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Abstract

Among a variety of small area estimation methods, one popular approach for the estimation of
linear and non-linear indicators is the empirical best predictor. However, parameter estimation using
standard maximum likelihood methods is not possible, when the dependent variable of the underly-
ing nested error regression model, is censored to specific intervals. This is often the case for income
variables. Therefore, this work proposes an estimation method, which enables the estimation of the
regression parameters of the nested error regression model using interval censored data. The intro-
duced method is based on the stochastic expectation maximization algorithm. Since the stochastic
expectation maximization method relies on the Gaussian assumptions of the error terms, transforma-
tions are incorporated into the algorithm to handle departures from normality. The estimation of the
mean squared error of the empirical best predictors is facilitated by a parametric bootstrap which cap-
tures the additional uncertainty coming from the interval censored dependent variable. The validity
of the proposed method is validated by extensive model-based simulations.

Keywords: Small area estimation, empirical best predictor, nested error regression model, grouped data.

1 Introduction

Extreme poverty rates have been cut by more than half since 1990. While this is a remarkable achieve-
ment, it is still one of the 17 sustainable development goals defined by the United Nations to eradicate
extreme poverty by 2030 (United Nations, 2017). To fight poverty, it is essential to have knowledge
about its spatial distribution. In order to estimate disaggregated poverty indicators small area estimation
(SAE) methods can be used. These methods enable the estimation of poverty (e.g. linear and non-linear)
indicators at a geographical level where direct estimation is either not possible or very imprecise, due
to a lack of sample size (Rao and I.Molina, 2015). Most SAE methods use linking models that borrow
strength across areas and incorporate auxiliary informations from censuses or administratives (Pfeffer-
mann, 2002).

Among a variety of SAE methods e.g. the World Bank method, developed by Elbers et al. (2003)
or the M-Quantile approach introduced by Chambers and Tzavidis (2006), one popular approach for the
estimation is the empirical best predictor (EBP) proposed by Molina and Rao (2010). The EBP method is
based on a nested error linear regression model (Battese et al., 1988) and it enables the estimation of linear
and non-linear indicators. As long as the dependent variable of the nested error linear regression model
is measured on a metric scale parameter estimates are obtained using standard maximum likelihood
methods.

However, standard estimation procedure can not be applied, when the dependent variable of the un-
derlying nested error regression model, such as income or consumption, is censored to specific intervals,
also known as grouping. While this is rarely the case in underdeveloped countries, in developed countries
income is often only observed, due to confidentially constraints or other reasons, as grouped variable e.g.
in the German micro census (Statistisches Bundesamt, 2017). Even though, absolute poverty, as defined
by United Nations (1995) is not an issue in most developed countries, its politicians are still interested in
the spatial distribution of income to target less wealthy areas more accurately.
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Therefore, this work introduces an estimation method, which enables the estimation of the regres-
sion parameters of the nested error regression model when the dependent variable is interval censored.
The proposed estimation method is based on the stochastic expectation maximization (SEM) algorithm
(Caleux and Dieboldt, 1985). Since the proposed method relies on the Gaussian assumption of the
error terms, transformations are incorporated into the algorithms to handle departures from normality.
To the best of our knowledge there is no comparable approach proposed in the literature yet. Follow-
ing Gonzalez-Manteiga et al. (2008) the estimation of the mean squared error (MSE) of the EBPs is
facilitated by a parametric bootstrap. Their proposed method is progressed to capture the additional
uncertainty coming from the interval censored dependent variable.

The paper is organized as follows. Since the EBP method relies on the parameter estimates of the
nested error regression model, Section 2 starts with introducing the SEM-algorithm, which enables the
estimation of the model parameters when the dependent variable is grouped. Then, Section 3 introduces
the EBP method with grouped dependent data. The proposed MSE estimation procedure is introduced in
Section 4. And in order to evaluate the performance of the SEM-algorithm and the parametric bootstrap
for the MSE estimation, model-based simulation results are presented in Section 5. Finally, the main
results are discussed and summarized in Section 6.

2 Nested error regression models with interval censored dependent vari-
able

The later introduced EBP method relies on the parameter estimates of the nested error linear regression
model, defined by Battese et al. (1988). It is given by:

yij = xTijβ + ui + eij , (j = 1, . . . , ni), (i = 1, . . . , D),

ui
iid∼ N(0, σ2u),

eij
iid∼ N(0, σ2e),

yij |xij , ui ∼ N(xTijβ + ui, σ
2
e),

(1)

where yij is the unobserved dependent variable, xij is a p× 1 vector of explanatory variables, with p
is the number of explanatory variables, β is a p× 1 vector of regressors, j = 1, . . . , ni refers to the j-th
individual and i = 1, . . . , D to the i-th area. The error terms ui and eij are assumed to be independent.

Standard estimation procedures, such as maximum likelihood (ML) or residual maximum likelihood
(REML) are utilized for parameter estimation when yij is observed on a metric scale. However, when
the dependent variable is grouped, standard estimation methods can not be applied.

