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In this work, Raman spectroscopy and X-ray diffraction were applied together to evaluate the

crystal structure and the phonon modes of photovoltaic grade Cu2ZnSn(SxSe1�x)4 thin films, lead-

ing to a complete characterization of their structural and vibrational properties. Vibrational charac-

terization has been based on Raman scattering measurements performed with different excitation

wavelengths and polarization configurations. Analysis of the experimental spectra has permitted

identification of 19 peaks, which positions are in good accord with theoretical predictions. Besides,

the observation of Cu2ZnSnS4-like A symmetry peaks related to S vibrations and Cu2ZnSnSe4-like

A symmetry peaks related to Se vibrations, additional Raman peaks, characteristic of the solid solu-

tion and previously not reported, are observed, and are attributed to vibrations involving both S and

Se anions. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4891333]

Kesterite Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe4 (CZTSe)

compounds and their solid solutions Cu2ZnSn(SxSe(1�x))4

(CZTSSe) have attracted much attention due to their poten-

tial application in thin film solar cells as light absorber mate-

rials. In contrast with more mature thin film technologies

based on Cu(InGa)Se2 chalcopyrites, these compounds are

only composed of earth abundant and non-toxic elements. So

far the best devices are based on Se-rich CZTSSe absorbers,

with the reported record efficiency of 12.6%.1 Although

devices based on CZTSSe solid solutions exhibit the highest

solar cells efficiencies, their structural and vibrational prop-

erties have been studied considerably less than the ones cor-

responding to the quaternary CZTS and CZTSe counterparts.

To date the majority of studies reported on the CZTSSe

compounds deal mainly with different synthesis processes

and their influence on optoelectronic properties (solid state

reaction,2 co-evaporation,3 sputtering deposition,4 monograin

molten-salt synthesis,5 colloidal nanocrystal syntheses,6 hy-

drazine,1 and non-hydrazine based solution processing7).

Several groups have also confirmed the ability to tune the

bandgap of CZTSSe solid solutions by control of stoichiome-

try which allows for more versatile tuning of optical proper-

ties.2–6 Systematic variation of the sulfur/selenium ratio

allows the bandgap to be tuned from 1.4 to 0.9 eV, which

greatly extends potential application of CZTSSe alloys in

thin film photovoltaic devices, where a defined and controlla-

ble bandgap is required. Theoretical calculations, based on

first principles simulations, of the band structure and optical

properties of CZTSSe compounds have revealed that the

mixed-anion alloys are highly miscible.8 Furthermore, the

composition dependence of structure and optical properties of

CZTSSe powders has been experimentally investigated in

Ref. 2, where a linear decrease of lattice parameters in ac-

cordance with Vegard’s law was observed with the change in

composition from S-rich to Se-rich samples. As for the vibra-

tional properties, experimental determination of the main

Raman scattering vibrational modes has been done in Refs.

2–6, where usually the two-mode behavior was attributed to

the most intensive modes throughout the entire alloy concen-

tration range. Additionally, weaker peaks were interpreted as

secondary phases such as SnS, SnSe, ZnS, and ZnSe or Se.

In order to further develop CZTSSe thin film solar cells

and achieve better device performance and higher efficien-

cies, a deeper knowledge on the fundamental and vibrational

properties of these compounds and their impact on the optoe-

lectronic parameters are required.

Herein Raman spectroscopy and X-ray diffraction (XRD)

are applied together to perform a systematic study of the crys-

tal structure and the phonon modes of the polycrystalline

CZTSSe device grade layers (used for producing solar cells

with up to 8.2% efficiency). This has allowed a detailed char-

acterization of the structural and vibrational properties in the

complete range of anion compositions of the solid solutions

(0� S/(Sþ Se)� 1). Furthermore, for better identification of

Raman modes and their dependence on the anion composition

Raman measurements with different excitation wavelengths

from ultra-violet (UV) to near-infrared (NIR) regions are per-

formed. NIR excitation conditions are used due to the expected

increase in the intensity of the Raman modes because of near-

resonant Raman effects. This is expected to take place, ina)Email: vizquierdo@irec.cat
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particular, for the polar modes of CZTS–like peaks, which are

NIR active and are usually observed as very weak peaks in

standard Raman scattering conditions.9 The analysis of the

experimentally obtained spectra has allowed observation of the

existence of a more complex behavior than the two-mode

behavior previously reported for these solid solutions.

