agreement with direct
simulation results, for this we need to use reaction rate theory that accounts for inertial
effects. This shows that our theoretical framework, which simultaneously yields reaction
times as well as friction effects, is consistent. Finally, the internal friction contribution
is extracted from a fit of the extracted total friction versus the water viscosity: for the
constrained butane the internal contribution is negligible, as expected, while for the
free butane the internal contribution overwhelms the solvent contribution by a factor
of eight, which explains why the butane dihedral reaction is rather insusceptible to an
increase of the water viscosity.

We unambiguously show that the dihedral angle dynamics of a butane molecule is
dominated by internal friction, which stems from the coupled dynamics of the four car-
bons. This demonstrates that internal friction exists already for the simplest molecular
system that possesses a conformational transition, in line with previous works where di-
hedral angle isomerization has been argued to be a source of internal friction in protein
folding [25, 119, 121–124].

5.1. Results and Discussion

5.1.1. Butane Dihedral Barrier Crossing Times

In our simulations we place a single butane in a water box and systematically vary
the mass of water molecules mw while keeping the butane mass fixed. This modifies
all intrinsic water timescales and in particular also the water viscosity according to
η ∝ √mw, but leaves all equilibrium distribution functions invariant [241]. We use
a united-atom force field for butane that neglects the hydrogens and approximates
butane by four Lennard-Jones beads that are subject to fixed bond lengths and fixed
bond angles, for water we use the SPC/E model (see Methods). We compare the
free scenario, where all four butane carbons can move, with the constrained scenario,
where three carbons are fixed in space and only one terminal carbon can rotate, see
Fig. 5.1(a) and (b) for an illustration. The only degree of freedom in the constrained
scenario is the dihedral angle, while in the free scenario one has six additional degrees
of freedom, three translational and three orientational. The free energy profiles in the
free and constrained scenarios in Fig. 5.1(c) perfectly overlap, as expected based on
translational and orientational invariance of the problem.

The mean first-passage times τMFP for the cis-to-trans transition of the dihedral,
as defined in Fig. 5.1(c) and extracted from the simulation trajectories as shown in
Fig. 5.1(d), are depicted as a function of the rescaled water viscosity η/η0 in Fig. 5.2
for the free and constrained scenarios. Here η0 denotes the bulk viscosity of water with
the normal mass. τMFP for free butane is rather insensitive to η, in agreement with
previous results [120]. Constrained butane behaves differently for η > η0 and shows a
linear increase of τMFP with η (indicated by a broken straight line), while for η < η0

the results for the free and constrained scenarios are rather similar and depend only
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Figure 5.2.: Mean first passage times τMFP of the cis-to-trans transition of the butane
dihedral for free (triangles) and constrained (circles) butane extracted from simulation
trajectories (filled symbols) are shown as a function of the rescaled water viscosity η/η0,
where η0 refers to the SPC/E water viscosity. The estimates based on the Kramers
formula for medium to strong friction Eq. (5.5) are included as open symbols.
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weakly on η, which will later be explained by inertial effects (i.e. Kramers turnover).
The stark deviation between the free and constrained scenarios for η > η0, amounting
to a difference in the reaction times by a factor of ten for the highest viscosity η = 10η0,
is caused by the six additional degrees of freedom for free butane that are orthogonal
to the dihedral angle coordinate. Since the dihedral free energy is the same for both
scenarios, we conclude that the friction is different in the two scenarios and that this
friction difference is caused by the additional degrees of freedom that are present in
the free scenario and absent in the constrained scenario. We will later show that the
difference in the total friction between the free and constrained scenarios is accompanied
by an internal friction contribution for the free case.

5.1.2. Memory Kernels and Friction Coefficients

To quantify the friction that acts on the dihedral angle, we map the dynamics of the
butane dihedral angle x onto the generalized Langevin equation (GLE)

mẍ(t) = −
∫ t

0
dt′ Γ(t′)ẋ(t− t′)−∇U [x(t)] + FR(t), (5.1)

where Γ(t) denotes the memory kernel. The random force FR(t) obeys the fluctuation-
dissipation theorem and satisfies 〈FR(t)FR(t′)〉 = kBT Γ (t− t′). For vanishing poten-
tial, the GLE has been derived by linear projection techniques [56, 60]. The mass m is
an effective one and follows directly from the simulated dihedral angle trajectory x(t)
via the equipartition theorem m〈ẋ2〉 = kBT (see Methods). The potential U(x) in the
GLE is in fact a free energy and follows from the simulated equilibrium probability
density along the reaction coordinate, p(x), as U(x) = −kBT log p(x) and is shown in
Fig. 5.1(c). To extract Γ(t) from simulation trajectories we extend previous methods
[9, 61, 73] to account for a finite potential U(x). For this we multiply Eq. (5.1) by ẋ(0)
and average to obtain

m 〈ẋ(0)ẍ(t)〉 = −
∫ t

0
dt′ Γ(t′)

〈
ẋ(0)ẋ(t− t′)

〉
− 〈ẋ(0)∇U [x(t)]〉 , (5.2)

where we used that the random force is not correlated with the initial velocity, i.e.
〈ẋ(0)FR(t)〉 = 0 [60]. Discretizing all functions as Γi = Γ(i∆t) with a timestep ∆t we
obtain the iteration equation

Γi = − 1

ωi,i∆tC ẋẋ0

 i−1∑
j=0

ωi,j∆tΓjC
ẋẋ
i−j +mC ẋẍi + C ẋ∇Ui

 , (5.3)

where we defined the correlation function C ẋẍi = 〈ẋ(0)ẍ(i∆t)〉 (and similarly C ẋẋi and
C ẋ∇Ui ) and the integration weight wi,j = 1 − δi,0/2 − δi,j/2. The correlation function
C ẋ∇Ui = 〈ẋ(0)∇U [x(i∆t)]〉 is obtained by cubic spline interpolation of U(x). In the
Appendix D we demonstrate the numerical robustness of our method.
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Figure 5.3.: Memory kernels Γ(t) for different rescaled water viscosities η/η0 extracted
from simulation trajectories via Eq. (5.3) for (a) constrained and (b) free butane, where
η0 denotes the SPC/E water viscosity. (c) Inertial and memory timescale ratios τm/τD
and τΓ/τD calculated from the memory kernels of free and constrained butane for dif-
ferent viscosities, where τD denotes the characteristic diffusion time (same color coding
as in (b)).

The extracted memory kernels Γ(t) for free butane in Fig. 5.3(b) are quite similar
for different water viscosities, while for constrained butane the kernels in Fig. 5.3(a)
differ strongly for different viscosities. In particular, for free butane the long time tail
of Γ(t), which is mostly responsible for the effective friction, is almost independent of
η and oscillations appear that we associate with the presence of orthogonal degrees of
freedom. In qualitative accordance with our results in Fig. 5.2 for the barrier crossing
time, we can say that for free butane, the effective friction is less sensitive to solvent
viscosity compared to constrained butane.

In Fig. 5.4, we show the friction coefficient γ for free and constrained butane as a func-
tion of water viscosity, which follows from an integral over the memory function accord-
ing to γ =

∫∞
0 dtΓ(t). For numerical integration, we fit the long time decay of Γ(t) by an

exponential function (see Appendix D). The friction for constrained butane is linearly
proportional to the solvent viscosity, as expected based on the hydrodynamic Stokes
equation. To make this more explicit, we denote the translational friction coefficient of
a methyl group by γtrans = 6πηRCH3 . For a methyl group of radius RCH3 ≈ 0.18 nm
that rotates at a fixed bond angle α = 111◦ and C–C bond length lB = 0.15 nm around
a fixed point in space, which approximates the constrained butane case, we estimate the
dihedral friction constant γ = (2π/360)2(lB sin(α))2γtrans = 0.01 · (η/η0) u nm2/deg2 ps,
not so different from what we extract from the simulations in Fig. 5.4 for constrained
butane. In contrast, the dynamics of free butane is characterized by a friction coefficient
that very weakly depends on the water viscosity, in stark contrast to the hydrodynamic
Stokes equation.
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Figure 5.4.: Friction coefficient γ extracted from the memory kernels in Fig. 5.3(a) and
(b) as a function of the rescaled water viscosity η/η0 for free and constrained butane.
Empirical fits according to Eq. (5.4) (denoted by lines) yield internal-to-solvent friction
ratios of γint/γsol,0 = 7.7 for free and γint/γsol,0 = 0.05 for constrained butane.

5.1.3. Internal Versus Solvent Friction

We include empirical fits according to [10, 25, 28]

γ = (η/η0) γsol,0 + γint (5.4)

into Fig. 5.4 as solid lines. The fits are very good, which validates the assumption of
additive solvent and internal contributions. For constrained butane we obtain γint =
1.8 · 10−4 u nm2/deg2 ps and γsol,0 = 3.9 · 10−3 u nm2/deg2 ps, which corresponds to a
ratio of γint/γsol,0 = 0.05 and shows that internal friction is negligible in this case. A
small spurious internal friction contribution is in fact expected from the finite difference
between the friction coefficient of immobilized and free solutes, as we have demonstrated
based on simulations of water-solvated methane in Chapter 4. In contrast, for free
butane we find γint = 5.2 · 10−4 u nm2/deg2 ps and γsol,0 = 6.7 · 10−5 u nm2/deg2 ps,
and thus a ratio γint/γsol,0 = 7.7. Hence, the dynamics of free butane is dominated by
internal friction effects for normal water viscosity η0. The substantial reduction of the
solvent friction contribution γsol,0 in the free case compared to the constrained case is at
first sight surprising. This reduction can be rationalized by the fact that the dihedral
angle for free butane is a relative coordinate that depends on the motion of all four
carbons and is governed by a relative diffusion constant that results from the weighted
sum of the individual carbon diffusion constants.

It remains to be checked whether the friction coefficients we extract from simulation
trajectories in Fig. 5.4 explain the independently measured dihedral barrier crossing
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times in Fig. 5.2. This is non-trivial in the present case since, as mentioned earlier,
memory and inertia effects invalidate the simple Kramers prediction τMFP ∼ γ. To
proceed, it is useful to introduce the characteristic timescales of the system. These are
the inertial time τm = m/γ, which measures the time at which ballistic motion crosses
over to diffusive motion, the memory time τΓ = γ/Γ(0), which measures the decay time
of the memory kernel, and the diffusive time τD = L2γ/(kBT ), which measures the
free-diffusion time to advance over a characteristic angle of L = 60◦. In Fig. 5.3(c) we
demonstrate that τm < τD and τΓ < τD holds for all simulation data, in which case
Kramers’ formula for the mean first passage time in the medium to strong friction case
[242]

τMFP =
2π ωmax/ωmin

[γ2/4m2 + ω2
max]1/2 − γ/2m

exp

(
∆U

kBT

)
, (5.5)

is expected to be valid. For the barrier height we extract ∆U = 3.7 kBT from the free
energy in Fig. 5.1(c), mω2

max = 6 · 10−3 kBT/deg2 and mω2
min = 9 · 10−3 kBT/deg2 are

the curvatures of the free energy at the maximum and minimum. The results from
Eq. (5.5) for free and constrained butane are included as open data points in Fig. 5.2;
the comparison with the simulation data, which does not use any adjustable parameter,
is quite good. The simulation data in the constrained case show a shorter barrier
crossing time than expected based on the Kramers formula, whereas for free butane
we see the opposite. Both trends can be explained based on memory effects, since an
intermediate memory time τΓ/τD ≈ 0.01− 0.1 significantly accelerates barrier crossing,
while a longer memory time increases the barrier crossing time, as has been shown
recently in Ref. [vi]. Thus, our results for constrained butane presumably correspond
to the regime where memory reduces the reaction time, while the results for free butane
(which have slightly larger values of τΓ/τD, as shown in Fig. 5.3(c)) correspond to the
crossover regime where the memory effect switches from acceleration to slowing down of
the reaction time. The saturation of τMFP for the constrained case in the low-viscosity
limit in Fig. 5.2 is thereby shown to be solely due to inertia effects and thus reflects
Kramers turnover, this follows from the fact that the friction γ for the constrained case
in Fig. 5.4 is roughly linear in η over the entire range of water viscosities. In contrast,
the behavior of τMFP for the free case can only be explained by a combination of inertia
and internal friction effects. This shows that the present simulation strategy, which
compares the free and constrained scenarios and at the same time extracts memory
functions, is necessary and useful.

5.2. Conclusions

The dihedral barrier-crossing dynamics of a constrained butane molecule, where only
one carbon atom is allowed to move and thus the dihedral angle is the only degree
of freedom (besides solvent degrees of freedom) is shown to be very different from
the dynamics of a free butane, where a total of seven positional degrees of freedom
are present. This unambiguously demonstrates that friction generated by degrees of
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freedom that are coupled but orthogonal to the reaction coordinate (in our case the
dihedral angle) is dominant in butane. By monitoring the friction, which we directly
extract from the memory kernel, as a function of the solvent viscosity, we show that
orthogonal degrees of freedom significantly modify the solvent friction contribution and
also produce an additional contribution which we denote, in analogy to experiments on
protein folding, as internal friction. The internal friction contribution in butane thus
stems from the dynamic partitioning of energy over the orthogonal degrees of freedom
(which in addition to the six positional also include six conjugate momentum degrees
of freedom).

Based on our finding that already for butane, which arguably is a very simple system
for which the orthogonal degrees of freedom in fact correspond to the translational and
orientational degrees of freedom, internal friction dominates the dynamics, we expect
that for larger and more complex molecules, which possess more orthogonal degrees
of freedom, internal friction plays an even more important role for the dynamics. For
macromolecular conformational transitions where the rate-limiting step involves dihe-
dral angle isomerization [22, 117, 119, 246, 254], our findings constitute one mechanism
for the emergence of internal friction effects. But other mechanisms, for example based
on interactions between molecular subunits, certainly also exist.