For linear regression models there are different approaches to handle interval censored dependent
variables. A very naive approach is ordinary least square regression on the midpoints of the intervals.
This approach has two major drawbacks. First, the uncertainty regarding the nature of the exact value
of each observation within each interval is not being reflected in the model and secondly, dealing ade-
quately with open ended intervals is not possible. A different approach is, conceptualizing the model as
ordered probit or logit regression (McCullagh, 1980). But since, the predicted values are then in terms of
probability of membership in each interval, these models cannot be used for predicting the true unknown
value of the dependent variable on a continuous scale.

To overcome these drawbacks interval regression as proposed by Stewart (1983) can be applied to in-
terval censored data in the standard linear regression context. Stewart (1983) describes the possibility of
using an iterative expectation-maximization (EM) algorithm as discussed by Dempster et al. (1977) to es-
timate the model parameters of a linear regression model. Following and extending this idea, a stochastic
expectation-maximization algorithm (SEM) (Caleux and Dieboldt, 1985) is proposed that can easily be
adapted to a variety of model classes (e.g. linear regression models or nested error linear regression mod-
els). Also the EM-algorithm was considered for parameter estimation, but since its performance in terms
of accuracy in the prediction was worse under transformations, only the SEM-algorithm is introduced.

Consider model 1, where the only observed information concerning the dependent variable is, that
it falls into a certain interval on a continuous scale. The continuous scale is divided into K intervals,
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where the k-th interval is given by (Ak−1, Ak). The variable kij (1 ≤ ki ≤ K) indicates in which of
the intervals the dependent variable falls into. The first and K-th interval are allowed to be open ended,
therefore A0 = −∞ and AK = +∞ is possible. Of course, situations in which either or none of the
outer intervals are open ended can also be handle by the SEM-algorithm. Furthermore, the interval length
is allowed to be arbitrary and can vary between intervals.

Since the true distribution of yij is unknown, the aim is to estimate the distribution of yij , by using the
known interval kij and the linear relationship given by model 1. To reconstruct the unknown distribution
f(yij |xij , kij , ui) the Bayes theorem (Bayes, 1763) is applied:

f(yij |xij , kij , ui) ∝ f(kij |yij , xij , ui)f(yij |xij , ui),
with the conditional distribution of kij ,

f(kij |yij , xij , ui) =

{
1 if Ak−1 ≤ yij ≤ Ak,
0 else,

and the conditional distribution of yij ,

f(yij |xij , ui) ∼ N(xTijβ + ui, σ
2
e).

The unknown model parameters θ = (β, ui, σ2e , σ
2
u) and the conditional distribution f(yij |xij , kij , ui)

are iteratively estimated using the SEM-algorithm described in the following section.

2.1 Parameter estimation and computational details

For fitting model1 pseudo samples of yij are generated iteratively from the following conditional distri-
bution:

f(yij |xij , kij , ui) ∝ I(Ak−1 ≤ yij ≤ Ak)×N(xTijβ + ui, σ
2
e), (2)

where I(·) denotes the indicator function. The steps of the SEM-algorithm are given by:

1. Estimate θ̂ = (β̂, ûi, σ̂2e , σ̂
2
u) from Equation 1 using the midpoints of the intervals as a substitute

for the unknown yij .

2. Sample from the conditional distribution f(yij |xij , kij , ui) by drawing randomly from N(xTij β̂ +

ûi, σ̂
2
e) within the given interval (Ak−1 ≤ yij ≤ Ak) obtaining (ỹij , xij). The drawn pseudo yij

are denoted by ỹij .

3. Re-estimate the vector θ̂ from equation 1 by using the pseudo sample (ỹij , xij) obtained in step 2.

4. Iterate steps 2-3 B +M times, with B burn-in iterations and M additional iterations.

5. Discard the burn-in iterations and estimate θ̂ by averaging the obtained M estimates.

In the presence of open ended intervals A0 = −∞ and/or AK = +∞, the midpoints M1 and MK

from the open ended intervals in iteration step 1 are computed as follows:

M1 = (A1 −D)/2,

MK = (AK +D)/2,
(3)

where

D =
1

K

K∑
k=1

|Ak−1 −Ak|. (4)

During the algorithm it is repeatedly drawn fromN(xTij β̂+ûi, σ̂
2
e) within the given interval (Ak−1 ≤

yij ≤, Ak), therefore the performance of the SEM-algorithm relies strongly on the Gaussian assumption
of the error terms. To assure this assumption holds, the SEM-algorithm is upgraded by the incorporation
of transformations.
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2.2 The SEM-algorithm under transformations

Since the normality assumption is crucial for the performance of the SEM-algorithm, it is extended by
the use of transformations. Transformations are applied to the target variable to meet distributional as-
sumptions for multiple statistical methods. It is broadly distinguished between non-adaptive and adaptive
transformation (Draper and Cox, 1969).