CZTSSe device grade layers were synthesized on Mo

coated soda-lime glass by annealing of Cu/Sn/Cu/Zn metal-

lic multi-stacks, deposited by DC magnetron sputtering,

under a Sþ SeþSn atmosphere. Changing the mass of S

and Se and the total pressure during the annealing, it was

possible to tune the S-Se composition in the whole range,

from pure CZTS to pure CZTSe.4 The cationic ratios of Cu/

(SnþZn) and Zn/Sn were kept constant between 0.75–0.80

and 1.16–1.22, respectively. As grown S-rich samples were

submitted to an HCl etching10 and Se-rich ones to a two

stage KMnO4/H2SO4þNa2S (Ref. 11) etching with the aim

to remove ZnS(Se) secondary phases potentially present at

the surface of the absorbers. Raman scattering measurements

performed with excitation conditions corresponding to reso-

nant excitation of ZnS and ZnSe phases confirms the absence

of these phases on the surface of the etched samples.11,12

Solar cells were fabricated with these layers as described

in Ref. 4. Optoelectronic properties from the devices synthe-

sized in this way gave efficiencies up to 8.2%. External quan-

tum efficiency (EQE) curves were obtained using a PV300

Photovoltaic characterization system (Bentham Instruments).

Raman scattering measurements were performed in back

scattering configuration with a LabRam HR800-UV and

T64000 Horiba-Jobin Yvon spectrometers. For the HR800-UV

system, diode-pumped solid state lasers with wavelengths of

785.0 and 532.0 nm and gas HeCd laser with wavelength of

325.0 nm were used for excitation. In this system, excitation and

light collection were made through an Olympus metallographic

microscope with a laser spot diameter of the order of 1–2lm,

depending on the excitation wavelength. To avoid effects in

the spectra related to potential microscopic inhomogeneities, the

spot was rastered over an area of 30� 30 lm2. Furthermore, the

T64000 system works coupled with an ion-Arþ laser, and

measurements were made with 514.5 nm and 457.9 nm excita-

tion lines, with a 100lm spot size on the sample. In all cases,

and to avoid the presence of thermal effects in the spectra, the

power excitation density on the surface of the samples was

around 50 W/cm2. Under these experimental measurement con-

ditions no thermal effects are observed in the spectra. This has

been corroborated by the analysis of spectra measured with dif-

ferent excitation powers. The first-order Raman spectrum of

monocrystalline Si was measured as a reference before and after

acquisition of each Raman spectrum, and the spectra were cor-

rected with respect to the Si line at 520 cm�1.

XRD diffraction patterns were measured on PANalytical

X’pert Pro MPD diffractometer with Cu�Ka-radiation

(k¼ 1.54056 Å) and a secondary graphite monochromator.

Structural characterization of the thin films was carried out

by grazing incidence XRD (GIXRD) with angles of 0.5�, 1�,
2�, and 5�. Refinements of the lattice constant values were

carried out by Le Bail analysis using the FullProf13 program

with Thompson-Cox-Hastings pseudo-Voigt convoluted

with axial divergence asymmetry profile function.14

The crystal structure of CZTSSe solid solutions was char-

acterized by XRD measurements from which representative

patterns of the 112 reflection are presented in Figure 1(a). The

anion compositions of the samples were obtained based on

the position of the 112 diffraction peak in comparison with

the positions of this peak for the pure CZTS and CZTSe com-

pounds. The systematic shift in peak position towards higher

angles as the S/(SþSe) ratio increases correlates with the

replacement of smaller S atoms with larger Se atoms.