Beyond these applications to polymers and proteins, dihedral isomerization of butane
is also interesting in its own right and has been studied by two-dimensional infrared
spectroscopy [251]. The experimental dihedral isomerization time of a butane derivative
solvated in CCl4 was found to be in the 10 ps range, which agrees with predictions from
classical MD simulations [248] and is similar to the simulation results we obtain here.
Our analysis thus reveals that in such experiments the internal friction, which for normal
water viscosity makes up about 89% of the total friction, dominates the dynamics, a
fact that does not transpire from the simulations per se.

It seems difficult to derive the empirical Eq. (5.4), according to which internal and
solvent contributions, the latter being defined as the contribution that scales linearly
with solvent viscosity η, are additive, from first principles. We note that according
to the fluctuation-dissipation theorem the friction coefficient follows from the force
autocorrelation function (see Chapter 3); a decomposition of the force acting on a
reaction coordinate into solute and solvent contributions (which is exactly possible)
would necessarily give rise to a solvent, a solute and a mixed solute-solvent contribution,
and the linear additivity in Eq. (5.4) is not obvious. The good comparison between
Eq. (5.4) and the simulation data in Fig. 5.4 validates the linear additivity thus only
in a heuristic sense, and could break down for more complicated systems.

5.3. Methods

All simulations are carried out using the GROMACS 5.1 [189, 190] simulation package
with double precision. The butane molecule is parametrized by the GROMOS [191]
united atom force field, for water we use the SPC/E [192] model. All angles and bonds
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of water and butane are constrained to their equilibrium values using the SHAKE
[255] algorithm. Real butane possesses additional degrees of freedom that we neglect
in our classical simulations, namely bond angle and bond length vibrations of carbon-
carbon as well as carbon-hydrogen bonds. However, they are not expected to contribute
significantly to the dynamics due to the high quantum-mechanical excitation energies for
carbon-carbon bonds and due to the relatively small effective mass of carbon-hydrogen
bonds. We perform NVT molecular dynamics (MD) simulations and vary the water
molecule mass mw in order to change the water viscosity. For water mass larger than
or equal to the normal water mass, we use a time step of 2 fs, for lighter water mass
we lower the timestep by a factor η/η0 ∝

√
mw. The temperature is controlled by the

velocity rescaling [193] thermostat at T = 300 K, which is coupled only to the solvent
with a time constant of η/η0 · 1 ps. In the Appendix D we compare results for the
memory kernels calculated from NVT and NVE simulations of a free butane molecule
at a water viscosity of η/η0 =

√
10 and demonstrate that the ensemble and thus the

thermostat have no influence on our results.
The equipartition theorem dictates m〈ẋ2〉 = kBT , which is used to extract the effec-

tive mass m from the simulated dihedral angle trajectories x(t). For constrained butane,
we find values between m = 0.92 · 10−4 u nm2/deg2 and m = 1.03 · 10−4 u nm2/deg2,
which agree with the expected value for the moment of inertia of a single methyl
group of mass mCH3 = 15 u that rotates with a fixed bond angle α = 111◦ and
C–C bond length lB = 0.15 nm around a fixed pivot point, which leads to mI =
mCH3(lB sin(α))2(2π/360)2 = 0.93 · 10−5 u nm2/deg2. For free butane we obtain smaller
effective masses between m = 2.13 · 10−5 u nm2/deg2 and m = 2.18 · 10−5 u nm2/deg2,
as expected for the effective mass that describes a relative coordinate.
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Transition Paths Are Hot

Bibliographic information: Parts of this chapter and of Appendix E have previously
been published. Reprinted with permission from Ref. [v]. Copyright: Europhysics
Letters Association, 2016.

The bottleneck of biophysical and chemical reactions are the rare but fast barrier cross-
ing events, which receive steadily increasing theoretical attention [49, 256, 257]. A
useful concept in this context is the notion of transition paths that connect the initial
state xA to the target state xB without returning back to the origin, see Fig. 6.1(a) for
an illustration. By advanced single-molecule experiments, studies of transition paths
and estimates of transition path times were possible for conformational transitions of
proteins [258–261] and nucleic acid molecules [262, 263]. In fact, in the context of pro-
tein folding, transition paths are considered to constitute the most important part of
the trajectories, since they entail complete information on the folding mechanism [260].

Typical experimental observations project the dynamics of a system onto a one-
dimensional reaction coordinate, for example the distance between two fluorescent dyes.
Motivated by this, one-dimensional stochastic models play a crucial role to analyze and
interpret experimental data [260, 261, 263]. Since for molecular reactions in solvent,
friction typically dominates over inertia, the overdamped Langevin equation and the
equivalent Fokker-Planck equation are prominent models for their theoretical descrip-
tion. In this framework, a closed-form expression for the mean transition path time
has been derived by Szabo [256, 264] and been used to interpret experimental measure-
ments of transition path times [259–261] as well as to predict transition path times of
protein and nucleic acid folding from experimentally determined free energy landscapes
[265, 266].

In contrast, many chemical reactions occur in the low-friction regime, even when
immersed in solvent, and are dominated by inertia effects so that the overdamped
Fokker-Planck description is not valid [267]. This has experimentally been demonstrated
for isomerization and dissociation reactions using pico-second resolved spectroscopy
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6. Transition Paths Are Hot

Figure 6.1.: (a) Schematic visualization of a transition path (TP) and a Kramers
first passage path (KFP) from xA to xB. Mean shapes of paths result from averaging
the times of all crossing events at x0 (denoted by circles). (b) The quartic potential
used as a model for a typical two state system. (c) Simulated trajectories for masses
m = 0.1 γ2L2/kBT and m = 10 γ2L2/kBT for a barrier height of U0 = 3 kBT .
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techniques [268, 269]. Since transition path times are typically a few orders of magnitude
shorter than mean reaction times [259–261], it seems plausible that inertia effects play
an even more important role for correctly predicting transition path times than for
reaction times. In fact, the mean transition path time for a harmonic barrier was
recently calculated in the asymptotic frictionless limit based on conservative dynamics
and shown to behave drastically different from the overdamped result [270]. Note that
in the context of polymer and protein dynamics, theoretical findings suggest that solvent
memory effects also affect the short time dynamics [120, 248, 253], which however is
not treated in this chapter.

Here, we consider transition paths in a quartic double-well potential and study the
full crossover between the friction to the inertia dominated regimes using Brownian
dynamics simulations as well as asymptotic analysis. We show that the ensemble of
transition paths exhibits significant deviations from the equilibrium velocity distribu-
tion. The effective temperature of transition paths, TTP

eff , defined by the second moment
of the velocity distribution, is a convenient measure for the departure from equilibrium.
We show that transition paths are significantly hotter than the ambient temperature
at their initial start position in the potential well for large mass and for high potential
barriers. In fact, at the barrier top, transition paths still show significant deviations
from equilibrium which surprisingly are most pronounced for intermediate mass. We
thus reveal a connection between rare barrier-crossing events and local departure from
equilibrium thermodynamics that can be directly tested in experiments and simula-
tions. Since every successful transition event is terminated by a transition path, our
results describe a generic feature of thermally activated reactions. We further charac-
terize transition paths by their mean shape, for which we compare simulation results
with recent analytic results in the friction and inertia dominated limits.

6.1. Methods

We use the one-dimensional Langevin equation

mẍ(t) = −γẋ(t)−∇U [x(t)] + ξ(t), (6.1)

with mass m and friction coefficient γ, where the stochastic force ξ(t) obeys 〈ξ(t)ξ(t′)〉 =

2kBTγ δ(t − t′). The quartic potential U(x) = U0

(
(x/L)2 − 1

)2
has two minima at

x = ±L and a barrier of height U0, see Fig. 6.1(b). We investigate three different barrier
heights U0/kBT = 1, 3, 5 and rescaled masses in the range m/(γ2L2/kBT ) = 10−3−102.
After rescaling, the continuous problem is fully described by the choice of these two
parameters. Note that the rescaled mass m/(γ2L2/kBT ) is equal to the ratio of the
inertial timescale τm = m/γ and the diffusive timescale τD = L2/D, where D = kBT/γ
denotes the diffusion constant. For our simulations, we discretize time with a typical
step width of ∆t = 10−4(mL2/kBT )1/2 and use a standard Runge-Kutta scheme of 4th
order. Averages are obtained from 400 independent trajectories of 2 · 109 time steps
each where the first 107 steps are skipped to ensure equilibration. Two examples of
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6. Transition Paths Are Hot

typical trajectories for different masses are shown in Fig. 6.1(c), it is clearly seen that
the curve for larger mass is much smoother and shows fewer transition events.

6.2. Transition Path Times

From the trajectories, we compute mean transition path times τTP(xB|xA) as well as
Kramers mean first passage times τKFP(xB|xA) from the initial position xA = −L to the
target position xB = L. Note that τKFP(xB|xA) allows for multiple recrossings of xA

and therefore corresponds to the inverse reaction rate one would measure experimentally
(see Fig. 6.1(a) for an illustration). The results are collected as a function of m in
Fig. 6.2. In contrast to τKFP, which exponentially increases with the barrier height U0,
τTP inversely depends on U0 for all masses m, i.e., transition paths become faster for
increasing barrier height. We include as horizontal dashed lines the analytic results in
the overdamped limit m/(γ2L2/kBT )→ 0 for τKFP [55, 242]

τKFPγ (xB|xA) =
γ

kBT

∫ xB

xA

dy e
U(y)
kBT

∫ y

−∞
dz e

−U(z)
kBT (6.2)

and for the transition path times τTP [256]

τTPγ (xB|xA) =
γ

kBT

∫ xB

xA

dy e
U(y)
kBT

∫ xB

xA

dz
φA(z)φB(z)

e
U(z)
kBT

, (6.3)

where φA(x) and φB(x) denote the splitting probabilities

φA(x) = 1− φB(x) =

(∫ xB

xA

dy e
U(y)
kBT

)−1 ∫ xB

x
dz e

U(z)
kBT . (6.4)

The inertial limit m/(γ2L2/kBT )→∞ corresponds to conservative dynamics, the tran-
sition path time follows by a flux-weighted average over the high energy tail (E > U0)
of the equilibrium energy distribution at x = xA as [270]

τTP
m (xB|xA) =

∫ ∞
U0

dE e
− E

kBT

kBTe
− U0

kBT

∫ xB

xA

dx

√
m/2

E − U(x)
, (6.5)

included in Fig. 6.2 as solid lines.
Obviously, τTPm (xB|xA) ∼ m1/2 in the inertial limit, in contrast to Kramers mean

first passage time which scales as τKFPm (xB|xA) ∼ m in the inertial limit for sufficiently
high barriers [242].

As expected, the simulation results for τTP(xB|xA) smoothly interpolate between the
two limits in Eqs. (6.3) and (6.5) and are well described by the linear interpolation
formula

τTP (xB|xA) ≈ τTPγ (xB|xA) + τTPm (xB|xA), (6.6)
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6.2. Transition Path Times

Figure 6.2.: Simulation results for the mean transition path time τTP(xB|xA) (filled
symbols) and Kramers mean first passage time τKFP(xB|xA) (open symbols) as a func-
tion of mass m for three different barrier heights U0. The analytic overdamped limits
Eqs. (6.2) and (6.3) are included as dashed horizontal lines and the inertial limits [270]
for τTP

m (xB|xA), Eq. (6.5), as solid lines. The empirical interpolation according to
Eq. (6.6) for the transition path times is shown by dotted lines.
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6. Transition Paths Are Hot

represented as dotted lines in Fig. 6.2. The crossover is located at m/(γ2L2/kBT ) ≈
0.11, 0.08, 0.06 for U0/kBT = 1, 3, 5 respectively, and thus shifts towards smaller masses
with increasing barrier height U0. As expected, deviations of the transition path times
from the overdamped predictions are at small masses around m/(γ2L2/kBT ) ≈ 0.01
much larger than for the mean first passage times.

6.3. Velocity Distributions and Transition Path
Temperatures

The velocity distributions of transition paths at the initial position xA are shown in
Fig. 6.3(a) and (b) for two different masses (red bars). Evidently, they differ substan-
tially from the simulated equilibrium velocity distribution calculated using all paths
(i.e. transition paths and paths that return to xA without reaching xB), shown as blue
circles, which is well described by the expected flux-weighted Maxwell distribution [271]

P eq(v) ∝ |v| exp
(
−mv2/2kBT

)
(6.7)

shown as solid lines. Clearly, transition path velocity distributions at xA are significantly
shifted towards higher velocities and thus higher kinetic energies. To characterize this
shift, we introduce the position dependent effective temperature of transition paths via
the second moment of velocities evaluated at position x0,

kBT
TP
eff (x0) =

1

2
m
〈
v2(x0)

〉TP
. (6.8)

Note that the factor 1/2 in Eq. (6.8) compared to the position-independent ensemble av-
erage stems from the additional factor |v| in the distribution Eq. (6.7) (see Appendix E).