When the target variable is income, the logarithmic transformation, which is a non-adaptive transfor-
mation, is probably the most applied one in the field of econometrics. It is given by:

y∗ij = log(yij), (5)

where y∗ij denotes the transformed variable. While the logarithmic transformation is easy to use,
it has the downside of not adapting to the specific distributional shape of the data. This is particularly
crucial, whenever the fulfilment of the distributional assumption cannot accurately be tested after the
application of the transformation. This is the case, when the dependent variable of the nested error
regression model is interval censored, since the true distribution of the residuals cannot be identified.
Therefore, the SEM-algorithm is further extended by adaptive transformations.

Adaptive, or data-driven transformations automatically adapt to the specific shape of the data. Box
and Cox (1964) introduced a family of adaptive power transformations. These transformations analyt-
ically adapt to the shape of the data. There are numerous alternative data driven transformation in the
literature, see Manly (1976), In-Known and Johnson (2000) or Yang (2000) that can easily be incorpo-
rated into the SEM-algorithm. But, since the Box-Cox transformation shows fruitful results in the EBP
context (Rojas-Perilla et al., 2017) it is focused on its implementation. The Box-Cox transformation
(Box and Cox, 1964) is given by:

y∗ij(λ) =

{
yλij−1

λ if λ 6= 0,

ln yij if λ = 0.
(6)

The formula holds, whenever yij > 0. In the case of negative yij values there is an extension
available, including a parameter, that shifts the data into the positive region. The presented Box-Cox
transformation depends on the transformation parameter λ. The aim is to optimize λ using residual
maximum likelihood (REML) such that normally distributed residuals are obtained. Even if normality is
not reached, at least symmetry is often obtained.

The SEM-algorithm under the logarithmic transformation

The implementation of a fixed transformation in the SEM-algorithm context is quite easy, since no param-
eter has to optimized. Therefore, embedding the log-transformation in the SEM-algorithm is easily done
by transforming the intervals before iteration step 1 of the algorithm. Thus, the K intervals, where the k-
th interval is given by (Ak−1, Ak) are simply transformed by taking the logarithm (log(Ak−1), log(Ak)).
Again, the variable kij indicates in which of the intervals the dependent variable falls into. Only strictly
positive intervals can be transformed by talking the logarithm, so A0 > 0 has to hold or the logarithmic
transformation needs to be extended by the inclusion of a shift parameter. Open ended upper intervals
however, are still possible Ak = +∞. After transforming the intervals, the SEM-algorithm is applied as
described before.

The SEM-algorithm under the Box-Cox transformation

The application of any data-driven transformation in the SEM-algorithm is computational extensive and
the algorithm has to be altered in order to optimize λ in each iteration step. The SEM-algorithm under
the Box-Cox transformation is structured in two parts and given by:

Part 1

1. Perform the Box-Cox transformation on the interval midpoints, as a substitute for the unknown yij ,
estimate λ̂ and obtain the transformed pseudo ỹ∗ij . Using λ̂ to transform the intervals (Ak−1, Ak)
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gives the transformed intervals (A∗
k−1, A

∗
k).

2. Estimate θ̂ = (β̂, ûi, σ̂2e , σ̂
2
u) from equation 1 using the transformed ỹ∗ij .

3. Generate new pseudo samples as a proxy of the unobserved y∗ij . Sample from the conditional dis-
tribution f(y∗ij |xij , kij , ui) by drawing randomly from N(xTij β̂ + ûi, σ̂

2
e) within the given interval

(A∗
k−1 ≤ y∗ij ≤, A∗

k), obtain (ỹ∗ij , xij).

4. Transform ỹ∗ij back to ỹij with λ̂ from the previous iteration step. Apply the Box-Cox transforma-
tion on ỹij to estimate a new λ̂ and to get new transformed pseudo ỹ∗ij . Again, using λ̂ to transform
the original classes (Ak−1, Ak), gives (A∗

k−1, A
∗
k).

5. Re-estimate the vector θ̂ from equation 1 by using the pseudo sample (ỹ∗ij , xij) obtained in step 2.

6. Iterate steps 2-5 B +M times, with B burn-in iterations and M additional iterations.

7. Discard the burn-in iterations and estimate the final λ̂(F ) by averaging the obtained M estimates.

Part 2

8. Transform the original classes (Ak−1, Ak) using λ̂(F ) to get (A∗
k−1, A

∗
k).

9. Restart the original SEM-algorithm proposed in the previous section with the transformed classes
(A∗

k−1, A
∗
k) and iterate B+M times.

10. Discard the B burn in iterations and estimate θ̂ by averaging the obtained M estimates.

Because of the non-linear relationship between the parameter estimates and λ̂, as seen in Figure 1,
obtaining θ̂ and λ̂ by simply averaging the obtained M estimates would lead to non matching results and
to erroneous EBPs.

−4

−3

−2

−1

0.3 0.4 0.5 0.6

λ̂

β̂

Non−linear relationship between λ̂ and β̂

Figure 1: The estimated λ is plotted against the estimated β for each iteration of the SEM-algorithm.