Furthermore, presence of a single and symmetric 112 diffrac-

tion peak in all measured diffractograms indicates that all

samples are homogeneously alloyed rather than a mixture of

CZTS and CZTSe phases.15 The kesterite structure (space

group I�4) was used as starting model for the refinement proce-

dure, since it has been shown that both CZTS and CZTSe

adopt a kesterite structure.16 Additionally, lattice parameters a
and c of the thin films were obtained as result of the Le Bail

analysis. The dependence of lattice parameters on S/(Sþ Se)

ratio is presented in the inset in Figure 1 and it is in good ac-

cordance with the Vergard’s law.

In order to examine the compositional uniformity

through the thickness of CZTSSe thin films, GIXRD meas-

urements with 0.5�, 1�, 2�, and 5� angles were performed.

Inset in Figure 1(b) presents diffractograms measured from

S-rich and Se-rich samples. No significant shift in peak posi-

tions of the 112 reflection with the change in grazing inci-

dence angles was observed. Additionally lattice parameters

obtained from Le Bail analysis and presented in Figure 1(b),

have proven to be constant for all grazing incidence angles.

Furthermore, Raman measurements preformed on the front

and back surface of the layers do not show changes in the

FIG. 1. (a) Representative XRD diffractograms centered at the 112 reflection kesterite peak measured for CZTSSe solid solutions. Inset: Lattice parameters on

dependence of the anion S/(SþSe) composition ratio. (b) Lattice parameters in dependence of grazing incidence angles for two representative samples with

0.26 and 0.77 S/(SþSe) composition. Inset: Representative GIXRD diffractograms centered at the 112 reflection kesterite peak measured with 0.5�, 1�, 2�,
and 5� angles for CZTSSe samples with 0.26 and 0.77 S/(SþSe) compositions.
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shape and positions of Raman peaks. Raman measurements

from the back region were made with the laser spot directly

focused on the back surface of the layer from layers that

were previously mechanically removed from the substrate.17

This behavior strongly supports the absence of the significant

changes in the S/(Sþ Se) composition through the thickness

of the layers, thus the CZTSSe thin films used in this study

could be considered uniform.

Irreducible representation of the kesterite structure with

the space group I�4 (C ¼ 3A � 6B � 6E) leads to the theoreti-

cal prediction of 27 active Raman modes, from which most

have been experimentally detected for the CZTS and CZTSe

compounds.9,18 Usually, two dominant Raman peaks have

been observed in this system and assigned to A symmetry

modes. On the other hand, the CZTSSe compounds have a

more complex behavior as seen in Figure 2, which presents

Raman spectra of series of samples with different S/(Sþ Se)

compositions measured with a 532 nm excitation wavelength.

Figure 3(a) presents the frequencies of the most intense

Raman peaks of CZTSSe solid solutions plotted against com-

position. Note that Raman scattering is a surface sensitive

technique (penetration depth of approximately �100 nm in

CZTSSe), which is why the surface anion compositions of the

samples used for Raman characterization are calculated based

on the Vergard’s law applied on the bandgap energies which

were determined from EQE measurements of solar cell devi-

ces based on these films. This is because the penetration depth

of scattered light is similar to the expected width of the space

charge region in the devices. Anion compositions obtained

from the EQE measurements are in good agreement with the

compositions obtained from the XRD measurements.

The Raman spectra of CZTSSe solid solutions are char-

acterized by the presence of two dominant peaks in the higher

frequency region (280–400 cm�1) and two dominant peaks in

the lower frequency region (170–205 cm�1). The peaks in the

higher frequency region are identified with CZTS-like peaks

corresponding to A symmetry modes involving pure S vibra-

tions,9 and the peaks in the lower frequency region are identi-

fied with CZTSe-like peaks corresponding to A symmetry

modes involving pure Se vibrations.18,19 This apparently

agrees with the existence of a two-mode behavior for these

peaks, as previously reported in Refs. 2–6.