In Fig. 6.3(c), the effective transition path temperature at the initial position is shown
to reach multiples of the ambient temperature for higher barrier and large mass. This
is intuitively clear, since for small friction, the initial kinetic energy of a transition
path has to be large enough to reach the barrier top. Interestingly, for small mass the
initial temperature converges to a value of TTP

eff (xA)/T ≈ 1.3 independent of barrier
height. This can be rationalized by the following approximative argument for a flat
potential, i.e. U(x) = 0. For times larger than the inertial timescale, t � τm = m/γ ,
the solution x(t) of the Langevin equation (6.1) with initial conditions x(0) = xA and
v(0) = v0 obeys 〈x(t)〉 = xA + mv0/γ and 〈v(t)〉 = 0 and the motion becomes purely
diffusive. Starting from this position, the probability to exit the interval at xB is given
by the splitting probability calculated according to diffusive dynamics [272], φB(v0) =
(〈x(t)〉 − xA)/(xB − xA) = mv0/γ(xB − xA), which obviously depends on the initial
velocity v0. Hence, the overall probability to exit the transition region at xB, which is
the transition path probability itself, is given by the product PTP(v0) = P eq(v0)φB(v0).
From this the second moment of the initial velocity of the transition-path ensemble
follows as 〈

v2(xA)
〉TP

=

∫
dv v2PTP(v)∫
dv PTP(v)

=
3

2

〈
v2(xA)

〉
(6.9)
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6.3. Velocity Distributions and Transition Path Temperatures

(a) m = 0.1 γ2L2/kBT (b) m = 10 γ2L2/kBT

Figure 6.3.: (a) and (b) Velocity distributions of transition paths PTP(v) (red bars) at
the initial position x0 = xA = −L compared to the velocity distribution of all paths
P eq(v) (circles) for U0 = 3 kBT and two different masses. The expected equilibrium
distribution in Eq. (6.7) is shown as solid lines. (c) Effective transition path temperature
TTP

eff as defined via the second moment of the velocity distribution in Eq. (6.8) at the
initial position x0 = xA = −L as a function of mass m. (d) TTP

eff at the barrier top
(x0 = 0). The data points are connected by lines to guide the eye.
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which is found to be larger than the result for the entire path ensemble by a factor
of 3/2 independent of mass. We conclude that TTP

eff (xA)/T ≈ 3/2 and thus the veloc-
ity distribution is different from the equilibrium one even for m → 0. However, we
emphasize that in the over-damped limit the velocity distribution of transition paths
quickly relaxes back to the equilibrium one as the paths leave the initial position. A
more detailed derivation is given in Appendix E.

In Fig. 6.4, the evolution of TTP
eff (x0) is shown as a function of x0 along the transition

path for U0 = 3 kBT and different masses (corresponding plots for U0 = 1 kBT and U0 =
5 kBT can be found in the Appendix E). For the smallest mass m = 0.001 γ2L2/kBT ,
TTP

eff (x0) relaxes down to the equilibrium temperature very quickly. However, already
for m & 0.01 γ2L2/kBT , TTP

eff (x0) exhibits significant departures from the ambient tem-
perature throughout the entire spatial region.

In the inertial limit, m/(γ2L2/kBT ) → ∞, the profile of the local transition path
temperature can be understood again from conservative dynamics, i.e. by calculating〈
v2(x0)

〉TP
from the high energy tail of the flux-weighted Maxwell distribution:〈

v2(x0)
〉TP

=

∫ ∞
∆U

dE e
− E

kBT v2(E)

/∫ ∞
∆U

dE e
− E

kBT , (6.10)

with ∆U ≡ U0 − U(x0) and v(E) ≡ (2E/m)1/2. Using Eq. (6.8), we obtain

kBT
TP
eff (x0) = kBT + U0 − U(x0), (6.11)

which is shown as a dashed line in Fig. 6.4 and indeed constitutes the upper limit for
large mass. Intuitively speaking, the local thermal energy kBT

TP
eff (x0) corresponds to

the barrier energy minus the local potential energy plus the ambient thermal energy
kBT . Consequently, the transition path thermal energy at the barrier top never falls
below kBT , i.e., transition paths are never cooler than the reservoir.

For all masses, TTP
eff (x0) is lowest at the barrier top at x0 = 0, but interestingly for

intermediate masses, it is still higher than the equilibrium temperature. TTP
eff (x0) at

the barrier top x0 = 0 is shown in Fig. 6.3(d) as a function of mass. We observe a
non-monotonic behavior, with a maximum around m ≈ 0.1 γ2L2/kBT for the energy
barriers considered.

6.4. Transition Path Shapes

The ensemble of transition paths can further be characterized by its mean shape,
τTP

shape(x0|xA), defined as the mean time it takes a transition path to reach the point
x0 from the initial position xA before reaching the target state xB. In simulations, the
mean shape of transition paths is calculated by averaging over all crossing events of
the entire transition-path ensemble as indicated in Fig. 6.1(a) by circles. Each crossing
event enters with the same weight for the trajectory analysis. In the overdamped limit,
this definition turns out to be equivalent to taking only the last crossing event into ac-
count, as has been shown recently by an exact calculation [272]. Hence, a transition path
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6.4. Transition Path Shapes

Figure 6.4.: Effective transition path temperature TTP
eff as a function of position x0 for

fixed barrier height of U0 = 3 kBT and different masses. The data points are connected
by solid lines to guide the eye. The inertial limit according to Eq. (6.11) is shown as a
dashed line.
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6. Transition Paths Are Hot

Figure 6.5.: Mean transition path shape τTP
shape(x0|xA) for a barrier height of U0 = 3 kBT

as a function of the position x0 for different masses m in (a) semi-logarithmic and (b/c)
linear representation. The overdamped limit Eq. (6.13) is included as a dashed line,
the inertial limit Eq. (6.12) is shown as solid lines.

shape is in general time-asymmetric, i.e. τTP
shape(x0|xA) 6= τTP

shape(xB|xA)− τTP
shape(x0|xB),

which reflects the diffusive character of transition paths. In contrast, the shape of
transition paths with only one crossing event, as realized by conservative dynamics in
the inertial limit, are time symmetric, as will be demonstrated below. The simulation
results are shown in Fig. 6.5 for a barrier height of U0 = 3 kBT (corresponding results
for U0 = 1 kBT and U0 = 5 kBT can be found in Appendix E).

In the inertial limit, m/(γ2L2/kBT )→∞, the transition path shape τTP
shape(x0|xA) is

simply given by the time it takes the deterministic transition path to go from the initial
position xA to the intermediate position x0, we thus obtain

τTP
shape,m(x0|xA) = τTP

m (x0|xA) (6.12)

with τTP
m (x0|xA) given by Eq. (6.5). Indeed, for m/(γ2L2/kBT ) ≥ 1 the analytic result

according to Eq. (6.12), shown in Fig. 6.5 as solid lines, describes the simulated shapes
very well. In particular, the above-mentioned time symmetry of transition paths with
m/(γ2L2/kBT )� 1 is clearly seen in the linear plot in Fig. 6.5(c). In the overdamped
limit, on the other hand, the mean shape of a transition path can be expressed as [272]

τTP
shape,γ(x0|xA) = τTP

γ (xB|xA)− τTP
γ (xB|x0), (6.13)

with τTP
γ (x0|xA) given by Eq. (6.3). This result, which is shown in Fig. 6.5 as a broken

line, describes the simulation data for small masses very well. The time-asymmetry of
transition paths with m/(γ2L2/kBT )� 1 is clearly seen in the linear plot in Fig. 6.5(b).
Obviously, the analytic limits Eqs. (6.12) and (6.13) constitute upper and lower limits of
the simulation data. We conclude that although the effective temperature of transition
paths is significantly increased for large mass, the effect on the mean shapes is less
obvious.
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6.5. Conclusions

Our work demonstrates that the ensemble of transition paths does not obey thermody-
namic local equilibrium and is rather characterized by a local effective temperature that
is considerably higher than the ambient temperature, in particular for large mass and
high barriers. Hence, as one intuitively would expect, the ensemble of transition paths
corresponds to a subset of heated trajectories. This is the case because the transition
path time is typically much shorter than the mean first passage time, which makes
transition paths more susceptible to short-time inertial effects. We show that the main
parameter controlling the departure from equilibrium besides the barrier height is the
rescaled mass m/(γ2L2/kBT ) = τm/τD, which can be expressed as the ratio of the
inertial timescale τm = m/γ and the diffusive timescale τD = L2/D. Thus, the non-
equilibrium effects we are predicting are observable whenever the mass m is large, the
friction coupling γ to the solvent is weak, or when the spatial extend L of the transition
region is small. This applies in particular to ultra-fast molecular kinetics that were pre-
viously demonstrated to be inertial rather than overdamped [267–269]. Alternatively,
our predictions could be tested by direct experimental observations of colloidal dynam-
ics [273–275]. For a colloid of radius R, the Stokes friction obeys γ ∝ R, whereas the
mass scales as m ∝ R3, we therefore find for the rescaled mass m/(γ2L2/kBT ) ∝ R/L2.
Hence, one would have to tailor experimental systems with sufficiently short barrier
length L compared to the colloid radius R to observe significant influence of inertia.
Even in rather damped systems with m ≈ 0.01 γ2L2/kBT , significant departures from
equilibrium are observed along the full path, while for sufficiently high damping with
m . 0.001 γ2L2/kBT , non-equilibrium effects are only observed for the initial segment
of transition paths.

For more complex systems with many conformational degrees of freedom, it remains
to be investigated how the effective temperature of orthogonal degrees of freedom is
determined by the coupling to the reaction coordinate. In the context of transition
path sampling techniques, our results might be helpful for designing efficient biased
shooting move distributions and thereby improve the performance [49, 276].
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Chapter 7

Summary, Conclusions and Outlook

In the present thesis, several fundamental and previously unknown properties of molec-
ular friction and dynamics have been revealed by new theoretical approaches, which
combine molecular dynamics simulations with stochastic and analytical models. The ex-
perimental relevance of dichroic infrared continuum bands to determine the orientation
of non-spherical protonated water clusters has been identified. We have demonstrated
for the first time that the friction constant of a small molecule in water depends on the
confinement strength, and the mass dependence of molecular aqueous friction has been
characterized including the massless and infinite mass limits. The long-known insensi-
tivity of the dihedral angle isomerization rate, a crucial reaction in polymer dynamics
and protein folding, has been shown to be due to internal friction of the dihedral angle
itself, in contrast to speculations from the literature. Furthermore, we have found that
the velocity distributions of transition paths deviate significantly from the equilibrium
distribution.

In Chapter 2, infrared spectra for protonated and unprotonated water chains, discs
and droplets have been calculated from ab initio molecular dynamics trajectories. In the
presence of an excess proton, we have obtained a pronounced infrared continuum band
over a broad frequency range for all three water cluster geometries. This continuum
band exhibits significant anisotropy for chains and discs with the infrared absorption
being maximal when the infrared light is polarized along the direction of maximal
extension of the water cluster. The local spectral analysis of the protonated water
chain has shown that the continuum band arises from polarization fluctuations of the
excess proton, which is predominantly observed in a Zundel complex as it moves axially
along the chain, whereas the electronic polarizability gives rise to a moderate, but
long-ranged amplification of the polarization fluctuations. These results have been
used to conclude from experimental polarization-resolved infrared spectra (recorded by
Mattia Saita under supervision of Prof. Dr. Joachim Heberle at the Freie Unversität
Berlin) that the protonated water cluster responsible for the continuum band of the
proton-pumping protein bacteriorhodopsin is oriented perpendicularly to the proton
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pumping direction. This demonstrates the potential of polarization-resolved infrared
absorption spectroscopy as a tool to probe the geometry and orientation of protonated
water clusters in proteins.

These findings are particularly relevant, because proton transfer processes are a part
of all essential biological metabolic pathways and many technological applications such
as fuel cells and electrochemical devices [18–20]. Water is a crucial ingredient in such
processes, since it solvates (and thus stabilizes) the proton and furthermore mediates
fast proton transfer reactions. In fact, all proton-conducting proteins contain embedded
water clusters and water chains [112, 125–127], which are therefore believed to play an
active role. Owing to the small size of the proton and its highly dynamic nature, the
precise mechanisms by which water clusters direct proton transport is still intensely
debated. Since excess protons give rise to the characteristic broad infrared continuum
bands [128, 132], infrared spectroscopy has been instrumental for our understanding
of the protonation dynamics in proteins. Our findings show that polarization-resolved
infrared spectroscopy in conjunction with ab initio simulations has the potential to
unravel the proton transport mechanism in anisotropic systems. The only experimental
condition is that oriented samples can be prepared, which however is possible for most
proton-conducting proteins [165–169], for proton-conducting synthetic membranes [172]
and also other meso-structured materials that contain protons, such as hexagonal and
lamellar lipid phases [170, 171]. Therefore, we envision polarization-resolved infrared
spectroscopy to become an important tool for the study of proton transport.

Using a novel method to extract the friction memory function from molecular dy-
namics simulations, we have shown in Chapter 3 that the solvent friction of a strongly,
harmonically confined methane molecule in water increases by 60% compared to its
free-solution value, which is caused by an amplification of the slowest component of
the memory function. The friction enhancement occurs for potential strengths typical
of physical and chemical bonds and is accompanied by a significant slowing down of
the hydration water dynamics. Thus, the solvent friction acting on molecular solutes is
not determined by solvent properties and solute-solvent interactions alone but results
from the coupling between solute and solvent dynamics and thereby can be tuned by
an external potential acting on the solute. The dynamic scaling arguments we have
presented in this thesis suggest the existence of similar effects also for macromolecular
solutes provided that the solution viscosity is sufficiently enhanced.