Therefore the estimation is structured into two parts. In Part 1 the correct λ̂(F ) is identified. And
afterwards, λ̂(F ) is used to transform the original classes and the SEM-algorithm is restarted (Part 2) with
the transformed classes. The final estimates θ̂ are obtained by averaging over the M estimates, and since
λ̂(F ) is fixed, β̂ matches λ̂(F ) and the EBP method can be applied.
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3 The EBP method

This section introduces the EBP method that is proposed by Molina and Rao (2010). The EBP method
uses Monte carlo approximations for the estimation and it is based on the previous defined nested error
linear regression model. By its application, EBPs for non-linear estimates are obtained at the domain
or area level. The obtained estimates are best in terms of minimizing the MSE under the assumed SAE
model. Simulations by Molina and Rao (2010) show that these estimates outperform direct estimates
in terms of MSE. While this method is applicable for the estimation of non-linear indicators in general,
this paper is focusing on poverty and inequality indicators. Since the performance of the EBP method
strongly relies on the Gaussian assumption of the error terms, Rojas-Perilla et al. (2017) included data-
driven transformations into the EBP method.

As before, consider a finite population U of size N , divided into D regions. The sample size of
each of the D-regions U1, U2, . . . , UD is given by N1, N2, . . . , ND. Further, the target variable with
whom the poverty indicator of interest is estimated is denote by yij , where j indicates the jth individual
belonging to the ith region. j = 1, 2, . . . , Ni. The data matrix X is defined as X = (x1, . . . , xp)

T ,
where p denotes the number of explanatory variables. The EBP approach further differentiates between
sampled units s and non-samples units r. The sampled-units in area i are defined as si, whereby the
non-sampled units are denoted by ri. For each area i the sample size ni is given by n

∑D
i=1 ni and

the population vector yi for area i consists of the sampled and non-sampled units yTi = (Y T
is , Y

T
ir ). As

mentioned before a nested error linear regression model serves to model the relationship between the
variable of interest and auxiliary information, the unexplained between area variation is captures by ui.
Because yij is unobserved, since only the group information known, the EBP method (Molina and Rao,
2010) is extended by the use of the SEM-algorithm. The extended EBP method without transformations
is given by:

1. Estimate θ̂ = (β̂, σ̂2u, σ̂
2
e) by the SEM-algorithm and obtain the weighting factor, γ̂i = σ̂2

u

σ̂2
u+

σ̂2e
ni

using the sample data.

2. For l = 1, . . . , L:

(a) Generate a bootstrap population using the nested error regression model y(l)ij = xTij β̂ + ûi +

v
(l)
i + e

(l)
ij , where xij are auxiliary information from the population and vi is drawn from

vi
iid∼ N(0, σ̂2u(1− γ̂i)), and eij is drawn from eij

iid∼ N(0, σ̂2e). The random effect ui is given
by ûi = E(ui|yi), the conditional expectation of ui given yi

(b) In each area, estimate the poverty measure of interest Î(l)i using y(l)ij .

3. Finally, estimate the poverty indicator of interest, by averaging over the L Monte Carlo estimates
Î
(l)
i in each area i:

ÎEBPi =
1

L

L∑
l=1

Î
(l)
i . (7)

Whenever the SEM-algorithm under any transformation is used, the EBP method is slightly modified
as described by Rojas-Perilla et al. (2017). In step 1 of the algorithm, θ̂ is estimated using the SEM algo-
rithm under transformation. In step 2 (a), a transformed pseudo populations is obtained y∗(l)ij , which has

to be transformed back to the original scale y(l)ij . The poverty indicator of interest Î(l)i is then estimated
in each area.

In the presence of non-sampled areas, the bootstrap in 2(a) is altered as follows: For l = 1, . . . , L

bootstrap from y
(l)
ij = xTij β̂ + u

(l)
i + e

(l)
ij , where the error terms are drawn from u

(l)
i

iid∼ N(0, σ̂2u) and

e
(l)
ij

iid∼ N(0, σ̂2e).
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4 MSE estimation

To asses the quality of the EBPs the MSE is estimated for each indicator ÎEBPi . The MSE estimation is
facilitated by a parametric bootstrap, that was first introduced by Gonzalez-Manteiga et al. (2008). The
method is further extended by Rojas-Perilla et al. (2017) to account for the additional variability coming
from the estimation of the transformation parameter λ. For capturing the additional uncertainty due to
the interval censored dependent variable, the algorithm is advanced further as follows:

1. Use the sample estimates θ̂ = (β̂, σ̂2u, σ̂
2
e) obtained by the SEM-algorithm, generate ui

iid∼ N(0, σ2u)

and eij
iid∼ N(0, σ2e) and simulate a bootstrap superpopulation model y(b)ij = xTij β̂ + u

(b)
i + e

(b)
ij .

2. Estimate the population indicator Ii,b using y(b)ij .

3. Extract the bootstrap sample y(b)ij , group y(b)ij according to the K intervals (Ak−1, Ak) and then

apply the EBP method using only the interval informations and treating y(b)ij as unknown.