In addition, the Raman spectra from the solid solutions

also show additional peaks in the intermediate frequency

region (205–280 cm�1). The observed additional peaks could

not be attributed to secondary phases, because measurements

with the 325.0 and 457.9 nm excitation wavelengths have dem-

onstrated the absence of ZnS and ZnSe secondary phases or

their alloys, which are resonant under these conditions.11,12

Furthermore, the spectral contributions of Sn-(S,Se) phases are

expected in the 50–220 cm�1 interval,20,21 which is not com-

pletely overlapping with the frequency interval of the observed

additional peaks. Finally, the experimental conditions under

which the samples were prepared, constituted of Zn-rich and

FIG. 2. Raman spectra of polycrystalline CZTSSe solid solution thin films

measured with a 532.0 nm excitation wavelength.

FIG. 3. (a) Variations of the frequen-

cies of the most intense Raman peaks

of CZTSSe solid solutions on depend-

ence of S/(SþSe) anion composition

ratio. (b) Raman polarization measure-

ments of CZTSSe solid solutions done

in parallel and perpendicular polariza-

tion configurations (excitation wave-

length of 514.5 nm). Dashed lines are

visual guide for the most intense

Raman peaks positions presented in

Figure 3(a).

FIG. 4. Raman spectra of polycrystalline CZTSSe solid solution thin films

measured with a 785.0 nm excitation wavelength.
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Cu-poor conditions, are expected to inhibit formation of detri-

mental Cu-Sn-(S,Se) ternary phases and Cu-(S,Se) binary

phases.22 The absence of these phases is also confirmed by the

XRD measurements. All this leads to the conclusion that the

additional peaks are due to vibrational modes involving vibra-

tions of both S and Se anions in the lattice. Accordingly, the

vibrational spectrum from the solid solution is more complex

than the previously reported two-mode behaviour. Similar

behaviour in the Raman modes of alloys with the appearance

of additional peaks was also observed in Cu-(S,Se) system.23

From Figure 3(a), all observed Raman modes shift

monotonously with the variation of the composition and no

splitting of peaks are detected. These results suggest that the

observed Raman spectra of CZTSSe compounds of the inter-

mediate compositions are able to be interpreted based on the

kesterite type structure, which is in accordance with XRD

results. As the cationic ratios were kept constant for all sam-

ples, it is expected that changes in the peak positions are

caused mainly by the change in anion composition.

Additional CZTSSe peaks in the interval of 205–280 cm�1

show a higher dependency of frequency from the anion com-

position ratio than the CZTS-like and CZTSe-like ones,

which indicates that they are attributable to vibrational

modes which include vibrations from both S and Se atoms in

the lattice, in contrast with CZTS-like or CZTSe-like peaks

that involve vibrations of only one kind of anion.

Furthermore, full-width-at-half-maximum (FWHM) of peaks

from the solid solution are similar to those observed in the

pure compounds, which indicates the absence of significant

chemical disorder effects.24 These results suggest the possi-

ble existence of fine ordering of anions in the structure,

instead of the expected random distribution.

TABLE I. Frequency (in cm�1) of peaks from simultaneous fitting of Raman spectra of CZTSSe solid solutions for different S/(SþSe) anion compositions

measured with 532.0 and 785.0 nm excitation wavelengths. The proposed symmetries of the modes are determined based on polarization measurements, reso-

nant Raman measurements, and comparison with the modes of the pure S and Se kieserite compounds reported in Refs. 9 and 18 (/ is assignment of the over-

lapped modes).