Our analysis shows that Stokes’ prediction for the friction coefficient of a sphere, a
cornerstone of hydrodynamics, is incomplete on the molecular scale since it neglects
the coupling between solute and solvent motion, an effect that clearly goes beyond
hydrodynamic theory. In all previous theoretical and experimental works it has been
tacitly assumed that the friction coefficient of a molecule does not depend on whether
the molecule is bound to a second molecule, in other words, whether its motion is
confined in an external potential. We have shown that this assumption is wrong and
that the friction coefficient of a methane molecule in water sensitively depends on the
strength K of an external harmonic confining potential and that this dependence is
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quite sizeable, and occurs in a range of K that is in between weak physical bonds (such
as van-der-Waals bonds) and covalent bonds. It is thus relevant for many experimental
molecular systems. Apart from the basic scientific interest, these results constitute a
direct explanation of the experimental finding that the hydration shell dynamics around
a protein depends on protein flexibility [215] as well as on its local structural rigidity
[212]. The results also explain previous simulation results for the friction coefficient of
frozen (i.e. infinite mass) ions in water, which have shown significant deviations from the
friction of freely diffusing ions [199]. More generally, the coupling between the motion of
molecular solutes and the dynamics of the hydration shell is a key question in biophysics
and has been studied experimentally by various techniques [180, 181, 203, 210–216].
Clearly, our results may play a role for future interpretations of such experiments.

Motivated by these findings, we have shown in Chapter 4 that the friction constant
of a freely diffusing methane molecule in explicit water depends on the mass of the
molecule, ranging from 0.9 times the physical methane friction in the massless limit
to about 1.6 times the physical value in the infinite mass limit. We have explained
the molecular origin of this effect by employing a generalized Langevin model, and
extracted the mass dependence of the solvent memory kernel. We have demonstrated
that only with the mass-dependent memory kernels one obtains perfect agreement be-
tween simulation results and analytic predictions for both mean-square displacements
and force autocorrelation functions. The memory kernels, which describe the solvent
degrees of freedom, decay significantly slower with increasing solute mass. As a mi-
croscopic interpretation, we have shown that the mean escape time of water molecules
from the first hydration shell increases monotonically with solute mass by up to a factor
of three over the solute mass range considered. Our results allow a direct prediction of
diffusion constants for physical methane isotopes, and our scaling analysis suggests that
mass-dependent friction will be relevant also for larger solutes, in particular in highly
viscous solvents.

Mass-dependent diffusion can be directly measured [209, 234] and the isotope ratios
of noble gases play a role for the investigation of groundwater in geochemistry because
of this effect [223–228]. And indeed, in a similar fashion, our predicted diffusion con-
stant ratios for methane isotopes may help to better understand bacterial methane
isotope fractionation [238–240]. However, our main result is the characterization of
this effect over the complete relevant mass range including the limits of a massless
and an infinitely heavy particle, with an additional discussion of scaling arguments for
larger solutes. Therefore, our findings allow to estimate the relevance and magnitude
of mass-dependent friction for a variety of systems.

The mass and confinement dependence of the friction share a common feature: the
heavier and more confined particles respond less to the water molecules, which in both
cases leads to an increase of the molecular friction. This suggests that a friction increase
and a slowing down of hydration shell dynamics as a consequence of a reduced response
to solvent motion is a universal, previously not recognized pattern on the molecular
scale.
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By analysis of the dihedral friction of water-solvated butane for varying water vis-
cosity, we have demonstrated the existence of an internal friction contribution in Chap-
ter 5. This has been made possible by a newly developed method to extract the friction
memory function directly from simulations in the presence of an arbitrary free-energy
landscape. At normal water viscosity the internal friction has turned out to be eight
times larger than the solvent friction and it thus completely dominates the effective
friction. By comparison with simulations of a constrained butane molecule that has
the dihedral as the only degree of freedom, we have demonstrated that internal friction
comes from the six additional degrees of freedom in unconstrained butane that are or-
thogonal to the dihedral angle reaction coordinate. While the insensitivity of butane’s
dihedral dynamics to the water viscosity is solely due to the presence of internal fric-
tion, inertial effects crucially influence the resultant dihedral barrier crossing rates. In
contrast, non-Markovian effects due to the finite memory time are present but do not
significantly influence the dihedral barrier crossing rate of butane. These results not
only answer the question about the character of dihedral dynamics in small molecu-
lar systems such as butane, they also have important implications for the folding of
polymers and proteins.

This is particularly relevant, since in the field of polymer dynamics and protein
folding, the existence of internal friction is intensely and controversially discussed
[8, 10, 11, 25–29, 52, 117, 119–122, 241, 243–246]. The dihedral angle dynamics of
butane plays a paradigmatic role in this debate, because it is the minimal system that
shows a conformational transition. The known insensitivity of the dihedral angle iso-
merization rate to the solvent viscosity has been argued to be related to internal friction
in protein folding [25, 119, 121–124], but the microscopic mechanism behind the dihe-
dral kinetics has remained unclear. All previous experimental and theoretical studies
have estimated internal friction rather indirectly from reaction times [119–122, 241],
which introduces substantial uncertainties since many factors besides friction influence
reaction times. The new method used in this thesis allows to directly extract the fric-
tion memory kernel for a reaction coordinate in a free-energy landscape from simulation
trajectories. This advancement has enabled us to quantify the internal friction contri-
bution to the total friction, and thus, to settle this long-lasting question. Our results
imply that internal friction will influence the folding dynamics whenever dihedral an-
gle isomerizations constitute rate-limiting steps. Therefore, internal friction will arise
naturally for almost all complex molecules in solvent. Furthermore, they demonstrate
that the hydrodynamic estimate for the effective friction of conformational transitions
fails even for the simplest possible case.

In the last part of this thesis, in Chapter 6, transition paths in a one-dimensional
double-well potential have been studied by Brownian dynamics simulations. For large
mass and high barrier the velocity distribution of transition paths has been found
to deviate significantly from the equilibrium Maxwell distribution, and their effective
temperature at the initial position in the potential well has been shown to reach many
times the ambient temperature. The effective transition path temperature at the barrier
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top is only slightly increased and has turned out to be maximal at intermediate values
of the mass. An analytic expression for the temperature evolution along a transition
path in the high-mass limit has been derived.

The result that transition paths are significantly hotter than ambient temperature,
where the temperature increase depends on the ratio of particle mass and friction co-
efficient, constitutes a crucial step towards a complete theoretical understanding of
transition paths. In particular, this result provides the link between stochastic and
thermodynamic properties of the transition path ensemble. In addition to the impor-
tance of the transition path concept for any two-state reaction, the findings can be
confronted with single-molecule experimental observations [258–263].

For these reasons, the present thesis constitutes an essential step towards a complete
understanding of dynamic molecular processes in aqueous solutions, and it sheds light
on the complex and subtle interplay of friction, inertial and non-Markovian effects on
the molecular scale. In fact, several of the new findings have a very fundamental and
basic character.

Thus, they motivate a variety of prospective projects, in particular, they raise the
question how the revealed mechanisms influence more complex systems. Moreover,
the successful application of the newly developed methods hints at their potential to
understand additional dynamic processes. In the following, we present a list of research
perspectives based on the results of the present thesis.

Stochastic description of proton motion. A promising follow-up project that
combines several ideas from this thesis is the stochastic description of the center of
charge motion in a linear protonated water chain, but also possibly in other protonated
water clusters, via a generalized Langevin equation. The extraction method for the
computation of memory kernels described in Chapter 5 is well suited for the analysis of
the center of charge trajectory computed from the ab initio simulations. Such a model
will provide a link between experimentally measurable spectra, memory friction and
even transition paths, since the fast proton diffusion in water is only possible due to
frequent barrier-crossing reactions [16, 17].

Infrared spectral signatures of OH− defects. Despite the intuitive notion of
an apparently similar transport mechanism compared to hydrated excess protons, the
diffusion of OH− defects in water is different and less well understood [277–279]. As
expected due to the charge transfer, they show similar continuum absorption features
in the infrared spectrum as observed for excess protons [277, 280]. Therefore, a study
of the spectral signatures (and other properties) of OH− defects in small water clusters
may yield new important insights. A comparison to the spectra of protonated water
clusters might be interesting for systems where it is unknown whether an observed
continuum feature is due to an excess proton or due to a proton defect.
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7. Summary, Conclusions and Outlook

Infrared spectral signatures of other protonated donor-acceptor pairs. In
the current study, we restricted the analysis to continuum bands caused by protonated
water clusters. However, even for bacteriorhodopsin also an alternative mechanism that
explains the continuum band by a shared proton between two glutamate residues has
been proposed [137]. Based on our results, it appears likely that such a scenario corre-
sponds to an increased infrared absorption along the axis connecting the two residues.
Nonetheless, for a better interpretation of continuum bands, it will be interesting to
compare the polarization-resolved spectral signatures of typical proton donor-acceptor
combinations found in proton-conducting proteins.

Confinement-dependent friction. The confinement-dependence of the friction con-
stant has been demonstrated using a spherical test particle. The fact that confinement-
dependent friction is observed in this simple case suggests that the effect is universal,
and the upscaling arguments described in Chapter 3 imply that it is expected to be
relevant for larger particles in more viscous solvents, too. Thus, simulations and direct
experimental investigation of larger and more complex confined solutes might yield
fruitful results. In addition to the obvious variation of solute and solvents, it will be
interesting to investigate the water dynamics in the presence of larger structures with
varied flexibility. Indeed, a previous simulation study reported slowed-down water dy-
namics around a completely frozen protein [206]. With the findings from this thesis
in mind, it might be possible to disentangle the contributions to the slowing down
of hydration water that are due to the chemical properties like roughness, charge or
hydrophobicity from dynamic effects near solvated molecular surfaces.

Parametrization of generalized Langevin models. The method for the parame-
trization of generalized Langevin equations developed in Chapter 5 works for arbitrary
potential energy landscapes, without additional assumptions. Thus, it can be applied
to a variety of systems. This is particularly interesting since the generalized Langevin
equation holds universally for projected dynamics of Hamiltonian systems [60], but also
because of the numerous applications from different fields, where generalized Langevin
models have been employed [63–72]. One could, for example, apply this parametrization
method to projected dynamics of larger polymers and proteins. For this, a crucial step
will be to understand how the long-time tails of the memory kernels can be resolved if
the short-time information is missing. Once that is understood, properly parametrized
Langevin models might be suited to describe relevant non-Markovian aspects of protein
folding.

Internal friction in proteins. For various proteins, internal friction contributions
have been found experimentally [10, 25–29] or by simulations [8, 120, 241]. The re-
sult from this thesis that the dihedral angle isomerization reactions are dominated by
internal friction themselves provides a different view onto this problem. It should be
investigated how this effect affects the protein dynamics. Freezing internal protein de-
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grees of freedom without altering the folding pathway is probably not possible. Instead,
one approach could be to use the memory kernels computed for butane to parametrize
empirical internal friction models [241], and then compare the results to simulations,
or if possible, to experiments.

Transition paths in the presence of memory friction. The characterization of
the transition path ensemble via effective temperatures and transition path shapes is
based on an instantaneous friction model. In a straightforward extension, it would
be interesting to investigate the influence of memory friction on the transition path
ensemble, in particular, because even in one dimension, barrier-crossing in the presence
of memory friction is quite complicated [281–283],[vi]. The simulations could be carried
out for a single-exponential memory kernel using the method described in Appendix
D.2, or with its straight-forward generalization to multi-exponential memory kernels.
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Appendix A

Orientation of Non-Spherical Protonated
Water Clusters Revealed by Infrared Ab-
sorption Dichroism

A.1. Calculation of Infrared Spectrum Contributions from
the Nuclear Motion

The spectral contributions of nuclear motion neglecting electronic polarization effects
(n) shown in Fig. 2.3 for the protonated narrow chain are calculated from the ab initio
trajectories by assigning effective charges to the nuclei, but ignoring the electronic
degrees of freedom. For protonated clusters, this is a crude approximation since the
effective nuclei charges near the excess proton differ from the effective charges elsewhere.
However, the total absorbance of unprotonated clusters is small in the frequency range
of the continuum band between 2000 cm−1 and 3000 cm−1. This observation motivates
our choice qH = +e and qO = −2e. The total excess charge of the system is thus correct
and localized near the excess proton. The contribution of neutral water molecules is
overestimated, which explains why the vibrational peaks are too large compared to the
n+e calculation including electronic degrees of freedom.

A.2. Zundel Occupation Probabilities

We identify Zundel states based on the asymmetric stretch coordinate δ = dO1H−dO2H,
where dO1H and dO2H denote the distances between a proton and the two nearest oxygen
nuclei O1 and O2 [17], see Fig. A.4 for an illustration. We define a Zundel complex
by the criterion |δ| < δthr. In Fig. A.5, the Zundel occupation probability calculated
from the ab initio trajectories is given as a function of the threshold δthr for all four
protonated water cluster geometries. Despite the fact that there is no canonical choice
for δthr, the curves clearly show that the Zundel state is occupied significantly more often
in the linear geometries than in discs and droplets. Note that we observe the lowest

83



A. Orientation of Non-Spherical Protonated Water Clusters Revealed by Infrared
Absorption Dichroism
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Figure A.1.: Individual x, y and z contributions to the infrared spectra computed from
ab initio trajectories for (a) a narrow chain and (b) a wide chain with (solid lines)
and without (dashed lines) an excess proton. The differences between the x and y
contributions are an estimate of the magnitude of statistical errors.
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A.2. Zundel Occupation Probabilities
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Figure A.2.: Individual x, y and z contributions to the infrared spectra computed from
ab initio trajectories for (a) a disc and (b) a droplet with (solid lines) and without
(dashed lines) an excess proton. The differences between the x, y (and z for the droplet)
contributions are an estimate of the magnitude of statistical errors.
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A. Orientation of Non-Spherical Protonated Water Clusters Revealed by Infrared
Absorption Dichroism
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Figure A.3.: Polarization-dependent protonated-unprotonated difference spectra com-
puted from the ab ab initio trajectories for (a) a narrow chain, (b) a wide chain, (c) a
disc and (d) a droplet.
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A.3. Spectral Projection of Zundel Complex Contributions

Zundel occupation number for the disc system, suggesting that the Eigen complex is
stabilized in discs compared to bulk water.