4. Obtain ÎEBPi,b .

5. Iterate steps 2-4, b = 1, . . . , B times. The MSE-estimate for each area i given by:

M̂SE(ÎEBPi ) = B−1
B∑
b=1

(ÎEBPi,b − Ii,b)2. (8)

Again, if transformations are incorporated into the algorithm the procedure needs some adjustments.
In step 1. the sample estimates and additionally λ̂(F ) are obtained by the SEM-algorithm under transfor-
mation and the bootstrap superpopulation model yields transformed y∗(b)ij . The y∗(b)ij are then transformed

back to the original scale in step 2, and the population indicator Ii,b is estimated using y(b)ij . In the 3.step,
the EBP method is applied using the SEM-algorithm under transformation and the data is transformed
back again. The estimation of λ̂(F ) is newly done for each bootstrap sample b.

5 Model-based simulations

This section presents model-based simulation results for the proposed methods to evaluate the perfor-
mance of the SEM-algorithm in the EBP context, with and without transformations. Also, the results of
the newly presented MSE method are evaluated. For the evaluation of the EBPs it is concentrated on the
following popular poverty and inequality measures. The Gini coefficient (Gini) (Gini, 1912), the head
count ratio (HCR) (Foster et al., 1984) with a threshold equal to 60% of the median of the target variable
and the mean.

Even though, there are various quality measures in the literature, it is focused on the root mean
squared error (RMSE) of each indicator ÎEBP in each area i. The RMSE is a scale dependent measure
that can be used to evaluate the performance of different methods applied to the same data (Hyndman
and Koehler, 2006). It is given by:

RMSE
(
ÎEBPi

)
=

[
1

M

M∑
m=1

(
Î
EBP (m)
i − I(m)

i

)2]1/2
, (9)

whereM corresponds to the number of Monte Carlo populations. It measures the difference between
the estimated poverty or inequality measure and its corresponding true value. The domain of the RMSE
lies between 0 and∞.

Three different super-population models (Table 1) are used for evaluation. The normal scenario is
used to evaluate the performance of the EBP approach when all model assumptions are met. In contrast,
the Log-scale and the GB2 scenario try to mimic an equalized income distribution of the dependent vari-
able (Graf et al., 2011). Thus, the Gaussian assumption of the error terms is not fulfilled. In all scenarios
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a finite population U of size N = 10000, which is partitioned into D = 50 regions U1, U2, . . . , UD of
sizes Ni = 200 is generated. Afterwards, a sample using an unbalanced design with sample sizes ni
between 8 ≤ ni ≤ 29 leading to a total sample size of

∑D
i=1 ni = 921 is drawn from the population.

The number of Monte Carlo iterations equals 100. Furthermore, L = 50 and B = 100.

Scenario Model xij zij µi ui eij
Normal 4500 − 400xij + ui + eij N(µi, 3) - U(−3, 3) N(0, 5002) N(0, 10002)

Log-scale exp(10 − xij − 0.5zijui + eij) N(µi, 2) N(0, 1) U(−3, 3) N(0, 0.42) N(0, 0.82)

GB2 8000 − 400xij + ui + eij − e N(µi, 5) - U(−1, 1) N(0, 5002) GB2(2.5, 1700, 18, 1.46)

Table 1: Model based simulation scenarios for the evaluation of the EBPs and the MSE

There are different methods applied for the estimation of the parameters of the nested error regression
model. This is done in order to compare the performance of the EBP approach using yij on a metric scale
(abbreviated by LME) to the performance of the EBP approach whenever yij is grouped and the SEM-
algorithm is used for parameter estimation (abbreviated by SEM). Furthermore, LME and SEM are also
applied under the log transformation (LME Log and SEM Log) and under the Box-Cox transformation
(LME Box-Cox and SEM Box-Cox). The SEM-algorithm is applied with 40 burn-in and 200 additional
iterations. The rate of convergence depends strongly on the variability of the regressors. While the
number of iterations is sufficient in the proposed set-ups larger variability in the regressors will lead to
longer convergence time. Therefore, the practitioner should check the convergence of the parameters and
find a sufficiently high number of iterations.

5.1 Evaluation under normality

For the evaluation of the EBPs under normality, two different interval censoring scenarios (Table 2) are
simulated. This is done in order to study the influence of the number of intervals on the performance of
the EBPs.

Normal scenario 1

Interval Frequencies
[1, 2000) 970
[2000, 3000) 1367
[3000, 4000) 2063
[4000, 5000) 2266
[5000, 6000) 1767
[6000, 7500) 1265
[7500, Inf) 302

Normal scenario 2

Interval Frequencies
[1, 3000) 2337
[3000, 5000) 4329
[5000, 7500) 3032
[7500, Inf) 302

Table 2: Normal scenarios, distribution for one arbitrary chosen population.

Figure 2 and 3 present the results for the SEM-algorithm, the SEM Box-Cox algorithm, the LME
and the LME Box-Cox approach. The results indicate, that the performance of the EBPs using the
SEM-algorithm is close to the performance of the EBPs using LME. The exact numbers are given in the
appendix in Table 3 and 4. If the number of intervals decreases, the performance of the EBPs gets worse.
This is not surprising, since fewer information is used (4 compared to 7 intervals). Since four intervals
is a really extreme case, e.g. in comparison the German micro census uses 24 intervals (Statistisches
Bundesamt, 2017), the SEM-algorithm can be used without concerns in most practical applications.