Experimentally reported in Ref. 18 This work Experimentally reported in Ref. 9

S/(SþSe)¼ 0 S/(SþSe)¼ 0.26 S/(SþSe)¼ 0.52 S/(SþSe)¼ 0.77 S/(SþSe)¼ 1

RSa (cm�1) Symb RSc (cm�1) Symd RSc (cm�1) Symd RSc (cm�1) Symd RSe (cm�1) Symf

58.9 E 60.8 E 62.7 E 67.8 E

69.9 B 75.7 B 75.8 B 81.5 B

77 B 76.4 B 85.4 B 85.8 B

82 E 83.8 E 92.6 E 92.9 E 96.9 E/B

138 E 131.1 E 139.4 E 139.3 E 139.8 E

140.4 146.3 145.3

157 B 153.7 B 163.0 B 162.9 B 164.1 B

170 A

174 A 175.0 A

176.0 174.5

178 B 180.8

196 A 196.6 A 200.7 A 202.9 A

208.2 A or B 214.8 A or B 219.4 A or B

217.0 A or B 223.3 A or B 226.7 A or B

224 E

231 E

230.5 A or B 234.4 A or B 235.1 A or B

235 B 237.2 B/E 246.3 B/E 254.2 B/E 255.1 B/E

239 B 245.2 B 262.6 B 265.1 B 262.7 B

245 B

250 B

271.1 E

286.0 A 286.4 A 287.1 A

290.3 A 300.5 A 301.0 A 302.1 A

315.9 E

331.9 B

329.8 A 331.5 A 332.1 A 337.5 A

334.0 B/E 345.0 B/E 346.8 B/E 347.3 E

353.0 B

352.4 B/E 357.9 B/E 358.3 B/E 366.6 E

374.4 B

aRS is the Raman shift reported in Ref. 18.
bSym is the symmetry reported in Ref. 18.
cRS is the Raman shift from this work.
dSym is symmetry proposed in this work.
eRS is the Raman shift reported in Ref. 9.
fSym is the symmetry reported in Ref. 9.
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Raman polarization measurements performed on these

layers (Figure 3(b)) show the same behavior for the addi-

tional peaks observed in the 205–280 cm�1 region as that of

CZTS-like and CZTSe-like A symmetry peaks. According to

Raman tensors for the space group I�4 and calculations of

depolarization ratio for the polycrystalline films with random

orientation, with changes in polarization conditions from

parallel hZjXXjZi to perpendicular hZjXYjZi configurations

the intensity of all A modes would always decrease, while

the intensity of all E modes would always increase. In case

of B modes, their intensity could increase or decrease

depending on their type. Assuming the existence of a kester-

ite crystalline structure for the alloys (in agreement with the

XRD data) and the expected behavior of the modes with the

change in polarization conditions, this indicates that these

peaks are related to either A or B symmetry modes.9

In order to deepen understanding of the CZTSSe vibra-

tional modes and to more clearly observe and resolve the

peaks, Raman measurements with a 785 nm excitation wave-

length were performed on the same set of samples. The Raman

spectra measured on the films with different compositions are

plotted in Figure 4. The intensity of the Raman peaks located

at highest frequencies from the spectra of S-rich CZTSSe sam-

ples are enhanced in the case of 785 nm excitation due to the

resonance Raman effects. This kind of behavior is attributed to

the coupling of the excitation energy with the electronic energy

bands at C point.9 The selective enhancement of these peaks

suggests that they can be attributed to polar modes, since this

kind of behavior is expected only for those type of modes,9

which again, assuming the kesterite structure, indicates that

these peaks are related to B or E symmetry modes.

The detailed simultaneous fittings of the experimental

spectra with Lorentzian curves and polarization measure-

ments have allowed identification of 19 peaks. The positions

of the peaks are in good accordance with those calculated for

these compounds from first principle simulations.8 The posi-

tion of each Raman peak for the three representative samples

with S/(SþSe) anion compositions of 0.26, 0.52, and 0.77

are presented in Table I. In this Table, the symmetry of the

modes related to the different peaks is proposed based on the

polarization and Raman scattering resonant measurements,

and from the comparison with the previously reported exper-

imental Raman modes from the CZTS9 and CZTSe

compounds.18

In conclusion, this work presents a complete vibrational

characterization based on simultaneous fittings of the Raman

spectra measured with different excitation wavelengths and

under different polarization configurations, which allowed

identification of 19 peaks. In contrast with previous reports

on the existence of a two-mode behavior, a more complex

behavior of the most intense peaks with the change in anion

composition has been observed. The Raman spectra from the

solid solution show dominant CZTS-like peaks in the higher

frequency region (280–400 cm�1), dominant CZTSe-like

peaks in the lower frequency region (170–205 cm�1), and

additional peaks related to vibrations of both S and Se anions

in the intermediate frequency region (205–280 cm�1). These

results provide a better insight in the fundamental properties

of CZTSSe solar cells, and lead to an improved knowledge

on their vibrational properties.
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