For completeness, we show in Fig. A.6 the two-dimensional probability distributions
ρ(δ, dO1O2) of the asymmetric stretch δ and the oxygen distance dO1O2 [17]. The plots
confirm the above conclusion that the Zundel state, which corresponds to small |δ| and
small dO1O2 , is realized more frequently in chains than in discs and droplets.

A.3. Spectral Projection of Zundel Complex
Contributions

For the projection of the spectrum on the Zundel ensemble, we define an instantaneous
projection operator P inst

Z (t) that selects all nuclei belonging to a Zundel complex, based
on the asymmetry coordinate δ as discussed in section A.2. Here we choose |δ| < δthr =
0.05 Å to identify a Zundel complex. The nuclei belonging to a Zundel state are the
central excess proton, the two neighboring oxygen nuclei O1 and O2 as well as the
four additional protons coordinated to the oxygen nuclei O1 and O2. When no Zundel
complex is found, we define P inst

Z (t) = ∅. Clearly, this definition of P inst
Z (t) depends on

the choice of δthr. Furthermore, the resulting trajectory pieces are in general too short
for a proper spectroscopic analysis. Motivated by the fact that in the trajectories rapid
oscillations of the excess proton between two neighboring water molecules are often
observed, we define a retarded Zundel operator P ret

Z (t) by keeping the nuclei identified
by P inst

Z (t) until a new Zundel state is found, i.e.

P ret
Z (t) = P inst

Z (max
{
t′ | t′ ≤ t and P inst

Z (t′) 6= ∅
}

). (A.1)

From the resulting set of trajectories after projection by P ret
Z (t), we calculate the center-

of-charge trajectory for the retarded Zundel ensemble from the trajectories of the nuclei
and the coordinated Wannier centers. Since the nuclei indices change due to the proton
hopping process, these trajectories are not continuous. To account for this, we make
the trajectory continuous by subtracting the corresponding offsets. We use these tra-
jectories to compute the spectra of the Zundel state (included in Fig. 2.3) for both the
n+e and the n ensemble. We remark that in a recent publication a similar method has
been used to calculate infrared spectral signatures of protonated water clusters in bulk
water [162].

A.4. Determination of the Number of Water Molecules
and Confinement Potential Strengths for the Disc
and the Droplet Simulations

Disc. For the disc, the confinement potential strength is determined from two-dimen-
sional classical water simulations using the GROMACS 4.6 [189] simulation package
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A. Orientation of Non-Spherical Protonated Water Clusters Revealed by Infrared
Absorption Dichroism
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Figure A.4.: Illustration of a Zundel cation and the asymmetric stretch coordinate
δ = dO1H − dO2H.
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Figure A.5.: Occupation probability of the Zundel state as a function of the asymmetric
stretch threshold δthr for the different protonated water cluster geometries.
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A.4. Determination of the Number of Water Molecules and Confinement Potential
Strengths for the Disc and the Droplet Simulations
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Figure A.6.: The probabilty distribution ρ(δ, dO1O2) for the proton with the smallest
asymmetric stretch with respect to its two nearest oxygen nuclei. Small |δ| and small
dO1O2 correspond to Zundel states.

and the SPC/E [192] water model. The oxygen atoms are constrained to a two-di-
mensional, periodic plane along the x and y direction (the plane has dimensions of
3.5 nm × 3.5 nm and is embedded in a 3.5 nm × 3.5 nm × 4 nm box). We simulate an
NPT ensemble for 5 ns using a v-rescale thermostat [193] at T = 300 K and a Berendsen
barostat [194] at P = 1 bar coupled only to the x and y directions. In Fig. A.7(a), we
show the unnormalized radial distribution function dN(r)/dr obtained from the last
1.5 ns, where N(r) denotes the number of oxygen atoms within radius r with respect
to an oxygen atom. The peak structure implies that within r0 ≈ 0.64 nm, two circular
shells of water around a central molecule are present. Integration of the data yields

∫ r0

0
dr
dN(r)

dr
≈ 15, (A.2)
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A. Orientation of Non-Spherical Protonated Water Clusters Revealed by Infrared
Absorption Dichroism
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Figure A.7.: Unnormalized radial distribution functions dN(r)/dr for (a) a two-dimen-
sional periodic SPC/E water plane and (b) three-dimensional bulk SPC/E water, where
N(r) denotes the number of oxygen atoms within radius r with respect to an oxygen
atom. The radii r0 are indicated by arrows.

i.e. on average 15 oxygen atoms are found within r0. The confinement potential strength
Kxy = 30 kJ mol−1 nm−2 for the ab initio simulations is chosen so that the 15 water
molecules typically stay within the radius r0 ≈ 0.64 nm, implying that the planar water
density in the ab initio simulation roughly agrees with the value from the classical
simulation with periodic boundary conditions.

Droplet. For the droplet, we simulate a cubic water box of volume (3 nm)3, with
isotropic pressure [194] and temperature [193] coupling. We show dN(r)/dr in Fig.
A.7(b) and find that two hydration shells of water are found within a radius r0 ≈
0.57 nm, corresponding to 26 water molecules. To confine the droplet in the ab initio
simulations, we choose a force constant of Kr = 40 kJ mol−1 nm−2, which yields the
same density as in the classical simulation of bulk water.

90



Appendix B

External Potential Modifies Friction of
Molecular Solutes in Water

B.1. Estimate of the Contribution of the Repulsive
Interaction between Methane and Water to the
Memory Kernel

Here we show that repulsive methane-water interactions give rise to a relaxation time
that matches the shortest memory timescale τ1. The force autocorrelation function of
an undamped harmonic oscillator is

〈F (0)F (t)〉〉 ∝ cos (ωrelt) , (B.1)

where the characteristic frequency is

ωrel =
√
Krel/mrel, (B.2)

and
mrel =

mH2OmCH4

mH2O +mCH4

(B.3)

denotes the relative mass of the molecule pair. We determine the force constant Krel

from the free energy F(r) as a function of the methane-water distance r, shown by
a black line in Fig. B.1, which is obtained from the radial distribution function g(r)
shown in Fig. 3.1(b) via

F(r) = −kBT log g(r). (B.4)

Note that F(r) is very anharmonic even on energy scales of the order of the thermal
energy kBT , so a harmonic fit to the entire function F(r) is not useful. To extract
the fastest timescale of particle motion in this free energy profile, we fit a harmonic
potential

U(r) =
1

2
Krel(r − r0)2 (B.5)
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Figure B.1.: The free energy F(r) associated with the distance r between the methane
and surrounding water molecules together with a harmonic fit to the repulsive part (red
line) and a harmonic fit around the free energy minimum (blue line).

to the repulsive part in the range 0.32 nm < r < 0.36 nm only, which is denoted by the
red line in Fig. B.1. The result is Krel = 3, 548 kJ/(mol nm2). To obtain the fastest
timescale τ1 of the memory kernel defined in Eq. (3.7), we demand that the stretched
exponential function in Eq. (3.7) and the oscillatory function in Eq. (B.1) have both
decayed to 1/e, which is equivalent to

cos (ωrelτ1) =
1

e
, (B.6)

from which we obtain with our estimate for Krel and mrel given by Eq. (B.3) the
timescale

τ1 =
1

ωrel
cos−1

(
e−1
)

= 58 fs, (B.7)

which holds for unconfined methane. If the methane molecule is frozen, which corre-
sponds to mCH4 →∞, we use mrel = mH2O and obtain

τ1 = 85 fs. (B.8)

These times are included in Fig. 3.3(b) as red arrows and match the simulated times
quite nicely.

For comparison, if we repeat the analysis but use instead of the fit to the repulsive
part of the free energy a harmonic fit around the minimum of the free energy F(r),
denoted by the blue line in Fig. B.1, we obtain the timescales τ1 = 119 fs for free
methane and τ1 = 174 fs for frozen methane. These timescales are significantly larger
than the fastest timescale of the memory function. We conclude that the fast initial
decay of the memory function is indeed caused by repulsive interactions between the
solute and the solvent molecules.
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B.2. Confinement-Dependent Friction for a Hydrated Water Molecule

B.2. Confinement-Dependent Friction for a Hydrated
Water Molecule

To demonstrate that the confinement dependence of the friction coefficient is not limited
to hydrophobic solutes, we simulate a confined SPC/E [192] water molecule solvated in
a cubic SPC/E water box with L = 4.5 nm for 250 ns for each K. We present in Fig. B.2
the solvent force autocorrelation functions Csol

FF (t) and the running integrals Isol
FF (t) of

the confined water molecule for different potential strengths K between 25 kJ/(mol nm2)
and 250, 000 kJ/(mol nm2). As shown in section 3.1, the height of the plateau of Isol

FF (t)
corresponds to the friction constant, i.e.

γ =
1

kBT
lim
t→∞

Isol
FF (t). (B.9)

We conclude from the K-dependence of the heights of the plateaus of Isol
FF (t) shown in

Fig. B.2(b) that also the friction coefficient of water increases significantly with rising
confinement potential strength.

B.3. Decomposition of the Friction Coefficient

Here, we decompose the methane friction coefficient into contributions from different
terms in the memory kernel according to γ =

∑
i γi with the definition

γi = Ai

∫ ∞
0

dt exp

(
−
∣∣∣∣ tτi
∣∣∣∣αi
)
, (B.10)

where Ai, αi and τi are the parameters of the memory kernels defined in Eq. (3.7).
The contributions γi are shown as a function of K for the system with L = 4.5 nm in
Fig. B.3 together with the total friction γ and the sum of the short time contributions
γ1 + γ2. The results demonstrate that the total friction coefficient is dominated by
the long time contribution γ3, whereas the sum of the short time contributions γ1 + γ2

is constant. Since the timescale τ3 is rather constant as a function of K as shown in
Fig. 3.3(b), we conclude that the change of γ with K is solely due to an increase of the
amplitude A3 with increasing K.

B.4. Correlation Functions and Alternative Methods

B.4.1. Correlation Functions for Methane

In Fig. B.4 the (normalized) autocorrelation functions CFF (t) = 〈F (0)F (t)〉, Cẋẋ(t) =
〈ẋ(0)ẋ(t)〉 and Cxx(t) = 〈x(0)x(t)〉 are presented for the medium system size (L =
4.5 nm) and five different harmonic spring constants K. We observe that with larger
spring constant all functions are subject to pronounced oscillatory behavior with a fre-
quency close to ω0 =

√
K/m. The amplitude of these oscillations decays on timescales
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Figure B.2.: Simulated autocorrelations for water in water. (a) Solvent force autocor-
relation functions Csol

FF (t) and (b) integrals Isol
FF (t) for a confined water molecule for

different potential strengths K.
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between 0.5 ps and 5 ps, force and velocity autocorrelation functions with small spring
constants decay the fastest. Note that these oscillations are much more pronounced
than the oscillations in Csol

FF (t) presented in Fig. 3.2(a).

B.4.2. Analytic Expressions for Correlation Functions

Here, we give analytic expressions for the correlation functions Cxx(t) = 〈x(0)x(t)〉,
Cẋẋ(t) = 〈ẋ(0)ẋ(t)〉 and CFF (t) = 〈F (0)F (t)〉, which can be derived analogously to
Eq. (3.4) from the GLE Eq. (3.1):

C̃xx(ω) =
kBT Γ̃(ω)∣∣∣mω2 −K − iωΓ̃+(ω)

∣∣∣2 , (B.11)

C̃ẋẋ(ω) =
ω2kBT Γ̃(ω)∣∣∣mω2 −K − iωΓ̃+(ω)

∣∣∣2 , (B.12)

C̃FF (ω) =
m2ω4kBT Γ̃(ω)∣∣∣mω2 −K − iωΓ̃+(ω)

∣∣∣2 . (B.13)

As we have C̃ẋẋ(0) = 0 and C̃FF (0) = 0 for K 6= 0, clearly, the integrals of these two
correlation functions will not be suited to extract the friction constant. Only the posi-
tion autocorrelation function is non-zero at zero frequency, i.e. C̃xx(0) = kBT Γ̃(0)/K2 =
2kBTγ/K

2 for K 6= 0, and thus in principle allows to extract the friction coefficient.
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Figure B.4.: The normalized autocorrelation functions CFF (t)/CFF (0), Cẋẋ(t)/Cẋẋ(0)
and Cxx(t)/Cxx(0) for the system with the size L = 4.5 nm and five different spring
constants K of the harmonic potential.

We remark that for vanishing confinement, K = 0, the velocity autocorrelation fulfills

C̃ẋẋ(0) =
kBT Γ̃(0)∣∣∣Γ̃+(0)

∣∣∣2 =
2kBT

γ
, (B.14)

and thus allows to extract γ. Note however that all given correlation functions are
subject to large amplitude oscillations for sufficiently high values of K, which limits the
practical usefulness, as is demonstrated in Fig. B.4.