The performance of the EBPs using SEM and SEM Box-Cox are very similar. This should be the
case whenever the error terms are normally distributed, because no transformation is needed and the
adaptivity of the Box-Cox transformation assures that no transformation is applied. Hence, the Box-Cox
transformation adapts well to the shape of the data, even though only the interval information is used for
the estimation of λ.

The MSE results for the different indicators are given in Figure 4 and in the appendix in Figure 9.
The estimated RMSE tracks the empirical RMSE well. Therefore, the proposed bootstrap sufficiently
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Figure 2: Normal scenario 1, RMSE for the proposed methods.
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Figure 3: Normal scenario 2, RMSE for the proposed methods.

accounts for the additional variability that is due to the grouping.
In the appendix in Figure 10 and 13 the true density of the population yij is plotted against the predic-

tion from one arbitrary chosen simulation run, using the different methods for parameter estimation. The
density plots emphasize the prior results. The prediction of the SEM-algorithm is close to the prediction
using LME and the performance of the SEM-algorithm depends on the number of intervals.

5.2 Evaluation under departures from normality

In order to evaluate the performance of the EBP approach when there are departures from normality the
GB2 and the Log-scale scenario given in Table 1 are used.

Log-scale scenario

In the Log-scale scenario the dependent variable is grouped into seven intervals. The scenario with
four intervals is not being considered, because the prior shown effect, that the performance of the EBPs
decreases is independent from the chosen scenario. The distribution for one arbitrary chosen popula-
tion is given in Table 5 in the appendix. Again, the results show (see Figure 5 and Table 6), that the
performance of the EBPs using the SEM Box-Cox or SEM Log approach is close to the performance
using LME Box-Cox or LME Log. Parameter estimation without transformation is not considered in
the Log-scale scenario, because the results are clearly worse. Of course, some accuracy is lost, due
to the grouping, but considering that only seven intervals are used for estimation the results are really
promising. Also the Box-Cox transformation is working well, since its results are closed to the results of
the Log transformation, indicating the capability of the Box-Cox transformation to adapt to the specific
shape of the data. The Log transformation is the gold standard in the Log-scale scenario, due to the set
up of the data and therefore its results can not be met by the Box-Cox transformation. The results are
again backed up by the density Plot 15 given in the appendix.
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Figure 4: Normal scenario 1, MSE for the mean.
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Figure 5: Log scenario, RMSE for the proposed methods.

The proposed MSE is also working under the logarithmic transformation (see Figure 6 and Figure 14
in the appendix) . The estimated MSE tracks the empirical MSE well.

GB2 scenario

The dependent variable in the GB2 scenario is again censored to seven intervals (see Table 7 in the
appendix). The results show (see Figure 7 and Table 8) that the RMSE of the Gini and HCR using the
SEM algorithm is smaller compared to the RMSE using LME. While this seems counter-intuitive, one
reason might be that the SEM-algorithm is robust against outliers and thus performs better in the case
of skewed data. Furthermore, the results highlight the functioning of the Box-Cox transformation even
when the data is grouped. Again the results are backed up by a density plot given in the appendix (see
Figure 17). It is seen that the SEM Box-Cox method reconstructs the true distribution best, even though
it is only using the interval informations.

The Figures 8 and 16 in the appendix show, that the estimated RMSE is tracking the empirical RMSE
well. Therefore the proposed bootstrap provides useful results even under the Box-Cox transformation.
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Figure 6: Log scenario, MSE for the mean.
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Figure 7: GB2 scenario, RMSE for the proposed methods.

6 Conclusion

The paper introduces a SEM-algorithm that estimates the parameter of a nested error linear regression
model when the dependent variable is grouped. This enables the use of the popular EBP method, which
is based on these models, when the target variable is grouped. The proposed SEM-algorithm relies on
normally distributed error terms. Since this is rarely the case in applied work, transformations are in-
corporated into the algorithm to handle departures from normality. Furthermore, an MSE estimation
procedure that accounts for the additional variability, coming from the interval censored dependent vari-
able, is proposed.

To validate the proposed estimation methods extensive model based simulations were performed
using different scenarios. The simulation results validate the functioning of the proposed SEM-algorithm
and show that in most scenarios the loss of accuracy in the EBPs, is minimal compared to the use of
the uncensored data. That accuracy is lost is obvious, because only the group information, hence less
information is used by the SEM-algorithm. The amount of accuracy lost in the EBPs using the SEM-
algorithm compared to the use of the uncensored data, strongly depends on the number of intervals
the data is censored to. In the GB2 scenario the EBPs using the SEM-algorithm even outperform the
EBPs using the true uncensored data. A possible explanation is that the SEM-algorithm is robust against
outliers. Finally, empirical evaluation also validate the functioning of the proposed parametric bootstrap,
also under transformations.
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Figure 8: GB2 scenario, MSE for the mean.