B.4.3. Comparison to an Extraction Method Based on the Position
Autocorrelation Function

Hummer et al. developed a method to calculate the friction coefficient from the position
autocorrelation function in systems with a biasing potential [284]. Starting from the
work of Woolf and Roux [285], they showed that the diffusion coefficient D of a particle
in a harmonic potential U(x) = Kx2/2 can be written as

D =

〈
x2
〉2∫∞

0 dt 〈x(0)x(t)〉
, (B.15)

or, in terms of the friction coefficient,

γ =
K2

kBT

∫ ∞
0

dt 〈x(0)x(t)〉 . (B.16)

We note that this result can be directly derived from Eq. (B.11) according to∫ ∞
0

dtCxx(t) =
1

2
C̃xx(0) =

kBTγ

K2
, (B.17)
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B.5. Detailed Derivation of the Analytic Expression for the Solvent Force
Autocorrelation Function
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FF (0) (red) for spring con-

stants (a) 250 kJ/(mol nm2), (b) 25, 000 kJ/(mol nm2), and (c) 250, 000 kJ/(mol nm2).

which is equivalent to Eq. (B.16).
We compare the (normalized) position autocorrelation function Cxx(t) = 〈x(0)x(t)〉

with the (normalized) solvent force autocorrelation function Csol
FF (t) = 〈Fsol(0)Fsol(t)〉

in Fig. B.5. We conclude that for sufficiently small values of K, the two methods should
work equally fine. However, as already pointed out in Ref. [284], the position autocor-
relation function is dominated by oscillations, which render the integration numerically
unstable for large values of K. Our method that is based on Csol

FF (t) is suitable to
extract the friction coefficient and the memory kernel for all values of the confinement
strength K.

B.4.4. Parametrization-Free Methods to Extract the Memory Kernels

In principle, the memory functions can be extracted numerically in a parametrization-
free way from correlation functions in the time domain [9, 61, 73], see also Chapter 5.
Due to the instability of the inversion scheme [9], this approach is in practice quite
unstable for systems with high values of K, which are subject to fast oscillatory behavior
in the relevant correlation functions (see Fig. B.4). We remark that the parametrization
of the memory kernel as it is used in Chapter 3 can be regarded as a regularization of
the problem [9].

B.5. Detailed Derivation of the Analytic Expression for
the Solvent Force Autocorrelation Function

In this section, we derive Eq. (3.4) based on the generalized Langevin equation (3.1).
We define the autocorrelation function

Csol
FF (t) = 〈Fsol(0)Fsol(t)〉 (B.18)
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B. External Potential Modifies Friction of Molecular Solutes in Water

of the solvent force

Fsol(t) = F (t) +∇U(x(t)) = mẍ(t) +Kx , (B.19)

where F (t) = mẍ(t) denotes the total force. Starting from the Fourier transformed
generalized Langevin equation

−mω2x̃(ω) = −iωΓ̃+(ω)x̃(ω)−Kx̃(ω) + F̃R(ω) , (B.20)

with

f̃(ω) =

∫ ∞
−∞

dt e−iωtf(t) , (B.21)

we can solve for x̃(ω)

x̃(ω) =
F̃R(ω)

−mω2 +K + iωΓ̃+(ω)
. (B.22)

Hence, the Fourier transformed solvent force obeys

F̃sol(ω) = F̃ (ω) +Kx̃(ω) (B.23)

= (−mω2 +K)x̃(ω) (B.24)

=
(−mω2 +K)F̃R(ω)

−mω2 +K + iωΓ̃+(ω)
(B.25)

= Q̃sol(ω)F̃R(ω), (B.26)

where we defined

Q̃sol(ω) =
−mω2 +K

−mω2 +K + iωΓ̃+(ω)
. (B.27)

In the time domain Eq. (B.26) implies

Fsol(t) =

∫ ∞
−∞

dt′Qsol(t− t′)FR(t′), (B.28)

and hence we can write for the autocorrelation function

Csol
FF (t) = 〈Fsol(t)Fsol(0)〉 (B.29)

=

〈∫ ∞
−∞

dt′Qsol(t− t′)FR(t′)

∫ ∞
−∞

dt′′Qsol(−t′′)FR(t′′)

〉
(B.30)

=

∫ ∞
−∞

dt′
∫ ∞
−∞

dt′′Qsol(t− t′)Qsol(−t′′)
〈
FR(t′)FR(t′′)

〉
(B.31)

= kBT

∫ ∞
−∞

dt′
∫ ∞
−∞

dt′′Qsol(t− t′)Qsol(−t′′)Γ(t′ − t′′) (B.32)

= kBT

∫ ∞
−∞

dt′ Qsol(t− t′)
∫ ∞
−∞

dt′′Qsol(−t′′)Γ(t′ − t′′), (B.33)
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where the average in Eq. (B.31) was evaluated using the fluctuation-dissipation theorem
〈FR(0)FR(t)〉 = kBTΓ(t). Thus, in Fourier space we obtain

C̃sol
FF (ω) = kBTQ̃sol(ω)Q̃sol(−ω)Γ̃(ω) = kBT

∣∣∣Q̃sol(ω)
∣∣∣2 Γ̃(ω), (B.34)

which is equivalent to Eq. (3.4):

C̃sol
FF (ω) = kBT

∣∣∣Q̃sol(ω)
∣∣∣2 Γ̃(ω) =

kBT Γ̃(ω)∣∣∣1− iω
mω2−K Γ̃+(ω)

∣∣∣2 . (B.35)

B.6. Integrated Solvent Force Autocorrelation Function

Since

Γ̃+(0) =

∫ ∞
0

dtΓ(t) = γ, (B.36)

where γ denotes the friction constant, is finite, we immediately see from Eq. (B.35)
that C̃sol

FF (0) = kBT Γ̃(0) = 2kBTγ for K 6= 0, because of Γ(t) = Γ(−t). Using also the
symmetry Csol

FF (t) = Csol
FF (−t) we thus obtain Eq. (3.5):

γ =
1

kBT

∫ ∞
0

dtCsol
FF (t). (B.37)

B.7. Friction Constant for a Free Methane Molecule

We calculate the friction constant γ for the free case K = 0 from the mean-square
displacement

〈
∆x2(t)

〉
of the methane molecule via

〈
∆x2(t)

〉
= 2Dtrans

CH4
t = 2

kBT

γ
t, (B.38)

where Dtrans
CH4

denotes the translational diffusion constant. The systems are simulated
for 3µs (L = 3.0 nm), 1µs (L = 4.5 nm) and 0.7µs (L = 6.0 nm) in the NVT ensemble.
The position of the methane molecule is saved every 0.2 ps. The resulting mean-square
displacements are shown in Fig. B.6. Note that due to the low sampling rate, the ballis-
tic regime is not resolved. The friction constants included in Fig. 3.4 as horizontal lines
are extracted from fits to

〈
∆x2(t)

〉
/t between 100 ps and 1, 000 ps shown in Fig. B.6(b)

as broken horizontal lines. We estimate the errors by comparing fits to the first and
the second half of the interval and obtain ∆Dtrans

CH4
= 0.018 · 10−5 cm2/s for L = 3.0 nm,

∆Dtrans
CH4

= 0.007 · 10−5 cm2/s for L = 4.5 nm, and ∆Dtrans
CH4

= 0.022 · 10−5 cm2/s for
L = 6.0 nm.
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Figure B.6.: (a) The mean-square displacement
〈
∆x2

〉
as a function of t for a free

methane molecule for three different system sizes. (b)
〈
∆x2

〉
/t as a function of t, fits

between 100 ps and 1, 000 ps are indicated by broken horizontal lines.

B.8. Estimation of Force Constants

Here we present the estimates of force constants K included in Fig. 3.4.

Van der Waals. We estimate the force constant of van der Waals interactions from
the curvature in the minimum of the Lennard-Jones potential. Using typical values for
the van der Waals parameters [286, 287] (c0 ≈ 105 m−1, Re ≈ 3.5 · 10−10 m according
to the definitions of Refs. [286, 287]), we find

K =
hc c0

2Re
≈ 200 kJ/(mol nm2). (B.39)

The following estimates are obtained from vibrational frequencies via

K = mrelω
2 = mrel (2πf)2, (B.40)

where f denotes the vibration frequency and mrel = m1m2/(m1 + m2) is the relative
mass. For the estimates below, we assume mrel = 10 u, which is in the order of mag-
nitude of the relative mass of a pair of methyl groups, typical hydrogen bond donor
acceptor pairs and light monoatomic ion pairs. Here, u denotes the atomic mass unit.
Note that this choice corresponds to examples of covalently or loosely bound objects
with similar mass and size as the studied methane molecule.

Ion. The NaCl stretching frequency in solution is of the order ν ≈ 100 cm−1 [288],
thus we find

K ≈ 2 · 103 kJ/(mol nm2). (B.41)
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Figure B.7.: The memory kernels Γ(t) (colored solid lines) shown in Fig. 3.3(a) are com-
pared to the asymptotic hydrodynamic power-law contribution (broken line) Eq. (B.44).

Hydrogen bond. The hydrogen-bond stretch vibration in liquid water can be ob-
served around ν ≈ 200 cm−1 [289], which leads to an estimate of

K ≈ 104 kJ/(mol nm2). (B.42)

Covalent. Vibrational frequencies of covalent bonds between two carbon atoms are
characterized by ν ≈ 1500 cm−1[290], which corresponds to force constants of

K ≈ 106 kJ/(mol nm2). (B.43)

B.9. Hydrodynamic Contribution to the Memory Kernel

Here, we compare the memory kernels Γ(t) to the negative asymptotic power-law con-
tribution expected from hydrodynamics [71, 196]

Γ(t) ∼ −2γ2

3ρ

[
4π
(
Dtrans

CH4
+ ν
)
t
]−3/2

, (B.44)

where ρ = 1 g/cm3 denotes the water mass density, ν = η/ρ denotes the kinematic
viscosity with η = 0.85 mPa s being the water viscosity, and Dtrans

CH4
= kBT/γ = 2.38 ·

10−5 cm2/s is the diffusion constant of methane in water obtained from the fit shown
in Fig. B.6(b) for the size L = 4.5 nm. This contribution is compared in Fig. B.7 to the
memory kernels Γ(t) extracted from the L = 4.5 nm simulations. We confirm that its
contribution is negligible in the ps timescale, since the memory kernel is positive with
a significantly larger amplitude in this regime.
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B.10. Fitting Procedure

For each spring constant K we use the parametrization Eq. (3.7)

Γ(t) =
n∑
i=1

Ai exp

(
−
∣∣∣∣ tτi
∣∣∣∣αi
)

(B.45)

with n = 3 stretched exponentials to fit the memory kernel. The full memory kernel Γ(t)
and the half-side kernel Γ+(t) are numerically Fourier transformed into Γ̃(ω) and Γ̃+(ω).
The solvent force autocorrelation function in Fourier space C̃sol

FF (ω) is then computed
from the Fourier transformed memory kernels according to Eq. (3.4) and numerically
back-transformed to Csol

FF (t). The transformations in both ways are calculated via fast
Fourier transform (FFT) with a resolution of 0.5 fs and an interval length of 221 sampling

points. The force autocorrelation function Csol,sim
FF (t) is calculated from the trajectory

Fsol,sim(t) extracted from the simulation data. Both functions Csol
FF (t) and Csol,sim

FF (t)
are compared with each other and the squared deviation ∆C is defined as

∆C =
N∑
i=1

(
Csol
FF (ti)− Csol,sim

FF (ti)
)2
. (B.46)

The same procedure is applied to the integrals Isol
FF (t) and Isol,sim

FF (t) over the functions

Csol
FF (t) and Csol,sim

FF (t), which are in both cases computed via numerical integration
using the trapezoidal rule. The resulting deviation ∆I is given by

∆I =
N∑
i=1

(
Isol
FF (ti)− Isol,sim

FF (ti)
)2
. (B.47)

Both deviations ∆C and ∆I are combined to give the total deviation ∆tot = ∆C+α∆I,
where α is a weighting factor which is chosen so that ∆C and α∆I are approximately
of the same size. ∆tot is minimized via the Nelder-Mead algorithm. If the discrep-
ancy between ∆C and α∆I becomes more than a factor of 2, then α is adjusted and
the minimization procedure is continued with the new value of α until convergence is
achieved. Statistical errors are estimated by bootstrapping with 24 trajectory segments
per system, where the fits are repeated for each bootstrap sample. The parameters and
errors for the L = 4.5 nm system are collected in Table B.1.

In Chapter 3 it is mentioned that the sum of two stretched exponential functions is
sufficient to fit the data for K ≤ 250 kJ/(mol nm2) and K ≥ 250, 000 kJ/(mol nm2).
Here, we compare the fits obtained for n = 2 and n = 3 stretched exponentials for
K = 250 kJ/(mol nm2), K = 25, 000 kJ/(mol nm2) and K = 250, 000 kJ/(mol nm2).
The comparison of the solvent force autocorrelation functions Csol

FF (t) and the mem-
ory kernels Γ(t) are shown in Fig. B.8(a) and (b) respectively. Clearly, the dif-
ferences between n = 2 and n = 3 are negligible for K = 250 kJ/(mol nm2) and
K = 250, 000 kJ/(mol nm2). For K = 25, 000 kJ/(mol nm2) the figure shows that two
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B.11. Comparison to an NVE Simulation
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Figure B.8.: (a) Comparison of the solvent force autocorrelation functions Csol
FF (t) com-

puted from fit functions with n = 2 (solid colored lines) and n = 3 (dotted black lines)
in a log-lin representation for K = 250 kJ/(mol nm2), K = 25, 000 kJ/(mol nm2) and
K = 250, 000 kJ/(mol nm2). (b) Comparison of the respective memory kernels Γ(t).

stretched exponentials are not sufficient to achieve agreement of the analytic predictions
with the correlation functions from the simulation.

To demonstrate that the exponents αi have significant influence on the quality of the
fits, we compare in Fig. B.9 the solvent force autocorrelation functions Csol

FF (t) and the
respective running integrals Isol

FF (t) for K = 25, 000 kJ/(mol nm2) computed from the
methane simulations in the L = 4.5 nm box to the predictions obtained from fits with
n = 3, but constrained exponents: (a) no contraints, (b) α1 = 2, α3 = 1 (α2 free),
(c) α1 = 2, α2 = α3 = 1, (d) α1 = α3 = 1 (α2 free) and (e) α1 = α2 = α3 = 1.
The obtained fit parameters and the resulting deviations ∆C and ∆I are shown in
Table B.2. Clearly, the agreement is poor for (c), (d) and (e), which shows that the
exponents αi are important fit parameters. The best agreement for a constrained fit is
achieved for (b) α1 = 2, α3 = 1 (α2 free), but the deviation ∆C is still five times as
large as for the unconstrained fit (a). The fit (b) yields the estimate α2 = 7.7, which is
similar to the value α2 = 9.8 obtained from the unconstrained fit. Thus, we conclude
that also the high value of α2 is robust.