Further research will focus on the robustness properties of the proposed methods against outliers and
on inferential statistics.
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7 Appendix

LME LMEBox SEM SEMBox
Mean 206.6279 206.0218 216.5873 214.7854
Gini 0.0132 0.0132 0.0140 0.0145

HCR 0.0347 0.0344 0.0357 0.0361

Table 3: Normal scenario 1, median RMSE for the proposed methods.
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Figure 9: Normal scenario 1, MSE for the HCR.

LME LMEBox SEM SEMBox
Mean 202.3627 205.5423 256.3309 254.2082
Gini 0.0133 0.0132 0.0156 0.0169

HCR 0.0349 0.0345 0.0392 0.0403

Table 4: Normal scenario 2, median RMSE for the proposed methods.
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Figure 10: Normal scenario 1, predicted and true density.

Interval Frequencies
[1, 500) 1473
[500, 1000) 1703
[1000, 2000) 2113
[2000, 4000) 2093
[4000, 8000) 1453
[8000, 16000) 770
[16000, Inf) 395

Table 5: Log-scale scenario, distribution for one arbitrary chosen population.
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Figure 11: Normal scenario 2, MSE for the mean.
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Figure 12: Normal scenario 2, MSE for the HCR
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Figure 13: Normal scenario 2, predicted and true density

LME Log LME Box-Cox SEM Log SEM Box-Cox
Mean 975.0483 974.6505 988.2902 991.2858
Gini 0.0344 0.0359 0.0353 0.0377

HCR 0.0646 0.0638 0.0672 0.0678

Table 6: Log scenario, median RMSE for the proposed methods.
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Figure 14: Log scenario, MSE for the HCR.
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Figure 15: Log scenario, predicted and true density.

Interval Frequencies
[1, 3000) 408
[3000, 5000) 1361
[5000, 7000) 2580
[7000, 9000) 2554
[9000, 11000) 1624
[11000, 13000) 778
[13000, Inf) 695

Table 7: GB2 scenario, distribution for one arbitrary chosen population.
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LME LME Box-Cox SEM SEM Box-Cox
Mean 457.1321 416.0161 463.7191 429.3658
Gini 0.0434 0.0238 0.0258 0.0236

HCR 0.0635 0.0467 0.0395 0.0379

Table 8: GB2 scenario, median RMSE for the proposed methods.
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Figure 16: GB2 scenario, MSE for the HCR.
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Figure 17: GB2 scenario, predicted and true density.
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Gini, C. (1912). Variabilità e mutabilità. Reprinted in Memorie di metodologica statistica (Ed. Pizetti E,
Salvemini, T). Rome: Libreria Eredi Virgilio Veschi.

Gonzalez-Manteiga, W., Lombardia, M. J., Molina, I., Morales, D., and Santamaria, L. (2008). Analytic
and bootstrap approximations of prediction errors under a multivariate fay-herriot model. Computa-
tional Statistics & Data Analysis, 52 (12):5242–5252.

Graf, M., Nedyalkova, D., Münich, R., Seger, J., and Zins, S. (2011). Parametric estimation of income
distributions and indicators of poverty and social exclusion. Advanced Methodology for European
Laeken Indicators.

Hyndman, R. J. and Koehler, A. B. (2006). Another look at measures of forecast accuracy. International
Journal of Forecasting, 22(4):679 – 688.

In-Known, Y. and Johnson, R. A. (2000). A new family of power transformations to improve normality
or symmetry. Biometrika, 87(4):954–959.

Manly, B. F. J. (1976). Exponential data transformations. Journal of the Royal Statistical Society. Series
D (The Statistician), 25(1):37–42.

McCullagh, P. (1980). Regression models for ordinal data. Journal of the Royal Statistical Society. Series
B (Methodological), 42(2):109–142.

Molina, I. and Rao, J. N. K. (2010). Small area estimation of poverty indicators. The Canadian Journal
of Statistics, 38 (3):369–385.

Pfeffermann, D. (2002). Small area estimation - new developments and directions. International Statis-
tical Review, 70 (1):125–143.

18



Rao, J. and I.Molina (2015). Small Area Estimation. John Wiley & Sons, Inc.

Rojas-Perilla, N., Pannier, S., Schmid, T., and Tzavidis, N. (2017). Data-driven tansformation in small
area estimation.

Statistisches Bundesamt (2017). Datenhandbuch zum mikrozensus scientific use file 2012.
http://www.forschungsdatenzentrum.de/bestand/mikrozensus/suf/2012/
fdz_mz_suf_2012_schluesselverzeichnis.pdf. Accessed: 2017-07-22.

Stewart, M. (1983). On least square estimation when the dependent varaible is grouped. The Review of
Economic Studies, 50(4):737–753.

United Nations (1995). The copenhagen declaration and programme of action. World Summit for Social
Development.

United Nations (2017). Sustainable development goals. http://www.un.org/
sustainabledevelopment/. Accessed: 2017-07-22.

Yang, Z. (2000). A modified family of power transformations. Economics Letters, 87(92):14–19.

19



Diskussionsbeiträge - Fachbereich Wirtschaftswissenschaft - Freie Universität Berlin 
Discussion Paper - School of Business and Economics - Freie Universität Berlin 
 
2017 erschienen: 
 
2017/1  ARONSSON, Thomas und Ronnie SCHÖB 
  Habit Formation and the Pareto-Efficient Provision of Public Goods 
  Economics 
 
2017/2  VOGT, Charlotte; Martin GERSCH und Cordelia GERTZ 

Governance in integrierten, IT-unterstützten Versorgungskonzepten im 
Gesundheitswesen : eine Analyse aktueller sowie zukünftig möglicher 
Governancestrukturen und -mechanismen 

  Wirtschaftsinformatik 
 
2017/3  VOGT, Charlotte; Martin GERSCH und Hanni KOCH 

Geschäftsmodelle und Wertschöpfungsarchitekturen intersektoraler,  
IT-unterstützter Versorgungskonzepte im Gesundheitswesen 

  Wirtschaftsinformatik 
 
2017/4  DOMBI, Akos und Theocharis GRIGORIADIS 
  Ancestry, Diversity & Finance : Evidence from Transition Economies 
  Economics 
 
2017/5  SCHREIBER, Sven 
  Weather Adjustment of Economic Output 
  Economics 
 
2017/6  NACHTIGALL, Daniel 

Prices versus Quantities: The Impact of Fracking on the Choice of Climate 
Policy Instruments in the Presence of OPEC 

  Economics 
 
2017/7  STOCKHAUSEN, Maximilian 

The Distribution of Economic Resources to Children in Germany 
  Economics 
 
2017/8  HETSCHKO, Clemens; Louisa von REUMONT und Ronnie SCHÖB 

Embedding as a Pitfall for Survey-Based Welfare Indicators: Evidence from an 
Experiment 

  Economics 
 
2017/9  GAENTZSCH, Anja 

Do Conditional Cash Transfers (CCT) Raise Educational Attainment? A Case 
Study of Juntos in Peru 

  Economics 
 
 
 
 



2017/10 BACH, Stefan; Martin BEZNOSKA und Viktor STEINER 
An Integrated Micro Data Base for Tax Analysis in Germany 

  Economics 
 
2017/11  NEUGEBAUER, Martin und Felix WEISS 

Does a Bachelor’s Degree pay off? Labor Market Outcomes of Academic 
versus Vocational Education after Bologna 

  Economics 
 
2017/12 HACHULA, Michael und Dieter NAUTZ 

 The Dynamic Impact of Macroeconomic News on Long-Term Inflation 
Expectations 
Economics 

 
2017/13  CORNEO, Giacomo 
  Ein Staatsfonds, der eine soziale Dividende finanziert 
  Economics 
 
2017/14 GERSCH, Martin; Cordelia GERTZ und Charlotte VOGT 

Leistungsangebote in integrierten, IT-unterstützten Versorgungskonzepten:  
eine Konzeption (re-) konfigurierbarer Servicemodule im Gesundheitswesen 

  Wirtschaftsinformatik 
 
2017/15  KREUTZMANN, Ann-Kristin; Sören PANNIER; Natalia ROJAS-PERILLA; Timo 

SCHMID; Matthias TEMPL und Nikos TZAVIDIS 
The R Package emdi for Estimating and Mapping 
Regionally Disaggregated Indicators 
Economics 

 
2017/16 VOGT, Charlotte; Cordelia GERTZ und Martin GERSCH 

Ökonomische Evaluation eines integrierten, IT-unterstützten 
Versorgungskonzepts im Gesundheitswesen: eine ökonomische Analyse von 
E-Health-unterstützten Versorgungsprozessen 
Wirtschaftsinformatik 

 
2017/17  GASTEIGER, Emanuel und Klaus PRETTNER 

A Note on Automation, Stagnation, and the Implications of a Robot Tax 
Economics 

 
2017/18 HAASE, Michaela 

The Changing Basis of Economic Responsibility: zur Bedeutung und 
Rezeption von John Maurice Clarks Artikel zur ökonomischen Verantwortung 
Marketing 
 

2017/19 FOSSEN, Frank M.; Ray REES; Davud ROSTAM-AFSCHAR und  
Viktor STEINER 
How Do Entrepreneurial Portfolios Respond to Income Taxation? 
Economics 

 
 



2017/20 NEIDHÖFER, Guido; Joaquín SERRANO und Leonardo GASPARINI 
Educational Inequality and Intergenerational Mobility in Latin America: A 
New Database 
Economics 

 
2017/21 SCHMITZ, Sebastian: The Effects of Germany’s New Minimum Wage on 

Employment and Welfare Dependency 
Economics 

 


	Deckblatt_engl_2017_22
	Estimation of Linear and Non-Linear Indicators using Interval Censored Income Data
	Paul Walter
	Marcus Groß
	Timo Schmid
	Nikos Tzavidis
	School of Business & Economics
	Discussion Paper
	Economics

	WalterGrossSchmidTzavidis_EBP grouped data
	Liste2017
	Diskussionsbeiträge - Fachbereich Wirtschaftswissenschaft - Freie Universität Berlin