B.11. Comparison to an NVE Simulation

To exclude a systematic error introduced by the thermostat, we compare in Fig. B.10
the solvent force autocorrelation functions Csol

FF (t) for K = 25 kJ/(mol nm2) and K =
2, 500 kJ/(mol nm2) calculated from the NVT simulations to the respective correlation
functions calculated from 32 NVE trajectories with a length of 2 ns each. For both
values of K, they show perfect agreement.
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Figure B.9.: Comparison of the solvent force autocorrelation functions Csol
FF (t) (left) and

the integrals Isol
FF (t) (right) for K = 25, 000 kJ/(mol nm2) predicted from fits with n = 3,

but constrained exponents, and the simulation results for methane in the L = 4.5 nm
box. All exponents αi are given in the legends, the constrained values are indicated by
stars (*). For reference, the unconstrained fit is shown in (a).
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K A1 α1 τ1

∞ 6.030± 0.046 1.446± 0.007 0.07489± 0.00007

250000 5.593± 0.095 1.583± 0.019 0.07974± 0.00023

100000 5.501± 0.208 0.8617± 0.015 0.05280± 0.00133

25000 4.489± 0.028 2.176± 0.010 0.03827± 0.00002

10000 5.252± 0.042 2.127± 0.014 0.04352± 0.00004

2500 6.345± 0.030 1.819± 0.007 0.04956± 0.00007

1000 6.855± 0.010 1.682± 0.002 0.05188± 0.00002

250 7.101± 0.017 1.608± 0.003 0.05330± 0.00003

100 7.029± 0.060 1.614± 0.008 0.05341± 0.00003

25 7.180± 0.005 1.590± 0.001 0.05364± 0.00002

K A2 α2 τ2

∞ − − −
250000 − − −
100000 1.269± 0.019 18.22± 0.41 0.0982± 0.0001

25000 1.589± 0.025 9.80± 0.16 0.1714± 0.0001

10000 0.861± 0.027 12.75± 0.48 0.2335± 0.0003

2500 0.3265± 0.011 13.34± 0.56 0.3367± 0.0006

1000 0.1418± 0.008 10.52± 0.62 0.3954± 0.0030

250 − − −
100 − − −
25 − − −
K A3 α3 τ3

∞ 2.252± 0.046 0.770± 0.014 0.846± 0.025

250000 2.469± 0.110 0.696± 0.025 0.727± 0.48

100000 2.180± 0.176 0.756± 0.043 0.851± 0.088

25000 2.127± 0.062 0.790± 0.025 0.894± 0.036

10000 2.134± 0.080 0.756± 0.029 0.878± 0.051

2500 1.636± 0.045 0.902± 0.033 1.205± 0.044

1000 1.310± 0.015 1.050± 0.028 1.525± 0.021

250 1.202± 0.017 0.975± 0.050 1.371± 0.039

100 1.292± 0.061 0.792± 0.101 1.033± 0.117

25 1.129± 0.003 1.228± 0.663 1.390± 0.020

Table B.1.: Fit parameters for Γ(t) for the system size L = 4.5 nm. Ai is given in kg/s2,
τi in ps.
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(a) (b) (c) (d) (e)

A1 4.489 4.579 3.434 6.828 6.595

α1 2.176 2* 2* 1* 1*

τ1 0.03827 0.03899 0.04179 0.07589 0.07281

A2 1.589 1.868 3.396 0.3234 1.236

α2 9.80 7.691 1* 3.142 1*

τ2 0.1714 0.1713 0.1488 0.9677 0.9385

A3 2.127 1.703 1.360 1.158 0.4826

α3 0.790 1* 1* 1* 1*

τ3 0.894 1.228 1.4364 1.549 1.979

∆C 143.7 1845 2435 6124 6170

∆I 287.4 232.8 7585 65943 68116

Table B.2.: Fit parameters for Γ(t) with constrained exponents for K =
25, 000 kJ/(mol nm2) and system size L = 4.5 nm. Ai is given in kg/s2, τi in ps. In ad-
dition, the deviations ∆C and ∆I are given in arbitrary units. Constrained values are
indicated by a star (*). For reference, we show the fit parameters without constraints
in the first column.

-0.01

 0

 0.01

 0.02

 0.03

 0.04

10
-2

10
-1

10
0

10
1

K [kJ/(mol nm
2
)]

C
s
o
l F

F
 [
n
N

2
]

t [ps]

2500
25

Figure B.10.: Comparison of the solvent force autocorrelation functions Csol
FF (t) calcu-

lated in the NVT (solid lines) and in the NVE (dotted lines) ensemble for two selected
values of K.

106



Appendix C

Mass-Dependent Solvent Friction of a Hy-
drophobic Molecule

C.1. Solvent Center-of-Mass Motion in Finite Simulation
Boxes

For large solute masses m that reach the same order of magnitude than the total mass
Msol of the solvent, the mean-square displacement (MSD) relative to the solvent, which
is used for the analysis in this project, differs from the absolute MSD: Conservation of
momentum implies

mẋ+Msolẋsol = ptotal = 0, (C.1)

where x denotes the solute position and xsol refers to the center of mass of the solvent.
Eq. (C.1) is equivalent to

mẋ = −Msolẋsol, (C.2)

and integration yields

m(x(t)− x(0)) = −Msol(xsol(t)− xsol(0)). (C.3)

Therefore, we have

xsol(t)− xsol(0) = − m

Msol
(x(t)− x(0)), (C.4)

which implies for the MSD relative to the solvent〈
(x(t)− x(0))2

〉
rel
≡
〈

((x(t)− x(0))− (xsol(t)− xsol(0)))2
〉

(C.5)

=

〈(
(x(t)− x(0)) +

m

Msol
(x(t)− x(0))

)2
〉

(C.6)

=

(
1 +

m

Msol

)2 〈
(x(t)− x(0))2

〉
. (C.7)
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Figure C.1.: The friction coefficients γ obtained from the mean-square displacements
(MSDs) relative to the solvent (crosses) are compared to to the friction coefficients
determined from the absolute MSDs (circles) for the three system sizes.

In Fig. C.1, we compare the friction coefficients calculated from the MSDs relative
to the solvent to the absolute MSDs. For the smallest system (l = 3.0 nm) and the
largest mass (m = 1600 u) the difference is quite significant, in the other scenarios,
which include all data points for the l = 4.5 nm system on which most of the analysis
in Chapter 4 is based, the correction to this finite-size effect is rather small.

C.2. Timescales and Fit Parameters

The fit parameters Ai and τi of the memory kernels

Γ(t) =
3∑
i=1

Ai exp (−|t|/τi) (C.8)

are given in Table C.1, and the timescales τ1 and τ2, which correspond to positive
amplitudes Ai, are shown in Fig. C.2 as a function of solute mass m. Whereas the
timescale τ1 significantly depends on m, the timescale τ2 is rather constant. We remark
that the arguments used in Chapter 3 to explain the shortest decay time of (free and
frozen) methane in water suggest that the dependence of τ1 on the solute mass m is
caused by the change of the reduced mass

mr =
mmH2O

m+mH2O
, (C.9)

where mH2O denotes the mass of a water molecule.
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C.2. Timescales and Fit Parameters

m [u] A1 [kg/s2] τ1 [fs] A2 [kg/s2] τ2 [fs] A3 [kg/s2] τ3 [fs]

∞ 9.8 57.6 1.7 1231 -3.2 18.5
1600 10.1 55.5 1.7 1044 -3.4 18.7
160 9.7 60.2 1.2 1138 -2.5 15.4
16 52.5 26.6 0.9 1425 -45.0 22.8
1.6 85.4 9.4 1.4 1057 -78.0 8.6
0.16 70.1 2.7 1.8 830 -62.3 2.4

Table C.1.: The parameters for the memory kernels for the l = 4.5 nm system obtained
by fitting the prediction Eq. (4.4) to the simulated force autocorrelation functions using
the parametrization Eq. (C.8).
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Figure C.2.: The timescales τ1 and τ2 given in Table C.1 as a function of solute mass
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Appendix D

Butane Dihedral Angle Dynamics in Wa-
ter is Dominated by Internal Friction

D.1. Derivation of the Iteration Equation for the Memory
Kernel

We start from the generalized Langevin equation (GLE)

mẍ(t) = −
∫ t

0
dt′ Γ(t′)ẋ(t− t′)−∇U [x(t)] + FR(t), (D.1)

where FR(t) denotes the random force, which obeys〈
FR(t)FR(t′)

〉
= kBT Γ

(
t− t′

)
. (D.2)

Multiplication by ẋ(0) and averaging yields

m 〈ẋ(0)ẍ(t)〉 = −
∫ t

0
dt′ Γ(t′)

〈
ẋ(0)ẋ(t− t′)

〉
− 〈ẋ(0)∇U [x(t)]〉 , (D.3)

where we use that the random force FR(t) at time t is not correlated with the initial
velocity ẋ(0) [60]. All correlation functions appearing in Eq. (D.3) can be obtained from
trajectories. Clearly, this is straightforward for 〈ẋ(0)ẍ(t)〉 and 〈ẋ(0)ẋ(t)〉. For the calcu-
lation of the correlation function 〈ẋ(0)∇U [x(t)]〉, we use that the GLE Eq. (D.1) implies
that U(x) is equal to the free energy, i.e. U(x) = −kBT log p(x), where p(x) denotes the
equilibrium probability distribution of the reaction coordinate x. We interpolate U(x)
with cubic splines and directly calculate the correlation function 〈ẋ(0)∇U [x(t)]〉 from
the trajectory. Eq. (D.3) can now be discretized and solved numerically. Defining

Γi = Γ(i∆t), (D.4)

C ẋẋi = 〈ẋ(0)ẋ(i∆t)〉 , (D.5)

C ẋẍi = 〈ẋ(0)ẍ(i∆t)〉 , (D.6)

C ẋ∇Ui = 〈ẋ(0)∇U [x(i∆t)]〉 , (D.7)
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the discretized version of Eq. (D.3) reads

mC ẋẍi = −
i∑

j=0

ωi,j∆tΓjC
ẋẋ
i−j − C ẋ∇Ui , (D.8)

where we discretized the integral using the integration weight wi,j = 1−δi,0/2−δi,j/2 of
the trapezoidal rule. Solving for Γi yields the iteration relation for the memory kernel
Eq. (5.3):

Γi = − 1

ωi,i∆tC ẋẋ0

 i−1∑
j=0

ωi,j∆tΓjC
ẋẋ
i−j +mC ẋẍi + C ẋ∇Ui

 . (D.9)

We note that for U(x) = 0 this result is equal to the previously derived equation [73].

D.2. Application to a Model System

To demonstrate that the iteration relation (D.9) is numerically robust, we reconstruct
the memory kernel from simulated GLE trajectories in a doublewell potential (see
Fig. D.1(a))

U(x) = U0

(
(x/L)2 − 1

)2
, (D.10)

with U0 = 1 kBT . We use the single-exponential memory kernel

Γ(t) =
γ

τΓ
exp

(
− t

τΓ

)
, (D.11)

where the memory time τΓ is set to τΓ = τD = L2γ/kBT . For the mass, we use τm = τD,
where τm = m/γ. The simulation is carried out by introducing an additional variable
R(t) that obeys [291]

Ṙ(t) = − 1

τΓ
R(t)− γ

τΓ
ẋ(t) + ξ(t), (D.12)

with δ-correlated noise 〈
ξ(t)ξ(t′)

〉
=

2kBTγ

τ2
Γ

δ(t− t′). (D.13)

The GLE Eq. (D.1) can then be written as

mẍ(t) = R(t)−∇U(x(t)), (D.14)

and the Eqs. (D.12)–(D.14) are numerically integrated using a standard integration
scheme. We simulate a trajectory of length 106 τD, where an initial equilibration
time is omitted for the analysis. A typical trajectory is depicted in Fig. D.1(b). In
Figs. D.1(c) and (d), we compare the memory kernel reconstructed from the trajec-
tories using Eq. (D.9) to the analytic simulation input given by Eq. (D.11). Within
statistical errors, they show perfect agreement on linear and logarithmic scales.
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(a) The model potential
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Figure D.1.: (a) The model potential. (b) A typical trajectory. (c) and (d) The recon-
structed memory kernel (red line) compared to the analytic input used for the simulation
(dashed black line).
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Figure D.2.: Comparison of the memory kernels for free butane calculated from an NVT
(green line) and from an NVE (dashed black line) simulation at a solvent viscosity of
η/η0 = 0.3.

D.3. Influence of Ensemble and Thermostat

To show that the thermostat does not influence the memory kernel, we compare the
memory kernel extracted from the NVT simulation of free water-solvated butane at a
viscosity of η/η0 = 0.3 to the memory kernel obtained from an NVE simulation with
the same length. The comparison is shown in Fig. D.2. From the similarity of the two
memory kernels we conclude that the influence of the ensemble and the thermostat is
negligible.

D.4. Estimation of the Friction Constant γ

The inversion of the Volterra Eq. (D.3) using the iteration scheme (D.9) is subject to
numerical and statistical errors, in particular for large t. For an estimate of the friction
constant we thus fit the long time tail (t > 2 ps for free butane and t > 2(η/η0) ps for
constrained butane) by an exponential function before integrating over the curve. In
Figs. D.3–D.6 we show the memory kernels together with the exponential fits to the
long-time tail for free (Figs. D.3 and D.4) and constrained (Figs. D.5 and D.6) butane,
both in a lin-log (Figs. D.3 and D.5) and in a log-log (Figs. D.4 and D.6) representation.
A small systematic error is introduced by this procedure, but the magnitude of the
estimated friction constant is expected to be correct, since the differences are small.
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D.4. Estimation of the Friction Constant γ

The obtained friction constants

γ =

∫ ∞
0

dtΓ(t) (D.15)

are shown as a function of solvent viscosity for both systems in Fig. 5.4.
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(b) η/η0 = 0.3
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(c) η/η0 = 1.0
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(d) η/η0 = 3.2
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Figure D.3.: Free butane, lin-log. Comparison of the memory kernels computed using
Eq. (D.9) (solid red lines) and the exponential fit to the long time tail t > 2 ps (dashed
black lines) shown in a lin-log representation.
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(a) η/η0 = 0.1

10-5

10-4

10-3

10-2

 0.01  0.1  1  10

Γ
 [u

 n
m

2 /d
eg

2  p
s2 ]

t [ps]

raw data
exp. tail

(b) η/η0 = 0.3
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(d) η/η0 = 3.2
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Figure D.4.: Free butane, log-log. Comparison of the memory kernels computed
using Eq. (D.9) (solid red lines) and the exponential fit to the long time tail t > 2 ps
(dashed black lines) shown in a log-log representation.
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(b) η/η0 = 0.3
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(c) η/η0 = 1.0

-0.002

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.01  0.1  1  10  100

Γ
 [u

 n
m

2 /d
eg

2  p
s2 ]

t [ps]

raw data
exp. tail

(d) η/η0 = 3.2
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Figure D.5.: Constrained butane, lin-log. Comparison of the memory kernels com-
puted using Eq. (D.9) (solid red lines) and the exponential fit to the long time tail
t > 2(η/η0) ps (dashed black lines) shown in a lin-log representation.
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(b) η/η0 = 0.3
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(d) η/η0 = 3.2

10-5

10-4

10-3

10-2

10-1

 0.01  0.1  1  10  100

Γ
 [u

 n
m

2 /d
eg

2  p
s2 ]

t [ps]

raw data
exp. tail

(e) η/η0 = 10

10-5

10-4

10-3

10-2

10-1

 0.01  0.1  1  10  100

Γ
 [u

 n
m

2 /d
eg

2  p
s2 ]

t [ps]

raw data
exp. tail

Figure D.6.: Constrained butane, log-log. Comparison of the memory kernels com-
puted using Eq. (D.9) (solid red lines) and the exponential fit to the long time tail
t > 2(η/η0) ps (dashed black lines) shown in a log-log representation.
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Appendix E

Transition Paths Are Hot

E.1. Calculation of the Second Moment of Velocities

We evaluate the second moment of velocities explicitly for the equilibrium distribution,
in order to illustrate our definition of an effective temperature. The calculation is
straight-forward: based on the flux-weighted velocity distribution

P eq(v) ∝ |v| exp
(
−mv2/2kBT

)
, (E.1)

we can write 〈
v2(x0)

〉
=

∫∞
−∞ dvv

2 |v| exp
(
−mv2/2kBT

)∫∞
−∞ dv |v| exp (−mv2/2kBT )

(E.2)

=

∫∞
0 dvv3 exp

(
−mv2/2kBT

)∫∞
0 dvv exp (−mv2/2kBT )

(E.3)

=
2(kBT/m)2

kBT/m
= 2kBT/m. (E.4)

Thus,

kBT =
1

2
m
〈
v2(x0)

〉
. (E.5)

E.2. Estimation of the Effective Initial Transition Path
Temperature for Small Masses

In this section, we present an approximative argument, supporting the numerical ob-
servation that also for small mass the initial effective temperature of transition paths
is higher than the equilibrium temperature.
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E. Transition Paths Are Hot

We estimate the effective temperature by assuming a flat potential U = 0, i.e. free
diffusion. The solution x(t) of the corresponding Langevin equation with an initial
condition v(0) = v0, x(0) = xA obeys

〈x(t)〉 = xA +
m

γ

(
1− exp

{
− γ
m
t
})

v0, (E.6)

〈v(t)〉 = exp
{
− γ
m
t
}
v0. (E.7)

Hence, for t� τm = m/γ we obtain

〈x(t)〉 = xA +
m

γ
v0, (E.8)

〈v(t)〉 = 0 (E.9)

and the motion becomes purely diffusive.
Starting from this position, the probability to exit the interval at xB is given by the

splitting probability

φB =
〈x(t)〉 − xA

xB − xA
=

mv0

γ (xB − xA)
≡ φB(v0), (E.10)

which obviously depends on the initial velocity v0. Hence, in this approximation, the
probability to be on a transition path is the product of the probability to enter the
interval with a velocity v0, which is given by the flux-weighted equilibrium distribution,
times the probability to exit at xB, i.e.

PTP(v0) = P eq(v0)φB(v0). (E.11)

Thus, we can directly compute the flux-weighted average of the squared velocity of
transition paths at the initial position xA

〈
v2(xA)

〉TP
=

∫
dv v2PTP(v)∫
dv PTP(v)

=

∫
dv v4 exp

{
−mv2/2

}∫
dv v2 exp {−mv2/2}

=
3kBTeff

m
=

3

2

〈
v2(xA)

〉
,

(E.12)
where Eq. (E.5) was used in the last step. Therefore we conclude

Teff/T ≈
3

2
. (E.13)

The result is somewhat larger than the actual value from the simulation Teff/T ≈ 1.3,
which is presumably caused by the drastic approximations employed in deriving Eq.
(E.13). On the other hand, the calculation provides insight into how the distribution
shifts even in the case of a small mass and suggests that the overdamped limit m→ 0
is singular.
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E.2. Estimation of the Effective Initial Transition Path Temperature for Small Masses

(a) U0 = 1 kBT (b) U0 = 5 kBT

Figure E.1.: Effective transition path temperature TTP
eff as a function of position x0 for

different masses at fixed barrier heights of (a) U0 = 1 kBT and (b) U0 = 5 kBT . The
data points are connected by lines to guide the eye. The inertial limit is shown as a
dashed line.

(a) U0 = 1 kBT (b) U0 = 5 kBT

Figure E.2.: Mean transition path shapes τTP
shape(x0|xA) for the barrier heights (a)

U0 = 1 kBT and (b) U0 = 5 kBT as a function of the position x0 for different masses m.
The overdamped limit is included as a dashed line, the inertial limit is shown as solid
lines.
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exchangeable hydrogen ions at the active centre of bacteriorhodopsin localized by
neutron diffraction, J. Mol. Biol. 214, 15 (1990).

[150] G. Thiedemann, J. Heberle, and N. A. Dencher, in Structures and Functions
of Retinal Proteins, Vol. 221 (Colloque INSERM/John Libbey Eurotext Ltd.,
Montrogue, 1992) pp. 217–220.

[151] R. H. Lozier, R. A. Bogomolni, and W. Stoeckenius, Bacteriorhodopsin: a light-
driven proton pump in Halobacterium Halobium, Biophys. J. 15, 955 (1975).

[152] R. Korenstein and B. Hess, Hydration effects on the photocycle of bacteri-
orhodopsin in thin layers of purple membrane, Nature 270, 184 (1977).
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Data-based modeling of drug penetration relates human skin barrier function to
the interplay of diffusivity and free-energy profiles, Proc. Natl. Acad. Sci. U. S.
A. 114, 3631 (2017).

[185] P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, Expanding the Optical
Trapping Range of Gold Nanoparticles, Nano Lett. 5, 1937 (2005).

[186] A. P. Fields and A. E. Cohen, Electrokinetic trapping at the one nanometer limit,
Proc. Natl. Acad. Sci. U. S. A. 108, 8937 (2011).
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Abstract

Dynamic molecular processes in aqueous solutions are essential for biological life, and
their fundamental timescale is determined by molecular friction. In this thesis, several
basic dynamic phenomena relevant for aqueous biological systems are studied by a
combination of molecular dynamics simulations and stochastic models.

First, we show by ab initio molecular dynamics simulations that the polarization
of continuum bands in infrared spectra of small protonated water clusters allows us
to deduce their shape and orientation. The molecular origin of continuum bands of
protonated water wires is elucidated. Based on these results and recently recorded,
experimental polarization-resolved infrared spectra, we reveal the orientation of a pro-
tonated water cluster in the transmembrane protein bacteriorhodopsin.

Secondly, the friction of an externally confined, water-solvated methane molecule is
extracted from molecular dynamics simulations using a newly developed method to
parametrize a generalized Langevin equation. We show that the friction increases by
up to 60% with increasing confinement strength, which is accompanied by a slowing
down of the translational and rotational water dynamics in the hydration shell. This
previously unknown effect is relevant for the interpretation of spectroscopy experiments
as well as for trapped particles in viscous solvents.

Thirdly, the mass dependence of the methane friction in water is studied by a similar
method. We demonstrate that the friction increases with solute mass by up to 70%,
which goes along with a slowing down of the hydration shell dynamics by a factor of
three. We characterize the scaling behavior of mass-dependent friction and show that
the often applied power-law relation holds only for an intermediate regime.

Next, we compute the friction memory kernel of the dihedral angle of water-solvated
butane by another newly developed method for the parametrization of generalized
Langevin equations in the presence of arbitrary, non-linear potentials. This method
is applied to a free butane molecule as well as to a constrained butane with the dihe-
dral angle as the only positional degree of freedom, in both cases for different solvent
viscosities. The results allow us to answer a long-lasting question by showing that
dihedral angle isomerization reactions are dominated by internal friction.

Finally, we show that the ensemble properties of so-called transition paths, which
connect an initial starting position without return to a target state, deviate significantly
from equilibrium. The deviation can be quantified by an effective temperature, which
reaches several times the ambient temperature for systems with low friction.

All of these results constitute significant advancements to the respective subfields,
and together they shed light on the complex and subtle interplay of friction, inertial
and non-Markovian effects on the molecular scale.
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Kurzfassung

Dynamische molekulare Prozesse in wässrigen Lösungen sind essenziell für jede Form
biologischen Lebens, und ihre fundamentale Zeitskala ist durch die molekulare Reibung
definiert. In der vorliegenden Arbeit werden grundlegende dynamische Phänomene, die
für wässrige biologische Systeme relevant sind, mit einer Kombination aus Molekular-
dynamik-Simulationen und stochastischen Modellen untersucht.
Zuerst zeigen wir mithilfe von Ab-initio-Simulationen, dass die Polarisation von Konti-
nuumsbanden in Infrarotspektren kleiner protonierter Wassercluster Rückschlüsse auf
deren Form und Orientierung zulässt. Außerdem wird die molekulare Ursache von Kon-
tinuumsbanden protonierter Wasserketten aufgedeckt. Als Anwendung wird aus experi-
mentellen, polarisationsaufgelösten Infrarotspektren die Orientierung eines protonierten
Wasserclusters im Transmembranprotein Bacteriorhodopsin bestimmt.
Im zweiten Teil der Arbeit extrahieren wir die molekulare Reibung eines künstlich fest-
gehaltenen, in Wasser gelösten Methanmoleküls aus Molekulardynamik-Simulationen
mittels einer neu entwickelten Methode zur Parametrisierung generalisierter Langevin-
Gleichungen. Die Reibung nimmt mit der Stärke des externen Potentials um bis zu
60% zu, was mit einer Verlangsamung der Hydrationsdynamik einhergeht. Dieser bis-
her unbekannte Effekt ist sowohl für die Interpretation spektroskopischer Experimente
relevant als auch für festgehaltene Teilchen in viskosen Lösungsmitteln.
Des Weiteren wird die Massenabhängigkeit der Reibung von Methan in Wasser mit ähn-
lichen Methoden analysiert. Im Vergleich zu leichten Soluten ist die Reibung schwerer
Solute um bis zu 70% höher und die Hydrationsdynamik ist verlangsamt. Insbesondere
wird das Skalenverhalten der massenabhängigen Reibung vollständig charakterisiert.
Im vierten Teil der Arbeit untersuchen wir den Torsionswinkel eines in Wasser gelösten
Butanmoleküls mithilfe einer weiteren neu entwickelten Methode zur Parametrisierung
generalisierter Langevin-Gleichungen in beliebigen Potentialen. Wir betrachten frei-
es Butan und ein eingeschränktes Butanmolekül mit dem Torsionswinkel als einzigem
Freiheitsgrad jeweils bei verschiedenen Viskositäten, um zu zeigen, dass die Isomerisa-
tionsreaktion von Torsionswinkeln durch interne Reibung dominiert wird.
Zum Schluss zeigen wir, dass die statistischen Eigenschaften sogenannter Übergangs-
pfade, die eine Anfangsposition ohne Wiederkehr mit einer Zielposition verbinden, sig-
nifikant vom Gleichgewicht abweichen. Die Abweichung kann durch eine effektive Tem-
peratur beschrieben werden, die für Systeme mit geringer Reibung ein Vielfaches der
Umgebungstemperatur erreicht.
Diese Ergebnisse sind wesentliche Fortschritte in den jeweiligen Spezialgebieten, und
in der Summe tragen sie zum Verständnis des komplexen Zusammenspiels zwischen
Reibung, inertialen und nicht-Markovschen Effekten auf der molekularen Skala bei.
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Rechnungen dieser Arbeit.
Bei meinen Freunden und besonders bei meiner Freundin Tini möchte ich mich herzlich
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